Implementation with Missing Data

Mehmet Barlo¹ Nuh Aygün Dalkıran²

June 2022

¹Sabancı University ²Bilkent University

Barlo & Dalkıran Implementation with Missing Data

- How should planners tackle the problem of designing mechanisms
 - with missing choice data
 - (i.e., when they do not know all choices of all individuals)
 - to decentralize desired collective goals?

The lack of data on individuals' choices is **natural** as missing data is a fact of life:

• Monitoring and storage of individuals' revealed preferences are costly.

An Incomplete Literature Review

- Maskin (1999), Moore and Repullo (1990), Dutta and Sen (1991);
- Jackson (1991);
- Bergemann and Morris (2005), (2008), (2009), and (2011);
- Eliaz (2002);
- Barlo and Dalkıran (2009), Korpela (2012), de Clippel (2014), Hayashi et al. (2020), Barlo and Dalkıran (2021, 2022).

- A *planner*, a fresh CEO or an appointed trustee, is to run a firm, and
- depending on the state of the firm that she does not observe, she is to choose one of the following alternatives: expansion, prudence, or contraction.
- The chiefs of *finance* and *marketing* observe the firm's state, be it (S)trong,
 (N)ormal, or (W)eak, and their own *preferences* contingent on firm's states.
- The planner needs to *implement* a given goal contingent on firm's states by extracting the CFO's and the CMO's information.

A Suitable Setting – II

- In the classical setting, the planner and the individuals are fully informed of how payoff states (chiefs' preference profiles) are associated with firm's states.
- In our model, the planner and the individuals do not fully know this association, but have partial information about it. This constitutes the missing choice data:

From past data on accounting records and meeting minutes, they are partially informed about how chiefs' preferences correspond to firm's states:

- Last quarter, when the firm's state was normal, the CFO strictly preferred prudence to contraction, while
- the CMO strictly preferred the prudence to expansion,
- and there is no further information pertaining to the firm's normal state.

A Suitable Setting – III

- In the classical setting, the planner and the individuals are fully informed of how payoff states (chiefs' preference profiles) are associated with firm's states.
- In our model, the planner and the individuals do not fully know this association, but have partial information about it. This constitutes the missing choice data:
 From past data on accounting records and meeting minutes, they are partially

informed about how chiefs' preferences correspond to firm's states:

- So, at the firm's normal state, the CEO and the CMO do not know how the CFO ranks expansion compared to contraction and prudence, and
- the CEO and the CFO do not know how the CMO ranks contraction compared to expansion and prudence.

A Suitable Setting – IV

- In the classical setting, the planner and the individuals are fully informed of how payoff states (chiefs' preference profiles) are associated with firm's states.
- In our model, the planner and the individuals do not fully know this association, but have partial information about it. This constitutes the missing choice data.
- The missing choice data is **publicly observable**.
- When can the planner implement a given goal for the firm via a mechanism by using only the incomplete public choice data and by refraining from relying on
 - chiefs' assessments about the other's possible preferences (types), and
 - chiefs' knowledge of their own types?

Our Contributions

- We formalize such implementation problems with missing data,
- propose a suitable notion of equilibrium along with resulting concepts of (full) implementation,
- obtain necessary conditions that are sufficient in economic environments,
- establish that more information enriches implementation opportunities,
- *analyze* the implementability of a suitable efficiency notion.

An Example: Missing Choice Data

	(S)trong		(N))ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{e}				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		{ <i>e</i> }		{ p }		

There are three alternatives $X = \{c, e, p\}$, and the CFO and the CMO observe the state of the firm $\Theta = \{S, N, W\}$ along with their own preferences (strict rankings).

- π*: Θ → Ω identifies the *true association* between Θ and Ω where Ω denotes the *payoff states* and equals the set of all strict ranking profiles.
- The planner and the individuals do not know the true association but observe the above *incomplete public choice data*.

An Example: Inferences from the Incomplete Choice Data

	(S)trong		(N))ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		$\{e\}$		{ p }		

Rationality implies the following inferences about individuals' preferences from the incomplete public choice data: At <u>firm's state S</u>,

- the preferences of the CFO must be s.t. e P_{CFO} p P_{CFO} c (denoted by epc);
- the preferences of the CMO is an element in {*cep*, *ecp*, *epc*}.

An Example: Inferences from the Incomplete Choice Data

	(S)trong		(N))ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		$\{e\}$		{ p }		

Rationality implies the following inferences about individuals' preferences from the incomplete public choice data: At <u>firm's state N</u>,

- the preferences of the CFO must be in {*epc*, *pce*, *pec*};
- the preferences of the CMO is in {*cpe*, *pce*, *pec*}.

An Example: Inferences from the Incomplete Choice Data

	(S)trong		(N))ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c,e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		$\{e\}$		{ p }		

Rationality implies the following inferences about individuals' preferences from the incomplete public choice data: At <u>firm's state W</u>,

- the preferences of the CFO must be in {pce, pec};
- the preferences of the CMO is in {pce, pec}.

An Example: The Inference Correspondence

	(S)trong		(N)ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		$\{e\}$		{ p }		

- the *inference correspondence*, $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, where
- $\mathcal{K}(\theta) \subset \Omega$ is the set of ranking profiles compatible with the public choice data.
- We require the following: for all $\theta \in \Theta$
 - $\pi^*(\theta) \in \mathcal{K}(\theta)$ (i.e., the truth must be compatible with the public choice data), and
 - $\mathcal{K}(\theta) \neq \emptyset$ (a natural regularity condition).

An Example: The Full Data

	(S)trong		(N)ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		{ <i>e</i> }		{ p }		

- the *inference correspondence*, $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, where
- $\mathcal{K}(\theta) \subset \Omega$ is the set of ranking profiles compatible with the public choice data.
- The data is complete when $\mathcal{K}(\theta) = \{\pi^*(\theta)\}$ for all $\theta \in \Theta$.
 - This corresponds to the standard case (see Maskin (1999) or de Clippel (2014)).

An Example: The Partially Informed Planner

	(S)trong		(N)ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		{ <i>e</i> }		{ p }		

- the *inference correspondence*, $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, where
- $\mathcal{K}(\theta) \subset \Omega$ is the set of ranking profiles compatible with the public choice data.
- The data is complete when $\mathcal{K}(\theta) = \{\pi^*(\theta)\}$ for all $\theta \in \Theta$.
- In all other cases, the planner and the individuals are partially informed.

An Example: The Inferences in the Example

	(S)trong		(N)ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c,e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		{ <i>e</i> }		{ p }		

An Example: Agents' Inferences

• ...

	(S)trong		(N)ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e, p\}$ $\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		{ <i>e</i> }		{ p }		

Agent's observe their own type (ranking), the incomplete public choice data, and firm's realized state but not other individuals' types. Thus,

- at S the CMO observing his type say cep infers that the payoff state equals (epc, cep);
- at N the CFO observing his type say pce infers that the realized payoff state must be in {(pce, cpe), (pce, pce), (pce, pec)};

Barlo & Dalkıran Implementation with Missing Data

An Example: Inferences

	(S)trong		(N))ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		{ <i>e</i> }		{ p }		

Agent's observe their own type (ranking), the incomplete public choice data, and firm's realized state but not other individuals' types.

The planner observes <u>only</u> the incomplete public choice data; so, can make inferences only based on the inference correspondence $\mathcal{K}: \Theta \to \Omega$.

An Example: The Social Choice Correspondence

	(S)trong		(N))ormal	(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
$\{e, p\}$		{ <i>e</i> }		{ p }		

The social choice correspondence (SCC) $f : \Theta \twoheadrightarrow X$ is exogenously given. Here,

• we consider a *plausible* SCC: $f(S) = \{e\}$ and $f(\theta) = \{p\}$ for all $\theta \neq S$.

• For any θ , $f(\theta)$ equals the set of *reliably* Pareto efficient alternatives at θ :

$$f(\theta) = \bigcap_{\omega \in \mathcal{K}(\theta)} PO(\omega), \text{ where } PO(\omega) \equiv \{x \in X \mid \nexists y \in X \text{ with } y P_i^{\omega} x, \forall i \in N\}.$$

 $x \in f(\theta)$ implies that no matter what the true ranking profile is, it must be PO.

Details

- The environment is of *incomplete information*.
- X is the set of *alternatives* and the set of its non-empty subsets is \mathcal{X} .
- Ω_i is the set of possible *preferences* (payoff types) of individual $i \in N$.
- $\Omega = \times_{i \in N} \Omega_i$ denotes the set of **payoff states** (type profiles).
- Θ is the states of the economy.
- $f: \Theta \to \mathcal{X}$ is a given social choice correspondence (SCC).

