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Figure 1: The Coordination Game - The payoffs are that of Player 1.

A The General Setup

For convenience, we repeat the exposition of the model presented in the manuscript. We begin with a

standard coordination game, which is the simplest game in which the optimal thing to do depends on what

others are doing. In the coordination game, there are two players, each of whom chooses between one of

two actions, which in this supplement, we label U and D (in the manuscript, these are labeled S and N ,

respectively). Each player gets payoff a if she chooses U when the other also chooses U , b < a if she

chooses U when the other does not choose U , d if she chooses D when the other chooses D, and c < d if

she choosesD when the other does not chooseD (the payoffs of Player 1 are given in Fig. 1). The parameter

p = (d− b)/(a− c+ d− b), which is often referred to as the risk dominance (of U ), will prove useful. Its

interpretation is: if either player expects the other to play U with probability greater than p, then she prefers

to play U herself.

We add to this standard coordination game the ability to condition play in the game on a signal that

does not directly affect payoffs. Each player observes (a payoff irrelevant) signal that is correlated with the

true state of the world before acting in the coordination game. The coordination game together with this

information structure is an example of a Bayesian Game.

Before presenting the Bayesian games that we analyze, we provide a general definition of a Bayesian

Game and a Bayesian Nash equilibrium, the standard solution concept for such games (see Osborne and

Rubinstein (1994) for further details):

Definition 1. A Bayesian Game is a tuple G = 〈N, (Ai)i∈N ,Ω, (Ti)i∈N , (τi)i∈N , (ρi)i∈N , (ui)i∈N 〉 where

- N denotes the set of players,

- Ai denotes the set of actions available to player i,

- Ω denotes the set of all possible states of the world,
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- Ti denotes the set of all possible signals (or types) of player i,

- τi : Ω→ ∆(Ti) denotes the signal function of Player i,

- ρi ∈ ∆(Ω) denotes the prior belief of player i regarding Ω,

- ui : A× Ω→ R denotes the (a possibly state-dependent) payoff function.

We need the following to provide the definition of a Bayesian Nash equilibrium of a Bayesian game G:

- In a Bayesian game, a (pure) strategy describes a complete contingent plan for every possible signal

realizations. We denote a strategy of player i as σi : Ti → Ai.

- Let E[ui(ai, σ−i(s−i))|si] denote the expected payoff of player iwhen he plays action ai ∈ Ai and his

signal realization is si ∈ Ti, i.e., E[ui(ai, σ−i(s−i))|si] =
∫
ω∈Ω Pr(ω|si)ui(ai, σ−i(s−i), ω)P (ds−i|ω).

Definition 2. We say that a strategy profile σ∗ = (σ∗1, . . . , σ
∗
n) is a Bayesian Nash equilibrium of G if for

each i ∈ N , and each si ∈ Ti,

E[ui(σ
∗
i (si), σ

∗
−i(s−i))|si] ≥ E[ui(ai, σ

∗
−i(s−i))|si], for all ai ∈ Ai.

In words, a Bayesian Nash equilibrium is a strategy profile where each player maximizes their expected

payoff given their belief and the strategy of the other player. That is, there is no profitable deviation for any

signal realization (or type) of any of the players. Put differently, “[In a Bayesian Nash Equilibrium] each

player chooses the best action available to him given the signal that he receives and his belief about the state

and the other player’s actions that he deduces from this signal.” [1].

We consider several different information structures, to be explained further below. These information

structures induce different Bayesian games. We refer to each of these Bayesian games as state-independent

Bayesian coordination games:

Definition 3. A state-independent Bayesian coordination game is a Bayesian game Γ = 〈N, (Ai)i∈N ,Ω,
(Ti)i∈N , (τi)i∈N , (ρi)i∈N , (ui)i∈N 〉 such that

• There are two players, i.e., N = {1, 2}.

• There are two actions available to each player, i.e., A1 = A2 = {U,D}.

• The set of states of the world is a subset of the real line, i.e., Ω ⊂ R.