Inferences from the Incomplete Public Choice Data

- The inference correspondence is $\mathcal{K} : \Theta \twoheadrightarrow \Omega$ s.t. $\mathcal{K}(\theta) \equiv \times_{i \in N} \mathcal{K}_i(\theta)$ for all θ ,
- *K*(θ) ⊂ Ω is the set of payoff states that are compatible with the public choice data at θ ∈ Θ:
 - If the publicly observable choice of i ∈ N at θ from S ∈ X with x, y ∈ S contains x, then it is publicly known that xR_i^ωy for all ω ∈ K(θ).
- $\pi_i^* : \Theta \to \Omega_i$ captures the *true association* between Θ and Ω_i such that for all θ , $\pi^*(\theta) \equiv \times_{i \in N} \pi_i^*(\theta)$ is in $\mathcal{K}(\theta)$.

Information/Knowledge Requirements

The information and knowledge requirements of our model are:

(*i*) the planner knows N, X, Ω, Θ , and $f : \Theta \to \mathcal{X}$; and

(*ii*) each **individual** *i* knows $N, X, \Omega, \Theta, f : \Theta \to \mathcal{X}$, and

• the realized state of the economy $\theta \in \Theta$ and

• *i's true realized type* $\pi_i^*(\theta) \in \mathcal{K}_i(\theta)$ *at* θ ; and

(iii) items (i), (ii), and K: Θ → Ω, inferences compatible with the public choice data, are <u>common knowledge</u> among the individuals and the planner.

Mechanisms

A mechanism $\mu = (M, g)$ consists of

• messages, $M_i \neq \emptyset$, and outcome function, $g : M \to X$ with $M \equiv \times_{i \in N} M_i$.

• given $m_{-i} \in M_{-i} \equiv \times_{i \neq i} M_i$, the opportunity set of *i* in μ for m_{-i} is

$$O_i^{\mu}(m_{-i}) \equiv g(M_i, m_{-i}) = \{g(m_i, m_{-i}) \mid m_i \in M_i\}$$

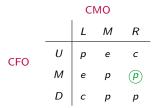
Inferences from the incomplete public choice data, $\mathcal{K}:\Theta\twoheadrightarrow\Omega,$ enable

- predictions about individuals' strategic behavior in mechanism μ and
- determination of whether or not μ "implements" a given SCC.

"Equilibrium" at Firm's State N

In our example, consider the following mechanism, firm's state N, and recall that

 $\mathcal{K}(N) = \{\{epc, pce, pec\} \times \{cpe, pce, pec\}\} \text{ and } f(N) = \{p\}.$



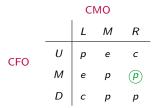
The planner infers that

- M is a best response of the CFO to the CMO choosing R, for all CFO's rankings in K_{CFO}(N).
- R is a best response of the CMO to the CFO choosing M, for all CMO's rankings in K_{CMO}(N).

"Equilibrium" at Firm's State N

In our example, consider the following mechanism, firm's state N, and recall that

 $\mathcal{K}(N) = \{\{epc, pce, pec\} \times \{cpe, pce, pec\}\} \text{ and } f(N) = \{p\}.$



The planner infers that

- At N, profile (M, R) is a Nash equilibrium (NE) at all payoff states in K(N).
- We argue that at N, the planner may rely on (M, R) being an "equilibrium"
 - even if the planner and the individuals are unsure of the true ranking profile associated with N.

Nash Equilirium

 Given μ = (M,g), m^{*} ∈ M is a Nash equilibrium (NE) of μ at payoff state (ranking profile) ω ∈ Ω if

$$g(m^*) \in \bigcap_{i \in \mathbb{N}} C_i^{\omega}(O_i^{\mu}(m^*_{-i})),$$

where for any non-empty $S \subset X$, $C_i^{\omega}(S) \equiv \{x \in S \mid xR_i^{\omega}y, \forall y \in S\}$.

- Our environment is of incomplete information where the planner and the individuals are unsure of the payoff state associated with the state of the economy.
- Thus, the use of **NE** is not plausible in our setting.

- The planner needs to consider individuals' behavior in every possible ranking profile compatible with the incomplete public choice data
 - to make reliable strategic predictions and ensure outcomes consonant with the desired goal.
- If the individuals correlate their behavior only on the public choice data, then they do not have incentives to find out others' true preferences.

• These lead us to the notion of reliable Nash equilibrium.

Definition

Given a mechanism μ , and the inference correspondence $\mathcal{K}:\Theta\twoheadrightarrow \Omega,\ m^*\in M$ is a

reliable Nash equilibrium (RNE) of μ at state of the economy θ if

$$g(m^*) \in \bigcap_{i \in N, \ \omega \in \mathcal{K}(\theta)} C_i^{\omega}(O_i^{\mu}(m_{-i}^*)).$$

Definition

Given a mechanism $\mu,$ and the inference correspondence $\mathcal{K}:\Theta\twoheadrightarrow\Omega,\ \textit{m}^{*}\in\textit{M}$ is a

reliable Nash equilibrium (RNE) of μ at state of the economy θ if

$$g(m^*) \in \bigcap_{i \in N, \ \omega \in \mathcal{K}(\theta)} C_i^{\omega}(O_i^{\mu}(m_{-i}^*)).$$

• A profile of RNE taken across the states of the economy is equivalent to

- an ex-post correlated equilibrium (ECE),
 - i.e., an ex-post equilibrium using the states of the economy as a correlation device,

• in which each individual's behavior depends only on the public choice data.

Definition

Given a mechanism $\mu,$ and the inference correspondence $\mathcal{K}:\Theta\twoheadrightarrow\Omega,\ m^*\in M$ is a

reliable Nash equilibrium (RNE) of μ at state of the economy θ if

$$g(m^*) \in \bigcap_{i \in N, \ \omega \in \mathcal{K}(\theta)} C_i^{\omega}(O_i^{\mu}(m_{-i}^*)).$$

The RNE provides the following robustness properties:

- (i) It uses no probabilistic information, no belief updating, and no common prior assumption; it is belief-free, and the equilibrium behavior features the ex-post no-regret property.
- (ii) The RNE refrains from using individuals' private information and relies only on the public choice data.

Implementation in Reliable Nash Equilirium

Definition

Given an inference correspondence $\mathcal{K}: \Theta \twoheadrightarrow \Omega$ and an SCC $f: \Theta \to \mathcal{X}$, a mechanism

 μ implements f in RNE if for all $\theta \in \Theta$, $f(\theta) = RNE^{\mu}(\theta)$ where

 $RNE^{\mu}(\theta) \equiv \{g(m^*) \in X \mid m^* \text{ is an RNE at } \theta\}.$ That is,

(i) for all $\theta \in \Theta$ and all $x \in f(\theta)$, there exists $m^x \in M$ such that $g(m^x) = x$ and

$$g(m^{\mathsf{x}}) \in \bigcap_{i \in N, \ \omega \in \mathcal{K}(heta)} C_i^{\omega}(O_i^{\mu}(m_{-i}^{\mathsf{x}})), ext{ and }$$

(ii) if $m^* \in M$ is such that $g(m^*) \in \bigcap_{i \in N, \omega \in \mathcal{K}(\theta)} C_i^{\omega}(O_i^{\mu}(m^*_{-i}))$ for some $\theta \in \Theta$, then $g(m^*) \in f(\theta)$.

Implementation in Reliable Nash Equilirium

Implementation in RNE sustains RNE's robustness properties. Thus,

- individuals do not have incentives to change their prescribed behavior even if they were to learn others' payoff types, and
- outcomes of mechanisms implementing the given SCC in RNE are verifiable using only the public information and hence
- vindications based on individuals' private information are not needed.
- That is why such mechanisms preserve privacy.
 - See mechanism design with privacy-aware individuals (Nissim et al. (2012), Pai and Roth (2013), and Chen et al. (2016), among others).