• The (state-independent) payoff function ui : A1 × A2 × Ω :→ R is such that u1(U,U, ω) =

u2(U,U, ω) = a for all ω ∈ Ω, u1(U,D, ω) = u2(D,U, ω) = b for all ω ∈ Ω, u1(D,U, ω) =

u2(U,D, ω) = c for all ω ∈ Ω, and u1(D,D, ω) = u2(D,D, ω) = d for all ω ∈ Ω.

• The two players share a common prior ρ ∈ ∆(Ω), i.e., ρ1 = ρ2 = ρ and this is commonly known.

• The range of possible signals is always equal to the set of states. That is, T1 = T2 = Ω ⊂ R.
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• The players’ signals are generated according to the same probability distribution function, i.e., τ1 =

τ2 = τ . That is, τ1(ω) = τ2(ω) = τ(ω) ∈ ∆(Ω) for all ω ∈ Ω.

• The players’ signals are independent conditional on the state, i.e., S1|ω ⊥ S2|ω, where Si denotes

the random variable that represents the signal of Player i, and Si|ω denotes the random variable that

represents the signal of Player i conditional on the state ω, for both i = 1, 2.

We refer to the unspecified parts of a state-independent Bayesian coordination game, namely 〈Ω, ρ, τ〉,
as a state-signal structure. In each of the following sections, we analyze a particular state-signal structure.

Before moving forward, we define a threshold strategy:

Definition 4. A (pure) strategy σs̄i : Ω→ {U,D} is said to be a threshold strategy with a threshold at s̄ ∈ Ω

if and only if

σs̄i (si) = U if and only if si > s̄.

We refer to the strategy profile σs̄ = (σs̄1, σ
s̄
2) as the threshold strategy profile at s̄.

The crux of our analysis is when a threshold strategy profile can be supported as a Bayesian Nash

equilibrium in a state-independent Bayesian coordination game.

B Analysis of Specific State-Signal Structures

B.1 Continuous-Uniform State-Signal Structure

First, we consider the continuous-uniform state-signal structure 〈ΩC.U., ρC.U., τC.U.〉: In order to avoid edge

cases, as is standard in the global games literature, we assume that the state of the world, ω ∈ ΩC.U., is

randomly drawn from the real line ΩC.U. = (−∞,+∞) and that the common (improper [2]) prior, ρC.U.,

is the uniform distribution over ΩC.U.. Each player observes a signal correlated with the state of the world,

independently distributed uniformly within ε > 0 of the true state of the world. That is, τC.U.(ω) is the

uniform distribution over [ω − ε, ω + ε] for each ω ∈ ΩC.U. for both i = 1, 2. We refer to the state-

independent Bayesian coordination game with continuous-uniform state-structure as ΓC.U..

In the manuscript, we claimed that there is no Bayesian Nash equilibrium where the players condition

their action on (their signal of) the true state, regardless of how small the error is in observing the true state

provided that the risk dominance p 6= 1
2 , under the continuous-uniform state-signal structure. We formalize

this claim in Theorem 1. Formally, we show that there is no equilibrium in which players play U if and only

if their signal is above some threshold.

Theorem 1. Let ε > 0 and p 6= 1
2 . For any s̄ ∈ (−∞,∞), the threshold strategy profile at s̄, σs̄, is not a

Bayesian Nash equilibrium of ΓC.U..

Proof. Suppose σs̄ is a Bayesian Nash equilibrium of ΓC.U. for some fixed threshold s̄ ∈ (−∞,+∞).
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We calculate the following conditional posterior probability given one’s own signal: What is the likeli-

hood that the other’s signal is below (or equal to) some threshold s̄ given my own signal? Recall that Si and

S−i denote the random variables that represents the signals of players i and −i, respectively.

Observe that the conditional p.d.f of S−i given Si = si can be computed as follows: f(S−i|Si = si) =∫ +∞
−∞ f(ω|Si = si)f(S−i|ω)dω. By construction, f(S−i|ω) is the uniform distribution over [ω − ε, ω + ε].