Our Example - Implementation in RNE - S

State of the economy: S		State of the economy: N	State of the economy: W	
$f(S) = \{$	e}	$f(N) = \{p\}$	$f(W) = \{p\}$	
$\mathcal{K}(S): \longrightarrow \{cep, economic label{eq:keyline} \$	<	$ \begin{array}{l} \{epc, pce, pec\} \\ \mathcal{K}(N): & \times \\ \{cpe, pce, pec\} \end{array} $	$\{pce, pec\}\ \mathcal{K}(W): \qquad imes \ \{pce, pec\}\ \{pce, pec\}\}$	
U p e M © p D c p	С	L M R U p e c M e p P D c p p	L M R U (P) e c M e p p D c p p	
RNE: (M, L) Outcomes: $\{e\}$		RNE: (M, R) Outcomes: $\{p\}$	RNE: (<i>U</i> , <i>L</i>) Outcomes: { <i>p</i> }	

 $\begin{aligned} S: & (M,L) \text{ is an RNE because } g(M,L) = e \in C^{\omega}_{CFO}(\{c,e,p\}) \cap C^{\omega}_{CMO}(\{e,p\}) \text{ for all } \omega \in \mathcal{K}(S), \\ & (U,L) \text{ is not an RNE as } g(U,L) = p \notin C^{\omega}_{CFO}\{\{c,e,p\}\} \text{ for all } \omega \in \mathcal{K}(S), \\ & (D,L) \text{ is not an RNE as } g(D,L) = c \notin C^{\omega}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(S), \\ & (M,M) \text{ is not an RNE as } g(M,M) = p \notin C^{\omega}_{CFO}\{\{e,p\}\} \text{ for all } \omega \in \mathcal{K}(S), \\ & (D,M) \text{ is not an RNE as } g(D,M) = p \notin C^{\omega}_{CFO}\{\{e,p\}\} \text{ for all } \omega \in \mathcal{K}(S), \\ & (U,R) \text{ is not an RNE as } g(U,R) = c \notin C^{\omega}_{CFO}\{\{e,p\}\} \text{ for all } \omega \in \mathcal{K}(S), \\ & (M,R) \text{ is not an RNE as } g(M,R) = p \notin C^{\omega}_{CFO}\{\{e,p\}\} \text{ for all } \omega \in \mathcal{K}(S), \\ & (M,R) \text{ is not an RNE as } g(D,R) = p \notin C^{\omega}_{CFO}\{\{e,p\}\} \text{ or all } \omega \in \mathcal{K}(S), \\ & (D,R) \text{ is not an RNE as } g(D,R) = p \notin C^{\omega}_{CFO}\{\{e,p\}\} \text{ with } \omega \in \{epc\} \times \{cep,ecp\} \subset \mathcal{K}(S). \end{aligned}$

Our Example - Implementation in RNE - N

State of the economy: <i>S</i>	State of the economy: N	State of the economy: W
$f(S) = \{e\}$	$f(N) = \{p\}$	$f(W) = \{p\}$
$\{epc\}\ \mathcal{K}(S): \ imes \ \{cep, ecp, epc\}$	$ \begin{array}{c c} \{epc, pce, pec\} \\ \mathcal{K}(N): & \times \\ \{cpe, pce, pec\} \end{array} $	$\{pce, pec\}\ \mathcal{K}(W): \begin{array}{c} \{pce, pec\}\ \mathcal{K}(W) = \mathcal{K}(W) \in \mathcal{K}(W) \in \mathcal{K}(W) \ \mathcal{K}(W) \ \mathcal{K}(W) = \mathcal{K}(W) \ \mathcal{K}(W) \ \mathcal{K}(W) \ \mathcal{K}(W) \ \mathcal{K}(W) = \mathcal{K}(W) \ \mathcal{K}(W$
L M R U p e c M © p p D c p p	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L M R U (P) e c M e p p D c p p
RNE: (<i>M</i> , <i>L</i>) Outcomes: { <i>e</i> }	RNE: (M, R) Outcomes: $\{p\}$	RNE: (<i>U</i> , <i>L</i>) Outcomes: { <i>p</i> }

 $\begin{aligned} & \mathsf{N}: \quad (M,R) \text{ is an RNE because } g(M,R) = p \in C^{\circ}_{CFO}(\{c,p\}) \cap C^{\circ}_{CMO}(\{e,p\}) \text{ for all } \omega \in \mathcal{K}(N), \\ & (M,L) \text{ is not an RNE as } g(M,L) = e \notin C^{\circ}_{CMO}(\{e,p\}) \text{ for all } \omega \in \mathcal{K}(N), \\ & (D,L) \text{ is not an RNE as } g(D,L) = c \notin C^{\circ}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(N), \\ & (U,M) \text{ is not an RNE as } g(U,M) = e \notin C^{\circ}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(N), \\ & (U,R) \text{ is not an RNE as } g(U,R) = c \notin C^{\circ}_{CFO}(\{c,p\}) \text{ for all } \omega \in \mathcal{K}(N), \end{aligned}$

Our Example - Implementation in RNE - W

State of the economy: S	State of the economy: N	State of the economy: W
$f(S) = \{e\}$	$f(N) = \{p\}$	$f(W) = \{p\}$
$ \begin{array}{c} \{epc\} \\ \mathcal{K}(S): & \times \\ \{cep, ecp, epc\} \end{array} $	$ \begin{cases} epc, pce, pec \\ \mathcal{K}(N) : & \times \\ \{cpe, pce, pec \} \end{cases} $	$ \begin{array}{c} \{pce, pec\} \\ \mathcal{K}(W): & \times \\ \{pce, pec\} \end{array} $
L M R U p e c M © p p D c p p	L M R U p e c M e p (P) D c p p	L M R U P e c M e p p D c p p
RNE: (<i>M</i> , <i>L</i>) Outcomes: { <i>e</i> }	RNE: (<i>M</i> , <i>R</i>) Outcomes: { <i>p</i> }	RNE: (U, L) Outcomes: $\{p\}$

 $\begin{array}{ll} W: & (U,L) \text{ is an RNE because } g(M,R) = p \in C^{\omega}_{CFO}(\{c,e,p\}) \cap C^{\omega}_{CMO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (M,L) \text{ is not an RNE as } g(M,L) = e \notin C^{\omega}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (D,L) \text{ is not an RNE as } g(D,L) = c \notin C^{\omega}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (U,M) \text{ is not an RNE as } g(U,M) = e \notin C^{\omega}_{CMO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (U,R) \text{ is not an RNE as } g(U,R) = c \notin C^{\omega}_{CMO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (U,R) \text{ is not an RNE as } g(U,R) = c \notin C^{\omega}_{CMO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \end{array}$

Our Example Revisited - Implementation in RNE

These show that, the following mechanism fully implements the SCC f in RNE:

	СМО			
		L	М	R
CFO	U	р	е	с
	М	е	р	p
	D	с	р	p

There is a "danger" that emerges at S:

- (D, R) is an NE at $\hat{\omega} = (epc, epc) \in \mathcal{K}(S)$ and $g(D, R) = p \notin f(S) = \{e\}$.
- So, (D, R) is an NE at $\hat{\omega}$ that is compatible with the public choice data.
- Thus, there may be an ECE sustaining outcome p at payoff state ŵ, resulting in an alternative that is not f-optimal at S.
- The planner may seek to prevent the occurrence of such incidents.

Safe Implementation in Reliable Nash Equilirium

Definition

Given an inference correspondence $\mathcal{K}: \Theta \twoheadrightarrow \Omega$, we say that an SCC $f: \Theta \to \mathcal{X}$ is

safely implementable in reliable Nash equilibrium by a mechanism $\mu = (M, g)$ if

(i)
$$f(\theta) \subset RNE^{\mu}(\theta)$$
 for all $\theta \in \Theta$; and

(ii) if $m^* \in M$ and $\theta \in \Theta$ are such that $g(m^*) \in \bigcap_{i \in N} C_i^{\omega}(O_i^{\mu}(m^*_{-i}))$ for some $\omega \in \mathcal{K}(\theta)$, then $g(m^*) \in f(\theta)$.

Condition (*ii*) says that if an action profile is an NE of μ at some ω compatible with θ , then it must result in an *f*-optimal alternative at θ .

Our Example Revisited - Safe Implementation in RNE

We show that, the following mechanism safely implements the SCC f in RNE:

	СМО			
		L	М	R
CFO	U	р	е	с
	М	е	р	p
	D	с	р	с

The outcome of (D, R) is changed from p to c:

- The "danger" that emerges at *S* is eliminated.
- Individuals' opportunity sets and the RNE do not change.
- In particular, (M, L) continues to be an RNE at S.
- (D, R) is not an NE at any $\omega \in \mathcal{K}(S)$ because CFO ranks p strictly above c.

▶ Details

Implementation via RNE uses Public Choice Data

- RNE uses inferences drawn from the public choice data and demands that
 - the equilibrium behavior of every individual does not depend on his private information.

• What if the planner contemplates individual *i*'s behavior to depend on his privately observed type with or without considering others' types?

 This leads to the ex-post correlated formulation (Bergemann and Morris, 2008) and the Bayes correlated formulation (Bergemann and Morris, 2016).

Ex-Post Correlated Equilibrium

▶ Reliable Nash Equilibrium

Necessity of (Safe) Implementation in RNE

Definition

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$ and an SCC $f : \Theta \to \mathcal{X}$, a profile of

sets $S := (S_i(x, \theta))_{i \in N, \theta \in \Theta, x \in f(\theta)}$ is reliably-consistent with f if

- (i) for all $\theta \in \Theta$ and all $x \in f(\theta)$, $x \in \bigcap_{i \in N, \omega \in \mathcal{K}(\theta)} C_i^{\omega}(S_i(x, \theta))$; and
- (ii) $x \in f(\theta)$ and $x \notin f(\tilde{\theta})$ implies that there are $j \in N$ and $\tilde{\omega} \in \mathcal{K}(\tilde{\theta})$ such that $x \notin C_j^{\tilde{\omega}}(S_j(x, \theta))$.

Moreover, a profile of sets $\mathbf{S} := (S_i(x, \theta))_{i \in N, \ \theta \in \Theta, \ x \in f(\theta)}$ is safely-consistent with f if (*i*) and the following hold:

(iii) $x \in f(\theta)$ and $x \notin f(\tilde{\theta})$ implies that for all $\tilde{\omega} \in \mathcal{K}(\tilde{\theta})$ there is $j \in N$ with $x \notin C_j^{\tilde{\omega}}(S_j(x, \theta))$.

Relation to Maskin monotonicity

Theorem (Theorem 1)

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$ and an SCC $f : \Theta \to \mathcal{X}$,

- (i) if f is implementable in RNE, then there is a profile of sets that is reliably-consistent with f; and
- (*ii*) *if f is* **safely implementable in RNE**, *then there is a profile of sets that is* **safely-consistent** *with f*.

Theorem (Theorem 2)

Given an inference correspondence $\mathcal{K}: \Theta \twoheadrightarrow \Omega$ and an SCC $f: \Theta \to \mathcal{X}$, if there exists a profile of sets that is

- (*i*) reliably-consistent with f and $\mathcal{K}(\tilde{\theta}) \subset \mathcal{K}(\theta)$ for some $\theta, \tilde{\theta} \in \Theta$, then $f(\theta) \subset f(\tilde{\theta})$;
- (ii) safely-consistent with f and $\mathcal{K}(\theta) \cap \mathcal{K}(\tilde{\theta}) \neq \emptyset$ for some $\theta, \tilde{\theta} \in \Theta$, then $f(\theta) = f(\tilde{\theta})$.

More information enriches implementation opportunities.

Proof of Theorem 2

Implications of Information on Implementation

Suppose $\tilde{\theta}$ is a state of the economy at which the planner is **completely** ignorant of the payoff states, i.e., $\mathcal{K}(\tilde{\theta}) = \Omega$. Then, we have the following:

- Any SCC implementable in RNE must be such that $f(\tilde{\theta}) \subset \bigcap_{\theta \in \Theta} f(\theta)$.
- Any SCC that is safely implementable in RNE must be constant.
- Suppose *f* is singleton-valued. If *f* is either implementable in RNE or safely implementable in RNE, then *f* is constant.

We employ the following in our sufficiency result:

Definition

Given an inference correspondence $\mathcal{K}:\Theta\twoheadrightarrow\Omega,$ the environment is

- (i) economic if for all $x \in X$ and for all $\theta \in \Theta$, there exist $i, j \in N$ with $i \neq j, \omega \in \mathcal{K}(\theta)$, and $y^i, y^j \in X$ such that $y^i P_i^{\omega} x$ and $y^j P_i^{\omega} x$; and
- (*ii*) strictly economic if for all $x \in X$, all $\theta \in \Theta$, and all $\omega \in \mathcal{K}(\theta)$, there exist $i, j \in N$ with $i \neq j$ and $y^i, y^j \in X$ such that $y^i P_i^{\omega} x$ and $y^j P_j^{\omega} x$.

Sufficiency Result

Theorem (Theorem 3)

Let $\#N \ge 3$. Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$ and an SCC

- $f:\Theta \rightarrow \mathcal{X},$ if there exists a profile of sets that is
 - (i) reliably-consistent with f and the environment is economic, then f is implementable in RNE; and
- (ii) safely-consistent with f and the environment is strictly economic, then f is safely implementable in RNE.

Proof of Theorem 3

Reliable Pareto Optimality / Reliable Efficiency

For any *i*, ω , *x*, let $L_i^{\omega}(x) \equiv \{y \mid xR_i^{\omega}y\}$. Then, given an inference correspondence \mathcal{K} ,

- reliable Pareto optimal SCC at θ is RPO(θ) ≡ {x ∈ X | x ∈ ∩_{ω∈K(θ)}PO(ω)} where, for any ω ∈ Ω, PO(ω) ≡ {x ∈ X | ∄y ∈ X such that yP_i^ωx, ∀i ∈ N}.
- x is reliably efficient at θ if $\exists (L_{i,x}^{\theta})_{i \in N}$ s.t. $\forall i \in N, x \in L_{i,x}^{\theta} \subset L_{i}^{\omega}(x)$ for all $\omega \in \mathcal{K}(\theta)$ and $\bigcup_{i \in N} L_{i,x}^{\theta} = X$. Such alternatives constitute $RE(\theta)$.

Reliable efficiency parallels the efficiency of de Clippel (2014).

• $RE(\theta) = RPO(\theta) = PO(\pi^*(\theta))$ for all θ , whenever $\mathcal{K}(\theta) = \{\pi^*(\theta)\}$ for all θ .

I.e., both are extensions of efficiency to cases with missing choice data.

• In general, $RPO(\theta) = RE(\theta)$ for all θ . (Proposition 1)

Implementability of RPO in RNE

Proposition (Proposition 2)

Let $\#N \ge 3$. If an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$ induces an economic environment in which $RPO : \Theta \twoheadrightarrow X$ is nonempty-valued, then RPO is implementable in RNE.

Sketch of the proof:

- By Proposition 1, $RPO(\theta) = RE(\theta)$ for all $\theta \in \Theta$.
- *RE* being nonempty-valued implies the associated profile $\mathbf{L} \equiv (L_{i,x}^{\theta})_{i,\theta,x \in RE(\theta)} \text{ is reliably-consistent with } RE.$
- The rest of the proof follows from Theorem 3.

Concluding Remarks

- We formalize the implementation problem with missing data,
- propose a suitable notion of equilibrium along with resulting concepts of (full) implementation,
- obtain necessary conditions that are sufficient in economic environments,
- establish that more information enriches implementation opportunities,
- *analyze* implementability of a suitable efficiency notion.

Thank You.

Barlo & Dalkıran Implementation with Missing Data

Correlation under Private Information

- We analyze situations where individuals may use both the incomplete public choice data and their private information (payoff type) when strategizing.
- Under incomplete information, the main objects of interest are state contingent allocations, i.e., social choice functions (SCF).
 - So, social choice sets composed of SCFs are used instead of SCCs.
 - E.g., Jackson (1991); Bergemann and Morris (2008); Barlo and Dalkıran (2022)
- In our environment, individuals' behavior can be correlated on publicly observable economic states as well.

- Given desirable alternatives as specified by an SCC f : Θ → X, a correlated social choice set (CSCS) associated with f is Φ_f := (Φ_{f,θ})_{θ∈Θ} with Φ_{f,θ} being a non-empty subset of all functions mapping K(θ) to f(θ), for all θ ∈ Θ.
- Reliability inherent in RNE parallels the following: Φ_f satisfies the reliability criterion if for all θ ∈ Θ, Φ_{f,θ} equals constant functions mapping K(θ) to f(θ) such that for all x ∈ f(θ) there is a function in Φ_{f,θ} that maps K(θ) to {x}.

An Example

• The CSCS associated with f satisfying the reliability criterion, $\bar{\Phi}_f$, is uniquely determined.