It is also straightforward to see that f(ω|Si = si) is the uniform distribution over [si − ε, si + ε]. Hence,

f(S−i|Si = si) =
∫ si+ε
si−ε f(ω|Si = si)f(S−i|ω)dω. This leads to the following conditional p.d.f.

f (S−i = s−i|Si = si) =


0 if s−i ≤ si − 2ε
s−i−si+2ε

4ε2
if si − 2ε < s−i ≤ si

si+2ε−s−i
4ε2

if si ≤ s−i < si + 2ε

0 if si + 2ε ≤ s−i

(1)

Since Pr (S−i ≤ s̄|Si = si) =
∫ s̄
−∞ f (S−i|Si = si), we obtain the following (conditional c.d.f):

Pr (S−i ≤ s̄|Si = si) =



0 if s̄ ≤ si − 2ε
(s̄−si+2ε)2

8ε2
if si − 2ε < s̄ ≤ si

1
2 if s̄ = si

1− (si+2ε−s̄)2

8ε2
if si ≤ s̄ < si + 2ε

1 if si + 2ε ≤ s̄.

(2)

From (1) or (2), we see that the distribution of i’s opponent’s signal S−i conditional on Si = si is

symmetric around si. That is, Pr(S−i ≤ si|Si = si) = Pr(S−i ≥ si|Si = si) = 1
2 . This is true, in

particular for player i with signal realization si = s̄, i.e., Pr(S−i ≤ s̄|Si = s̄) = Pr(S−i ≥ s̄|Si = s̄) = 1
2 .

This means Pr(σs̄−i(S−i) = U |Si = s̄) = Pr(σs̄−i(S−i) = D|Si = s̄) = 1
2 . But since, p 6= 1

2 , the player i

with signal realization si = s̄ has a strict best reply (either U or D) to σs̄−i. This contradicts the upper-hemi

continuity property of the best reply correspondence.

What makes the proof above work is the fact that the conditional distribution of the opponent’s signal

given one’s own signal being symmetric, i.e., Pr(S−i ≤ si|Si = si) = Pr(S−i ≥ si|Si = si) = 1
2 .

The proof applies to any common prior distribution over the continuum (−∞,+∞) with this property.

We provide the following immediate corollary by referring to any state-independent Bayesian coordination

games where signals are obtained from a (not necessarily uniform) distribution over a continuum with the

property that Pr(S−i ≤ si|Si = si) = Pr(S−i ≥ si|Si = si) = 1
2 as ΓC.S., where C.S. stands for

Continuous-Symmetric.

Corollary 1. Let p 6= 1
2 . For any s̄ ∈ (−∞,∞), the threshold strategy profile at s̄, σs̄, is not a Bayesian

Nash equilibrium of any ΓC.S..
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A natural question that arises is whether it would be possible that the two individuals use different

thresholds. It is also straightforward to see that as long as the conditional PDF f(S−i|Si = si) is symmetric

around si. This would not be possible. We note this observation as another corollary:

Let σs̄1,s̄2 := (σs̄11 , σ
s̄2
2 ) denote the strategy profile such that player 1 is playing according to the thresh-

old strategy at s̄1 whereas player 2 is playing according to the threshold strategy at s̄2.

Corollary 2. Suppose s̄i ∈ (−∞,∞), for both i ∈ {1, 2}. Then, σs̄1,s̄2 is not a Bayesian Nash equilibrium

of any ΓC.S..

B.2 Categorical State-Signal Structure

Next, we turn to the categorical state-signal structure, 〈ΩCat, ρCat, τCat〉: We assume now that ΩCat =

{0, 1}, i.e., the true state of the world is either ω = 1 or ω = 0. The common prior ρCat over Ω is such

that ρCat(1) = q ∈ (0, 1) and ρCat(0) = 1 − q ∈ (0, 1). That is, the state is ω = 1 with probability q and

ω = 0 with probability 1 − q. The players observe the true state of the world with probability 1 − ε. The

signal function τCat is such that τCat(ω) puts 1− ε probability on the signal si = ω and ε probability on the

signal si = 1− ω for each ω ∈ {0, 1}. Once again, neither the state nor the signal influences the payoffs to

the players. We refer to the state-independent Bayesian coordination game under the categorical state-signal

structure as ΓCat.