Correlated Private Strategies

- Given mechanism $\mu = (M, g)$, for each state of the economy $\theta \in \Theta$, individual *i*'s correlated strategy at θ is a function $\sigma_{i\theta} : \mathcal{K}_i(\theta) \to M_i$.
- We let $\Sigma_{i\theta}$ be the set of individual *i*'s correlated strategies at $\theta \in \Theta$.
- Given mechanism μ, for each state of the economy θ ∈ Θ, individual i's public correlated strategy at θ is given by ς_{iθ} ∈ M_i.
- We let Σ^P_{iθ} be the set of individual i's public correlated strategies at θ ∈ Θ.
- Public correlated strategies depend only on θ and not on ω_i .

Definition

Given a mechanism $\mu = (M, g)$, and the inference correspondence $\mathcal{K} : \Theta \to \Omega$, the correlated strategy profile $\sigma^* \equiv (\sigma^*_{i\theta})_{i \in N, \theta \in \Theta} \in \Sigma$ is an **ex-post correlated equilibrium** (ECE) of μ if for all states of the economy $\theta \in \Theta$, all $i \in N$, and all $\omega_i \in \mathcal{K}_i(\theta)$,

$$g(\sigma_{i\theta}^*(\omega_i), \sigma_{-i\theta}^*(\omega_{-i})) \in C_i^{(\omega_i, \omega_{-i})}(O_i^{\mu}(\sigma_{-i\theta}^*(\omega_{-i}))), \text{ for all } \omega_{-i} \in \mathcal{K}_{-i}(\theta)$$

The public correlated strategy profile $\varsigma^* \equiv (\varsigma^*_{i\theta})_{i \in N, \theta \in \Theta} \in \Sigma^P$ is a public ex-post correlated equilibrium (PECE) of μ if for all $\theta \in \Theta$, all $i \in N$, and all $\omega_i \in \mathcal{K}_i(\theta)$,

$$g(\varsigma_{i\theta}^*,\varsigma_{-i\theta}^*) \in C_i^{(\omega_i,\omega_{-i})}(O_i^{\mu}(\varsigma_{-i\theta}^*)), \text{ for all } \omega_{-i} \in \mathcal{K}_{-i}(\theta).$$

Back to RNE

Implementation in Ex-Post Correlated Equilibrium

The implementation of CSCS Φ (not necessarily associated with an SCC f) in ECE requires: Given $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, CSCS Φ is implementable by mechanism μ in ECE if

- (*i*) for all $\theta \in \Theta$ and all $\varphi_{\theta} \in \Phi_{\theta}$, there is an ECE $\sigma^* \in \Sigma$ with $g(\sigma^*_{\theta}(\omega)) = \varphi_{\theta}(\omega)$ for all $\omega \in \mathcal{K}(\theta)$; and
- (ii) if $\sigma^* \in \Sigma$ is an ECE of μ , then for all $\theta \in \Theta$ there is $\varphi_{\theta} \in \Phi_{\theta}$ such that $g(\sigma^*_{\theta}(\omega)) = \varphi_{\theta}(\omega)$ for all $\omega \in \mathcal{K}(\theta)$.

We focus on the implementation of $\bar{\Phi}_f$, the unique CSCS associated with SCC f satisfying the reliability criterion.

So, for all $\theta \in \Theta$ and all $\varphi_{\theta} \in \overline{\Phi}_{f,\theta}$, $\varphi_{\theta}(\omega) = x$ for some $x \in f(\theta)$ for all $\omega \in \mathcal{K}(\theta)$.

Thus, given $\mathcal{K} : \Theta \twoheadrightarrow \Omega$ and SCC f, we obtain the implementation of $\overline{\Phi}_f$ in ECE without the need to revert to CSCSs. Ergo, we obtain the following definition.

Implementation in Ex-Post Correlated Equilibrium

Definition

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, an SCC $f : \Theta \to \mathcal{X}$ is implementable in ex-post correlated equilibrium by a mechanism $\mu = (M, g)$ if

(i) for all
$$\theta \in \Theta$$
 and all $x \in f(\theta)$, there is an ECE $\sigma^{(x,\theta)} \in \Sigma$ with
 $g(\sigma_{i\theta}^{(x,\theta)}(\omega_i), \sigma_{-i\theta}^{(x,\theta)}(\omega_{-i})) = x$ for all $\omega \in \mathcal{K}(\theta)$; and

(ii) if $\sigma^* \in \Sigma$ is an ECE of μ , then for all $\theta \in \Theta$, there exists $y \in f(\theta)$ such that for all $\omega \in \mathcal{K}(\theta)$, $g(\sigma^*_{i\theta}(\omega_i), \sigma^*_{-i\theta}(\omega_{-i})) = y$.

Back to Implementation in BCE

Implementation in Public Ex-Post Correlated Equilibrium

Definition

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, an SCC $f : \Theta \to \mathcal{X}$ is implementable

in public ex-post correlated equilibrium by a mechanism $\mu = (M, g)$ if

(*i*) for all
$$\theta \in \Theta$$
 and all $x \in f(\theta)$, there is a PECE $\varsigma^{(x,\theta)} \in \Sigma^P$ with $g(\varsigma_{i\theta}^{(x,\theta)}, \varsigma_{-i\theta}^{(x,\theta)}) = x$; and

(*ii*) if $\varsigma^* \in \Sigma^P$ is a PECE of μ , then for all $\theta \in \Theta$, $g(\varsigma^*_{i\theta}, \varsigma^*_{-i\theta}) \in f(\theta)$.

Implementation in Public Ex-Post Correlated Equilibrium

Definition

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, an SCC $f : \Theta \to \mathcal{X}$ is implementable

in public ex-post correlated equilibrium by a mechanism $\mu = (M, g)$ if

(i) for all
$$\theta \in \Theta$$
 and all $x \in f(\theta)$, there is a PECE $\varsigma^{(x,\theta)} \in \Sigma^P$ with $g(\varsigma_{i\theta}^{(x,\theta)}, \varsigma_{-i\theta}^{(x,\theta)}) = x$; and

(ii) if $\varsigma^* \in \Sigma^P$ is a PECE of μ , then for all $\theta \in \Theta$, $g(\varsigma^*_{i\theta}, \varsigma^*_{-i\theta}) \in f(\theta)$.

Remark

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, an SCC $f : \Theta \to \mathcal{X}$ is implementable

in PECE by a mechanism μ if and only if it is implementable in RNE via μ .

Reason: A profile of RNE across the states of the economy is equivalent to a PECE.

Implementation in ECE implies Implementation in PECE

Proposition (Proposition 3)

Given $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, if an SCC $f : \Theta \to \mathcal{X}$ is implementable in ECE via a mechanism μ , then it is implementable in PECE via μ . But the reverse does not hold.

Arguments in the proof:

- We can transform any ECE strategy to a PECE strategy by fixing any one of the compatible payoff states with the help of the reliability criterion.
- Every PECE is an ECE that is invariant across individuals' payoff types.
- The example we use to show that the reverse does not hold also shows:

Mechanisms implementing an SCC f in PECE may possess 'bad' ECE.

• The Example of Proposition 3

• To dispense with • • • • • • • • • • • • one may consider double implementation in PECE and ECE (as in Saijo et al. (2007)):

Demand (i) of implementation in PECE and (ii) of implementation in ECE.

• By replacing (*ii*) of implementation in ECE by the following strengthens the above double implementation:

(*ii*') if $\sigma^* \in \Sigma$ is an ECE of μ , then for all $\theta \in \Theta$ and all $\omega \in \mathcal{K}(\theta)$, $g(\sigma^*_{\theta}(\omega)) \in f(\theta)$.

Dismissing bad ECE via Double Implementation

- Double implementation based on (i) of implementation in PECE and (ii') above requires the planner to consider individuals' private information.
- We can handle unwanted ECE outcomes by using only the public choice data

• as any **ECE** of mechanism μ induces an **NE** of μ at every $\omega \in \mathcal{K}(\theta)$ for any $\theta \in \Theta$.

- Hence, dismissing 'bad' NE ensures the elimination of unwanted ECE as well.
- This leads us to (i) of implementation in PECE and the following:

(*ii*'') if $m^* \in M$ and $\theta \in \Theta$ are s.t. $g(m^*) \in \bigcap_{i \in N} C_i^{\omega}(O_i^{\mu}(m^*_{-i}))$ for some $\omega \in \mathcal{K}(\theta)$, then $g(m^*) \in f(\theta)$.

We attain the motivation for safe implementation in RNE: (*i*) of implementation in **PECE** and (*ii''*) is equivalent to safe implementation in RNE. (Remark 2)

Bayes Correlated Equilibrium

- For each state of the economy θ, and for each payoff state compatible with θ, ω ∈ K(θ), individual i's preferences admit a conditional expected utility representation via the expected utility function u_{iθ}(· | ω_i) : X → ℝ.
- For each θ, i's belief at his payoff type ω_i ∈ K_i(θ) is p_{iθ}(ω_i) ∈ Δ(K_{-i}(θ)), where Δ(K_{-i}(θ)) denotes the probability simplex on K_{-i}(θ).

Definition

Given mechanism μ , the inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, and the belief profile p, the correlated strategy profile $\sigma^* \in \Sigma$ is a Bayes correlated equilibrium (BCE) of μ if for all $i \in N$, for all $\theta \in \Theta$, and for all $\omega_i \in \mathcal{K}_i(\theta)$,

 $\sum_{\omega_{-i}\in\mathcal{K}_{-i}(\theta)} p_{i\theta}(\omega_{-i}|\omega_{i}) \left[u_{i\theta} \left(g(\sigma_{i\theta}^{*}(\omega_{i}), \sigma_{-i\theta}^{*}(\omega_{-i})) \mid \omega_{i} \right) - u_{i\theta} \left(g(m_{i}, \sigma_{-i\theta}^{*}(\omega_{-i})) \mid \omega_{i} \right) \right] \geq 0,$

for all $m_i \in M_i$.

Bayes Correlated Equilibrium

A public correlated strategy profile $\varsigma^* \in \Sigma^P$ is a public Bayes correlated equilibrium (PBCE) of μ if for all *i*, all θ , and all $\omega_i \in \mathcal{K}_i(\theta)$,

$$\sum_{\omega_{-i}\in\mathcal{K}_{-i}(\theta)} p_{i\theta}(\omega_{-i}|\omega_i) \left[u_{i\theta} \left(g(\varsigma_{\theta}^*) | \omega_i \right) - u_{i\theta} \left(g(m_i, \varsigma_{-i\theta}^*) | \omega_i \right) \right] \ge 0$$

for all $m_i \in M_i$.

The PBCE and the PECE are equivalent as ς^* is a public correlated strategy profile.

Since any RNE profile is equivalent to a PECE, the equivalence of PBCE and PECE delivers further robustness properties for RNE as

• every RNE profile induces a PBCE and a BCE no matter what the beliefs are.

Back to RNE

Implementation in Bayes Correlated Equilibrium

Given $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, the belief profile **p**, and an SCC $f : \Theta \to \mathcal{X}$ we say that a CSCS Φ_f associated with f is **implementable in BCE** by a mechanism μ if

(*i*) for all
$$\theta \in \Theta$$
 and all $\varphi_{\theta} \in \Phi_{f,\theta}$, there exists a BCE $\sigma^{(\varphi_{\theta})} \in \Sigma$ with
 $g(\sigma_{\theta}^{(\varphi_{\theta})}(\omega)) = \varphi_{\theta}(\omega)$ for all $\omega \in \mathcal{K}(\theta)$; and

(ii) if $\sigma^* \in \Sigma$ is a BCE of μ , then for all $\theta \in \Theta$, there exists $\varphi \in \Phi_{f,\theta}$ such that $g(\sigma^*_{\theta}(\omega)) = \varphi(\omega)$ for all $\omega \in \mathcal{K}(\theta)$.

For the unique CSCS associated with f under the reliability criterion, $\overline{\Phi}_{f}$,

- (i) above becomes: for all θ ∈ Θ and all x ∈ f(θ), there is a BCE σ^(x,θ) ∈ Σ with g(σ^(x,θ)_θ(ω)) = x for all ω ∈ K(θ)
- (ii) above becomes: if σ* ∈ Σ is a BCE of μ, then for all θ ∈ Θ, there exists y ∈ f(θ) such that g(σ^{*}_θ(ω)) = y for all ω ∈ K(θ).

Implementation in Bayes Correlated Equilibrium

Given $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, the belief profile **p**, and an SCC $f : \Theta \to \mathcal{X}$ we say that a CSCS Φ_f associated with f is **implementable in BCE** by a mechanism μ if

(*i*) for all
$$\theta \in \Theta$$
 and all $\varphi_{\theta} \in \Phi_{f,\theta}$, there exists a BCE $\sigma^{(\varphi_{\theta})} \in \Sigma$ with
 $g(\sigma_{\theta}^{(\varphi_{\theta})}(\omega)) = \varphi_{\theta}(\omega)$ for all $\omega \in \mathcal{K}(\theta)$; and

(ii) if $\sigma^* \in \Sigma$ is a BCE of μ , then for all $\theta \in \Theta$, there exists $\varphi \in \Phi_{f,\theta}$ such that $g(\sigma^*_{\theta}(\omega)) = \varphi(\omega)$ for all $\omega \in \mathcal{K}(\theta)$.

For the unique CSCS associated with f under the reliability criterion, $\overline{\Phi}_{f}$,

• implementation in BCE shares many similarities with • mplementation in ECE

As implementation in RNE is equivalent to implementation in PECE, the equivalence of the PBCE and the PECE implies

• implementation in RNE is equivalent to implementation in PBCE.

Concluding Remarks

- We formalize the implementation problem with missing data,
- propose a suitable notion of equilibrium along with resulting concepts of (full) implementation,
- obtain necessary conditions that are sufficient in economic environments,
- establish that more information enriches implementation opportunities,
- *analyze* implementability of a suitable efficiency notion.

Thank You.

Barlo & Dalkıran Implementation with Missing Data

An Example: Reliable Pareto Optimality

	(S)trong	(N)ormal		(W)eak	
	CFO	СМО	CFO	СМО	CFO	СМО
$\{c, e, p\}$	{ <i>e</i> }				{ <i>p</i> }	{ <i>p</i> }
$\{c, e\}$						
$\{c, p\}$	{ p }		{ p }			
{ <i>e</i> , <i>p</i> }		$\{e\}$		$\{p\}$		

• At S, $e \in \bigcap_{\omega \in \mathcal{K}(S)} PO(\omega)$ and $c, p \notin PO(\omega)$ for $\omega = (epc, epc) \in \mathcal{K}(S)$.

• At N, $p \in \bigcap_{\omega \in \mathcal{K}(N)} PO(\omega)$, and $c, e \notin PO(\omega)$ for $\omega = (pec, pec) \in \mathcal{K}(N)$.

• At W,
$$PO(\omega) = \{p\}$$
 for all $\omega \in \mathcal{K}(W)$.

Our Example - Safe Implementation in RNE - S

State of the economy:	State of the economy: N	State of the economy: W	
$f(S) = \{e\}$	$f(N) = \{p\}$	$f(W) = \{p\}$	
$\mathcal{K}(S): \begin{array}{c} \{epc\} \\ \times \\ \{cep, ecp, epc\} \end{array}$	$ \begin{array}{c} \{epc, pce, pec\} \\ \mathcal{K}(N): & \times \\ \{cpe, pce, pec\} \end{array} $	$\{pce, pec\}\ \mathcal{K}(W): \qquad imes \ \{pce, pec\}\ \{pce, pec\}$	
L M R U p e c M © p p D c p c	L M R U p e c M e p P D c p c	L M R U P e c M e p p D c p c	
RNE: (M, L) Outcomes: $\{e\}$	RNE: (M, R) Outcomes: $\{p\}$	RNE: (U, L) Outcomes: $\{p\}$	

S: (M, L) is an RNE because $g(M, L) = e \in C^{\circ}_{CFO}(\{c, e, p\}) \cap C^{\circ}_{CMO}(\{e, p\})$ for all $\omega \in \mathcal{K}(S)$, (U, L) is not an RNE as $g(U, L) = p \notin C^{\circ}_{CFO}(\{c, e, p\})$ for all $\omega \in \mathcal{K}(S)$, (D, L) is not an RNE as $g(D, L) = c \notin C^{\circ}_{CFO}(\{c, e, p\})$ for all $\omega \in \mathcal{K}(S)$, (M, M) is not an RNE as $g(M, M) = p \notin C^{\circ}_{CFO}(\{e, p\})$ for all $\omega \in \mathcal{K}(S)$, (D, M) is not an RNE as $g(D, M) = p \notin C^{\circ}_{CFO}(\{e, p\})$ for all $\omega \in \mathcal{K}(S)$, (U, R) is not an RNE as $g(U, R) = c \notin C^{\circ}_{CFO}(\{c, p\})$ for all $\omega \in \mathcal{K}(S)$, (M, R) is not an RNE as $g(M, R) = p \notin C^{\circ}_{CFO}(\{c, p\})$ for all $\omega \in \mathcal{K}(S)$, (M, R) is not an RNE as $g(D, R) = c \notin C^{\circ}_{CFO}(\{c, p\})$ for all $\omega \in \mathcal{K}(S)$.