We claimed that, so long as the amount of noise, ε, is small, there is a Bayesian Nash equilibrium where

players condition their play on their signal. In Theorem 2, we show that this is indeed the case.

We refer to a strategy σci as a categorical strategy whenever σci (si) = U if and only if si = 1. We refer

to the strategy profile σc = (σc1, σ
c
2) as a categorical strategy profile.

Theorem 2. The categorical strategy profile, σc = (σc1, σ
c
2), is a Bayesian Nash equilibrium of ΓCat if and

only if

1− ε(1− ε)
q(1− ε) + (1− q)ε

≥ p ≥ ε(1− ε)
(1− q)(1− ε) + qε

.

Proof. σc = (σc1, σ
c
2) is a Bayesian Nash equilibrium of ΓCat if and only if (i) for each i ∈ {1, 2}, it is

optimal for player iwith signal realization si = 1 to playU given that the opponent,−i, is playing according

to the categorical strategy σc−i, and (ii) for each i ∈ {1, 2}, it is optimal for player i with signal realization

si = 0 to play D given that the opponent, −i, is playing according to the categorical strategy σc−i.

Recall that for U to be the optimal action of a player the probability that his opponent is to play U must

be at least p = d−b
(a−c)+(d−b) ∈ (0, 1). Similarly, for D to be the optimal action of a player the probability

that his opponent is to play D must be at least 1− p = a−c
(a−c)+(d−b) ∈ (0, 1). This means that the necessary

and sufficient condition for (i) and (ii) are Pr(S−i = 1|Si = 1) ≥ p and Pr(S−i = 0|Si = 0) ≥ 1 − p,
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respectively. That is, (i) holds if and only if

Pr(S−i = 1|Si = 1) =
Pr(S−i = 1, Si = 1)

Pr(Si = 1)
≥ p

=
q(1− ε)2 + (1− q)ε2

q(1− ε) + (1− q)ε
≥ p

= 1− ε(1− ε)
q(1− ε) + (1− q)ε

≥ p.

On the other hand, (ii) holds if and only if

Pr(S−i = 0|Si = 0) =
Pr(S−i = 0, Si = 0)

Pr(Si = 0)
≥ 1− p

=
(1− q)(1− ε)2 + qε2

(1− q)(1− ε) + qε
≥ 1− p

= 1− ε(1− ε)
(1− q)(1− ε) + qε

≥ 1− p.

Combining together we get the desired necessary and sufficient condition:

1− ε(1− ε)
q(1− ε) + (1− q)ε

≥ p ≥ ε(1− ε)
(1− q)(1− ε) + qε

.

Observe that as the amount of noise becomes smaller, i.e., ε→ 0, the necessary and sufficient condition

stated in Theorem 2 becomes more and more permissive. That is, as ε → 0, it becomes easier for the

categorical threshold, σc = (σc1, σ
c
2), to be a Bayesian Nash equilibrium of ΓCat, as we claimed in the

manuscript.

B.3 Discrete-Uniform State-Signal Structure

In the manuscript, we claimed, “. . . even though the state space is discrete, once it can take on sufficiently

many possible values, the results approximate what happens when the state space is continuous.” We now

prove this claim. To avoid the effect of endpoints, we again employ a slightly different setup than that

described in the manuscript. Instead of having a finite number of possible states, we allow the state to

continue indefinitely from−∞ to∞. To capture how ‘categorical’ the state space is, we allow the number of

possible states within a fixed measure of distance to vary. The more states are possible, the more ‘continuous’

the state space. As before, signals are noisy, and modeled as independent and uniformly distributed about

the true state. Our key result is: for a given amount of noise, as the state space gets cut up into smaller

pieces, it becomes harder to sustain equilibria in which players condition their action on their signal.