Our Example - Safe Implementation in RNE - N

State of the economy: <i>S</i>	State of the economy: N	State of the economy: W	
$f(S) = \{e\}$	$f(N) = \{p\}$	$f(W) = \{p\}$	
$\{epc\}\ \mathcal{K}(S): \ imes \ \{cep, ecp, epc\}$	$ \begin{array}{c c} \{epc, pce, pec\} \\ \mathcal{K}(N): & \times \\ \{cpe, pce, pec\} \end{array} $	$\{pce, pec\}\ \mathcal{K}(W): \qquad imes \ \{pce, pec\}\ \{pce, pec\}$	
U p e c M © p p D c p c	L M R U p e c M e p p D c p c	L M R U (P) e c M e p p D c p c	
RNE: (<i>M</i> , <i>L</i>) Outcomes: { <i>e</i> }	RNE: (M, R) Outcomes: $\{p\}$	RNE: (U, L) Outcomes: $\{p\}$	

 $\begin{aligned} &N: \quad (M,R) \text{ is an RNE because } g(M,R) = p \in C^{\circ}_{CFO}(\{c,p\}) \cap C^{\circ}_{CMO}(\{e,p\}) \text{ for all } \omega \in \mathcal{K}(N), \\ &(M,L) \text{ is not an RNE as } g(M,L) = e \notin C^{\circ}_{CMO}\{\{e,p\}\} \text{ for all } \omega \in \mathcal{K}(N), \\ &(D,L) \text{ is not an RNE as } g(D,L) = c \notin C^{\circ}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(N), \\ &(U,M) \text{ is not an RNE as } g(U,M) = e \notin C^{\circ}_{CFO}\{\{c,e,p\}\} \text{ for all } \omega \in \mathcal{K}(N), \\ &(U,R) \text{ is not an RNE as } g(U,R) = c \notin C^{\circ}_{CFO}\{\{c,p\}\} \text{ for all } \omega \in \mathcal{K}(N), \\ &(D,R) \text{ is not an RNE as } g(D,R) = c \notin C^{\circ}_{CFO}\{\{c,p\}\} \text{ for all } \omega \in \mathcal{K}(N), \\ &(D,R) \text{ is not an RNE as } g(D,R) = c \notin C^{\circ}_{CFO}\{\{c,p\}\} \text{ for all } \omega \in \mathcal{K}(N). \end{aligned}$

Our Example - Safe Implementation in RNE - W

State of the economy: S	State of the economy: N	State of the economy: W
$f(S) = \{e\}$	$f(N) = \{p\}$	$f(W) = \{p\}$
$\{epc\}\ \mathcal{K}(S): \ imes \ X \ \{cep, ecp, epc\}$	$ \begin{array}{c} \{epc, pce, pec\} \\ \mathcal{K}(N): & \times \\ \{cpe, pce, pec\} \end{array} $	$ \begin{array}{c} \{pce, pec\} \\ \mathcal{K}(W): & \times \\ \{pce, pec\} \end{array} $
L M R U p e c M © p p D c p c	L M R U p e c M e p P D c p c	L M R U (P) e c M e p p D c p c
RNE: (<i>M</i> , <i>L</i>) Outcomes: { <i>e</i> }	RNE: (M, R) Outcomes: $\{p\}$	RNE: (U, L) Outcomes: $\{p\}$

 $\begin{aligned} W: & (U,L) \text{ is an RNE because } g(M,R) = p \in C^{\omega}_{CFO}(\{c,e,p\}) \cap C^{\omega}_{CMO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (M,L) \text{ is not an RNE as } g(M,L) = e \notin C^{\omega}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (D,L) \text{ is not an RNE as } g(D,L) = c \notin C^{\omega}_{CFO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (U,M) \text{ is not an RNE as } g(U,M) = e \notin C^{\omega}_{CMO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (U,R) \text{ is not an RNE as } g(U,R) = c \notin C^{\omega}_{CMO}(\{c,e,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (D,R) \text{ is not an RNE as } g(D,R) = c \notin C^{\omega}_{CMO}(\{c,p\}) \text{ for all } \omega \in \mathcal{K}(W), \\ & (D,R) \text{ is not an RNE as } g(D,R) = c \notin C^{\omega}_{CFO}(\{c,p\}) \text{ for all } \omega \in \mathcal{K}(W). \end{aligned}$

Maskin Monotonicity

For any *i*, ω , *x*, let $L_i^{\omega}(x) \equiv \{y \mid xR_i^{\omega}y\}$ be *i*'s lower contour set of *x* at ω .

Definition

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$, an SCC $f : \Theta \to \mathcal{X}$ is

- (*i*) reliably Maskin monotonic if $x \in f(\theta)$ and $L_i^{\omega}(x) \subseteq L_i^{\tilde{\omega}}(x)$ for all $i \in N$, all $\omega \in \mathcal{K}(\theta)$, and all $\tilde{\omega} \in \mathcal{K}(\tilde{\theta})$ implies $x \in f(\tilde{\theta})$.
- (ii) safely Maskin monotonic, if the following holds: if $x \in f(\theta)$ and for some $\omega \in \mathcal{K}(\theta)$ and some $\tilde{\omega} \in \mathcal{K}(\tilde{\theta})$ we have $L_i^{\omega}(x) \subseteq L_i^{\tilde{\omega}}(x)$ for all $i \in N$, then $x \in f(\tilde{\theta})$.

Equivalence of Consistency and Maskin Monotonicity

Proposition

Given an inference correspondence $\mathcal{K} : \Theta \twoheadrightarrow \Omega$ and an SCC $f : \Theta \to \mathcal{X}$, there is a profile of sets $\mathbf{S} := (S_i(x, \theta))_{i \in \mathbb{N}, \ \theta \in \Theta, \ x \in f(\theta)}$ that is

(*i*) reliably-consistent with *f* if and only if *f* is reliably Maskin monotonic.

(*ii*) safely-consistent with f if and only if f is safely Maskin monotonic.

▶ Back

Reliable-consistency:

- Suppose μ = (M, g) implements f in RNE. Hence, for all θ and all x ∈ f(θ), there is m^x ∈ M such that g(m^x) = x and x ∈ ∩_{i∈N,ω∈K(θ)}C^ω_i(O^μ_i(m^x_{-i})).
- Let **S** be defined by $S_i(x, \theta) \equiv O_i^{\mu}(m_{-i}^x)$ for all i, θ, x in $f(\theta)$.
- (i) of reliable-consistency holds as m^x is an RNE of μ at θ .
- For (ii) of reliable-consistency, suppose $x \in f(\theta)$ and $x \notin f(\tilde{\theta}), \theta, \tilde{\theta} \in \Theta$.

If $x \in \bigcap_{i \in N, \ \tilde{\omega} \in \mathcal{K}(\tilde{\theta})} C_i^{\tilde{\omega}}(S_i(x, \theta)) = \bigcap_{i \in N, \ \tilde{\omega} \in \mathcal{K}(\tilde{\theta})} C_i^{\tilde{\omega}}(O_i^{\mu}(m_{-i}^x))$, then $m^x \in M$ is also an RNE at $\tilde{\theta}$.

Thus, by (ii) of implementation in RNE, $x \in f(\tilde{\theta})$, a contradiction.

Safe-consistency:

- Suppose μ = (M, g) safely implements f in RNE. So, for all θ and all x ∈ f(θ), there is m^x ∈ M such that g(m^x) = x and x ∈ ∩_{i∈N,ω∈K(θ)}C^ω_i(O^μ_i(m^x_{-i})).
- Let **S** be defined by $S_i(x, \theta) \equiv O_i^{\mu}(m_{-i}^x)$ for all i, θ, x in $f(\theta)$.
- (i) of safe-consistency holds as m^{x} is an RNE of μ at θ .
- For (iii) of safe-consistency, suppose x ∈ f(θ) and x ∉ f(θ), θ, θ ∈ Θ.
 If there is ω̃ ∈ K(θ̃) such that x ∈ ∩_{i∈N} C_i^{ω̃}(S_i(x, θ)) = ∩_{i∈N} C_i^{ω̃}(O_i^μ(m^x_{-i})).
 Thus, by (ii) of safe implementation in RNE, x ∈ f(θ̃), a contradiction.