Let Z := {. . . ,−2,−1, 0, 1, 2 . . .} denote the set of all integers, Q := {mn |m,n ∈ Z} denote the set

of all rational numbers. Fix a positive rational number q > 0, which determines the coarseness of the state
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space. The discrete state-signal structure associated with q, 〈ΩD.U.
q , ρD.U.q , τD.U.q 〉, is defined as follows: The

state space is ΩD.U.
q = {qz|z ∈ Z}, i.e., the state of the world is always a multiple of q. The common

(improper) prior, ρD.U.q , is the uniform distribution over ΩD.U.
q . Let ε > q > 0 denote the noisiness of the

signals: Each player observes a signal independently distributed uniformly on ΩD.U.
q within ε of the true

state of the world. It will be convenient to define k := b εq c ∈ N. For any ω ∈ ΩD.U.
q , we note that there

are 2k + 1 possible signals where k of these signals are higher than ω while the other k are lower than ω.

Thus, for any ω ∈ ΩD.U.
q , τD.U.q (ω) is the uniform distribution over{ω−kq, ω− (k−1)q, . . . , ω− q, ω, ω+

q, . . . , ω + (k − 1)q, ω − kq} for both i = 1, 2. We refer to the state-independent Bayesian coordination

game for any given ε > q > 0 and q ∈ Q with this signal structure as ΓD.U.q .1

Theorem 3. Let ε > q > 0, q ∈ Q, and k := b εq c. For any s̄ ∈ ΩD.U.
q , the threshold strategy profile at s̄,

σs̄, is a Bayesian Nash equilibrium of ΓD.U.q if and only if 1
2 −

1
2k+1 ≤ p ≤

1
2 + 1

2k+1 .

Proof. Let σs̄ be a Bayesian Nash equilibrium of ΓD.U.q for some fixed threshold s̄ ∈ ΩD.U.
q = {zq|z ∈ Z}.

As before, let Si and S−i denote the random variables that represents the signals of players i and −i,
respectively. The conditional probability distribution of S−i given Si = si can be obtained as follows:

Pr(S−i = s−i|Si = si) =
∑

ω∈ΩD.U.q
Pr(ω|si)Pr(S−i = s−i|ω). By construction, Pr(S−i|ω) is the

uniform distribution over {ω − kq, ω − (k − 1)q, . . . , ω − q, ω, ω + q, . . . , ω + (k − 1)q, ω − kq} and it is

easy to see that Pr(ω|Si = si) is the uniform distribution over {si − kq, . . . , si, . . . , si + kq}. Therefore,

Pr(S−i = s−i|Si = si) =
∑

ω∈{si−kq,...,si,...,si+kq} Pr(ω|si)Pr(S−i = s−i|ω). Hence, we obtain the

following conditional probability mass function:

Pr (S−i = s−i|Si = si) =


0 if s−i < si − 2kq
(2k+1)q−si+s−i

q(2k+1)2 if si − 2kq ≤ s−i ≤ si
(2k+1)q−s−i+si

q(2k+1)2 if si ≤ s−i ≤ si + 2kq

0 if si + 2kq < s−i

(3)

This leads to the following conditional cumulative distribution function:

Pr (S−i ≤ s̄|Si = si) =



0 if s̄ ≤ si − 2kq

((2k+1)− si−s−i
q

)((2k+2)− si−s−i
q

)

2(2k+1)2 if si − 2kq < s̄ < si
1
2 + 1

2k+1 if s̄ = si

1−
((2k+1)− s−i−si

q
)((2k+2)− s−i−si

q
)

2(2k+1)2 if si < s̄ < si + 2kq

1 if si + 2kq ≤ s̄.

(4)

We see (3) and (4) that the distribution of the (opponent’s) signal S−i conditional on Si = si is sym-
1The astute reader will observe that increasing ε and decreasing q has the same effect. Nevertheless, we introduce both variables

with their corresponding distinct interpretations in order to better connect this model to our base models and allow us to talk about
increasing coarseness for a given amount of noise.
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metric around si, as before. That is, Pr(S−i ≤ si|Si = si) = Pr(S−i ≥ si|Si = si) = 1
2 . This

is true for player i with signal realization si = s̄ as well, i.e., Pr(S−i ≤ s̄|Si = s̄) = 1
2 + 1

2k+1 . Then,

Pr(σs̄−i(S−i) = U |Si = s̄+q) = 1
2 + 1

2k+1 . Similarly, Pr(σs̄−i(S−i) = D|Si = s̄) = 1
2 + 1

2k+1 . This means

we must have 1
2 + 1

2k+1 ≥ p as well as 1
2 + 1

2k+1 ≥ 1− p. Hence, we get 1
2 −

1
2k+1 ≤ p ≤

1
2 + 1

2k+1 .

We now consider what happens when the state space becomes finer. First, notice that, even though

this state-signal structure 〈ΩD.U.
q , ρD.U.q , τD.U.q 〉 is always discrete, it converges to the continuous-uniform

state-signal structure 〈ΩC.U., ρC.U., τC.U.〉 of Section B.1 as q gets smaller, in the following sense: As q

approaches 0, (i) the Hausdorff distance between ΩD.U.
q and ΩC.U. = (−∞,+∞) approaches 0; (ii) the

common prior converges in distribution to the uniform distribution on (−∞,+∞), i.e., ρD.U.q converges in

distribution to ρC.U.; (iii) for any given ε > 0 and ω ∈ Q, the distribution of signals conditional on the state

being ω converges in distribution to the uniform distribution over (−∞,+∞), i.e., τD.U.q (ω) converges in

distribution to τC.U.(ω).

Second, notice that the conditions for existence of a threshold equilibrium also converges to that of

Section B.1 in the following sense: Let PC.U. be the set of p ∈ (0, 1) for which a threshold equilibrium exists

in ΓC.U.. By Theorem 1, PC.U. = {1
2}. Similarly, let PD.U.q be the set of p ∈ (0, 1) for which a threshold

equilibrium exists in ΓD.U.q under the current model, i.e., by Theorem 3, PD.U.q := [1
2 −

1
2b ε
q
c+1 ,

1
2 + 1

2b ε
q
c+1 ].

Observe that for a fixed ε > 0, as q approaches 0, PD.U.q shrinks and converges to PC.U. with respect to the

Hausdorff distance.

One interpetation of the above results is as follows: Our key result about the permissibility of threshold

equilibria in the continuous-uniform state signal structure is robust with respect to adding a bit of coarseness

to the state-signal structure.

B.4 Normal State-Signal Structure

Next, we consider the normal state-signal structure 〈ΩN , ρNVΩ
, τNVε〉 where the state and signals are normally

distributed as follows: We assume that the state space is ΩN = (−∞,+∞), and that the common prior, ρNVΩ
,

is the normal distribution with mean 0 and variance VΩ. The signal function τNVε is such that the distribution

τNVε(ω) is normal around the true state of the world ω ∈ ΩN with mean 0 and variance Vε. That is, if the true

state of the world is ω ∈ ΩN , then Si = ω + εi where εi ∼ N [0, Vε], with εi independent of ω and ε−i, for

both i = 1, 2. We refer to the state-independent Bayesian coordination game under the normal state-signal

structure as ΓNVΩ,Vε
.

The following result shows that a threshold equilibrium always exists in ΓNVΩ,Vε
. However, there is only

one specific s̄ that permits such a threshold equilibrium.

Theorem 4. The threshold strategy profile σs̄ is a Bayesian Nash Equilibirum of ΓNVΩ,Vε
if and only if

s̄ =

√
V 2
ε +2VΩVε
VΩ+Vε

Φ−1(1−p)
Vε

VΩ+Vε

, where Φ(·) is the CDF of the standard normal distribution.