▶ Back

Theorem 2 - (i)

- Suppose the planner with knowledge K infers there is S ≡ (S_i(x, θ))_{i,θ,x∈f(θ)} reliably-consistent with f and K(θ̃) ⊂ K(θ) with θ, θ̃ ∈ Θ.
- By (i) of reliable-consistency, $x \in f(\theta)$ implies $x \in \bigcap_{i \in N, \omega \in \mathcal{K}(\theta)} C_i^{\omega}(S_i(x, \theta))$.

• As
$$\mathcal{K}(\tilde{\theta}) \subset \mathcal{K}(\theta)$$
, $x \in \bigcap_{i \in N, \tilde{\omega} \in \mathcal{K}(\tilde{\theta})} C_i^{\tilde{\omega}}(S_i(x, \theta))$.

- Thus, $x \notin f(\tilde{\theta})$ produces a contradiction to (*ii*) of reliable-consistency.
- Therefore, $x \in f(\tilde{\theta})$.

Theorem 2 - (ii)

- Suppose the planner with knowledge K infers there is S ≡ (S_i(x, θ))_{i,θ,x∈f(θ)} safely-consistent with f and there is ω^{*} ∈ K(θ) ∩ K(θ̃) = Ø with θ, θ̃ ∈ Θ.
- By (i) of safe-consistency, x ∈ f(θ) implies x ∈ ∩_{i∈N, ω∈K(θ)} C^ω_i(S_i(x, θ)) and hence x ∈ ∩_{i∈N} C^{ω*}_i(S_i(x, θ)).
- But, x ∉ f(θ̃) implies that for all ω̃ ∈ K(θ̃), x ∉ ∩_{i∈N} C_i^ω(S_i(x, θ)) which implies (on account of ω* ∈ K(θ̃)) x ∉ ∩_{i∈N} C_i^{ω*}(S_i(x, θ)), a contradiction.

• Hence, $x \in f(\tilde{\theta})$. As θ and $\tilde{\theta}$ can be interchanged, we obtain $f(\theta) = f(\tilde{\theta})$.

▶ Back

Proof of Theorem 3

Suppose that given \mathcal{K} and f, the planner infers that

- the environment is economic (strictly economic) and that
- there is $\mathbf{S} := (S_i(x, \theta))_{i, \theta, x \in f(\theta)}$ reliably-consistent (safely-consistent) with f.

We use the *canonical mechanism* $\mu = (M, g)$:

- $M_i := \Theta \times X \times \mathbb{N}$, where $m_i = (\theta^{(i)}, x^{(i)}, k^{(i)}) \in M_i$.
- The *outcome function* $g : M \to X$ is given by
 - Rule 1: g(m) = x if $m_i = (\theta, x, \cdot)$ for all $i \in N$

Rule 2:
$$g(m) = \begin{cases} x' & \text{if } x' \in S_j(x, \theta) \\ x & \text{otherwise.} \end{cases}$$

with $x \in f(\theta)$, if $m_i = (\theta, x, \cdot)$ for all $i \in N \setminus \{j\}$ with $x \in f(\theta)$, and $m_j = (\theta', x', \cdot) \neq (\theta, x, \cdot)$,

Back

Rule 3 :
$$g(m) = x^{(i^*)}$$
 where
 $i^* = \min\{j \in N : k^{(j)} \ge \max_{i' \in N} k^{(i')}\}$

otherwise.

An Example for the Reliability Criterion

Let
$$N = \{1, 2\}$$
, $X = \{x, y, z\}$, $\Theta = \{\theta_1, \theta_2\}$ and $\Omega_i = \{\omega_{i1}, \omega_{i2}, \omega_{i3}\}$ for $i = 1, 2$ with

• $\mathcal{K}(\theta_1) = \{(\omega_{11}, \omega_{21}), (\omega_{11}, \omega_{22}), (\omega_{12}, \omega_{21}), (\omega_{12}, \omega_{22})\}$ and

•
$$\mathcal{K}(\theta_2) = \{(\omega_{12}, \omega_{22}), (\omega_{12}, \omega_{23}), (\omega_{13}, \omega_{22}), (\omega_{13}, \omega_{23})\}.$$

- The given SCC f is s.t. $f(\theta_1) = \{x, y\}$ and $f(\theta_2) = \{z\}$.
- A CSCS associated with f, Φ_f , could be $\Phi_{f,\theta_1} = \{\langle x, x, x, x \rangle, \langle y, y, y, x \rangle\}$ and $\Phi_{f,\theta_2} = \{\langle z, z, z, z \rangle\}.$

(e.g., $\langle y, y, y, x \rangle$ denotes the function on $\mathcal{K}(\theta_1)$ which maps the payoff state $(\omega_{12}, \omega_{22})$ to x and all the other payoff states in $\mathcal{K}(\theta_1)$ to y).

An Example for the Reliability Criterion

Let
$$N = \{1, 2\}$$
, $X = \{x, y, z\}$, $\Theta = \{\theta_1, \theta_2\}$ and $\Omega_i = \{\omega_{i1}, \omega_{i2}, \omega_{i3}\}$ for $i = 1, 2$ with

• $\mathcal{K}(\theta_1) = \{(\omega_{11}, \omega_{21}), (\omega_{11}, \omega_{22}), (\omega_{12}, \omega_{21}), (\omega_{12}, \omega_{22})\}$ and

•
$$\mathcal{K}(\theta_2) = \{(\omega_{12}, \omega_{22}), (\omega_{12}, \omega_{23}), (\omega_{13}, \omega_{22}), (\omega_{13}, \omega_{23})\}.$$

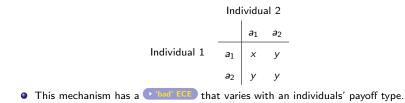
- The given SCC f is s.t. $f(\theta_1) = \{x, y\}$ and $f(\theta_2) = \{z\}$.
- The CSCS associated with *f* that satisfies the reliability criterion, Φ_f, is uniquely determined.

• In this example,
$$\bar{\Phi}_{f,\theta_1} = \{\langle x, x, x, x \rangle, \langle y, y, y, y \rangle\}$$
 and $\bar{\Phi}_{f,\theta_2} = \{\langle z, z, z, z \rangle\}.$

▶ Back

Implementation in ECE implies Implementation in PECE

- N = {1,2}, X = {x, y}, Θ = {θ₁, θ₂}, Ω_i equals all strict rankings of {x, y} (where xy means that i strictly prefers x to y).
- $\mathcal{K}_i(\theta_1) = \{xy, yx\}$, and $\mathcal{K}_i(\theta_2) = \{xy\}$ for all i = 1, 2.
- The SCC f is such that $f(\theta_1) = \{y\}$ and $f(\theta_2) = \{x, y\}$.
- The following mechanism implements f in PECE but not in ECE:



A 'bad' ECE

The following mechanism implements f in PECE (in RNE) but has a 'bad' ECE:

	Individual 2			
		a_1	a 2	_
Individual 1	a_1	x	у	
	a ₂	у	у	

- $N = \{1, 2\}, X = \{x, y\}, \Theta = \{\theta_1, \theta_2\}, \Omega_i$ equals all strict rankings of $\{x, y\}$. $\mathcal{K}_i(\theta_1) = \{xy, yx\}, \text{ and } \mathcal{K}_i(\theta_2) = \{xy\} \text{ for all } i = 1, 2.$
- The SCC f is such that $f(\theta_1) = \{y\}$ and $f(\theta_2) = \{x, y\}$.
- Let σ^* be s.t. $\sigma^*_{i\theta_1}(xy) = a_1$, $\sigma^*_{i\theta_1}(yx) = a_2$, and $\sigma^*_{i\theta_2}(xy) = a_1$, i = 1, 2.
- σ^* is an ECE s.t. $g(\sigma^*_{\theta_1}(xy, xy)) = x \notin f(\theta_1) = \{y\}$ with $(xy, xy) \in \mathcal{K}(\theta_1)$.

▶ Back to Safe Implemention in RNE ▶ ▶ Back to Proposition 3

Concluding Remarks

- We formalize the implementation problem with missing data,
- propose a suitable notion of equilibrium along with resulting concepts of (full) implementation,
- obtain necessary conditions that are sufficient in economic environments,
- establish that more information enriches implementation opportunities,
- *analyze* implementability of a suitable efficiency notion.