Proof. Let σs̄ be a Bayesian Nash equilibrium of ΓNVΩ,Vε
for some fixed threshold s̄ ∈ (−∞,+∞). As

before, Si and S−i denote the random variables that represents the signals of players i and −i, respectively.
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We first note that the random vector S =
[
S1
S2

]
has a bivariate normal distribution with mean matrix

µ = [ 0
0 ], and covariance matrix Σ =

[
VΩ+Vε VΩ
VΩ VΩ+Vε

]
. This is due to the following facts: (i) for both

i = 1, 2, Si is normally distributed with mean 0 and variance VΩ + Vε since Si = ω + ε and ω and ε are

independent normally distributed with mean 0 and variance VΩ and Vε, respectively; (ii) Cov(S1, S2) =

E((S1−E(S1))(S2−E(S2))) = E(S1S2) = E((ω+ε1)(ω+ε2)) = E(ω2)+E(ωε2)+E(ε1ω)+E(ε1ε2) =

VΩ since ω, ε1, and ε2 are all mutually independent and E(ω) = E(ε1) = E(ε2) = 0 implies E(ωε2) =

E(ε1ω) = E(ε1ε2) = 0 and E(ω2) = VΩ; (iii) for any α, β ∈ R, αS1 + βS2 is normally distributed even

though S1 and S2 are not independent since αS1+βS2 = α(ω+ε1)+β(ω+ε2) = (α+β)ω+αε1+βε2 and

ω, ε1, and ε2 are independent normally distributed random variables; (iv) the random vector S =
[
S1
S2

]
has

a bivariate normal distribution due to the fact that whenever any linear combination of two (not necessarily

independent) normally distributed random variables is normally distributed, the associated random vector

has a bivariate normal distribution (see [3] for further details).

Next, we note that the conditional random variable S−i|Si is normally distributed with mean VΩ
VΩ+Vε

Si

and variance VΩ +Vε− VΩ
VΩ+Vε

VΩ = V 2
ε +2VΩVε
VΩ+Vε

. This follows from the fact that if X =
[
X1
X2

]
has a bivariate

normal distribution with mean matrix µ = [ µ1
µ2 ], and covariance matrix Σ =

[
Σ11 Σ12
Σ21 Σ22

]
, then, X1|X2 is

distributed normally with mean µ1 + Σ12
Σ22

(X2−µ2) and variance Σ11− Σ12
Σ22

Σ21 (see [3] for further details).

As before, the necessary and sufficient condition for σs̄ to be a Bayesian Nash equilibrium of ΓnormalVΩ,Vε

is twofolds: (i) for each s > s̄, Pr(S−i > s̄|Si = s) ≥ p for both i = 1, 2, and (ii) for each s ≤ s̄,

Pr(S−i ≤ s̄|Si = s) ≥ 1−p for both i = 1, 2. Condition (i) makes it incentive compatible to play U when

one’s own signal is over the threshold whereas condition (ii) makes it incentive compatible to play D when

one’s own signal is below the threshold.

Recall that if X ∼ N [µ, σ2], then Z = X−µ
σ ∼ N [0, 1]. Thus, condition (i) implies that for each s > s̄,

it must be that Pr

Z >
s̄− VΩ

VΩ+Vε
s√

V 2
ε +2VΩVε
VΩ+Vε

 ≥ p where Z ∼ N [0, 1]. On the other hand, condition (ii) implies

that, for each s ≤ s̄, we must have Pr

Z ≤ s̄− VΩ
VΩ+Vε

s√
V 2
ε +2VΩVε
VΩ+Vε

 ≥ 1 − p where Z ∼ N [0, 1]. Observe that for

a fixed s̄, Pr

Z >
s̄− VΩ

VΩ+Vε
s√

V 2
ε +2VΩVε
VΩ+Vε

 is increasing in s whereas Pr

Z ≤ s̄− VΩ
VΩ+Vε

s√
V 2
ε +2VΩVε
VΩ+Vε

 is decreasing in s.

Therefore, condition (i) and (ii) are satisfied if and only if both conditions hold when s = s̄. This is true if

and only ifPr

Z ≤ Vε
VΩ+Vε√
V 2
ε +2VΩVε
VΩ+Vε

s̄

 = 1−pwhereZ ∼ N [0, 1]. That is, Φ

 Vε
VΩ+Vε√
V 2
ε +2VΩVε
VΩ+Vε

s̄

 = 1−pwhere

Φ(·) is the cumulative distribution function of the standard normal distribution. Since every cumulative

distribution function is invertible, taking Φ−1 of both sides and solving for the threshold s̄ gives us the

desired conclusion, i.e., we must have s̄ =

√
V 2
ε +2VΩVε
VΩ+Vε

Φ−1(1−p)
Vε

VΩ+Vε

.
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B.5 General Result for Any State-Signal Structure

Next, we provide a general result for any state-signal structure that satisfies a simple monotonicity con-

dition—ensuring that states and signals are well-ordered. Our result provides a necessary and sufficient

condition for the existence of a threshold equilibrium as long as the state signal structure 〈Ω, ρ, τ〉 satisfies

the monotone likelihood ratio property (MLRP). MLRP guarantees that as the signal of a player increases,

his posterior distribution over the states shifts weight to the right, which in turn shifts his posterior distri-

bution over the other player’s signals to the right. We note that MLRP is satisfied for all the distributions

we have investigated so far. This condition allows us to focus on the signals closes to the signals where the

temptation to deviate will be highest.

Our result here generalizes the result from previous models: for a threshold equilibrium to exist, the best

response needs to change when the player goes from one side of the threshold to the other. This requires that

the posterior belief that the other player’s signal is above the threshold must go from below p to above p, as

one goes from getting a signal below compared to above the threshold. This could happen if the belief varies

continuously and traverses p exactly at the threshold (as we have seen with the normal state-signal structure,

or in the continuous-uniform state-signal structure when p = 1
2 ), or if beliefs discontinuously jump, and p

falls anywhere within the jump (as in our categorical and discrete-uniform state-signal structures).

Definition 5. We say that the signal structure satisfies the monotone likelihood ratio property (MLRP) if for

any signals s, s′ and states ω, ω′, whenever s′ > s and ω′ > ω, f(ω′|Si=s′)
f(ω′|Si=s) ≥

f(ω|Si=s′)
f(ω|Si=s) where f is the

conditional PDF of the state given the signal.

Theorem 5. Let Γ be a state-independent Bayesian coordination game with the state-signal structure

〈Ω, ρ, τ〉 satisfying MLRP. Then, for any s̄ ∈ Ω, a threshold strategy profile σs̄ is a Bayesian Nash equilib-

rium of Γ if and only if, for both i ∈ {1, 2}, we have

Pr(S−i > s̄|Si = s̄) ≤ p ≤ inf{Pr(S−i > s̄|Si = s) : s ∈ Ω with s > s̄}.

Proof. By definition of Bayesian Nash equilibrium and threshold strategy, σs̄ is a Bayesian Nash equilibrium

of Γ if and only if (i) for both i ∈ {1, 2}, Pr(S−i > s̄|Si = s) ≥ p for each s ∈ Ω with s > s̄, and (ii) for

both i ∈ {1, 2}, Pr(S−i ≤ s̄|Si = s) ≥ 1− p for each s ∈ Ω with s ≤ s̄, i.e., Pr(S−i > s̄|Si = s) ≤ p for

each s ∈ Ω with s ≤ s̄.
(⇒) Observe that (ii) immediately implies the left-hand side inequality, when s = s̄. Next, we show

that the right-hand side inequality holds as well.

Let p∗ = inf{Pr(S−i > s̄|Si = s ∈ Ω) : s > s̄}. Suppose, for contradiction, p > p∗. Let ε = p−p∗
2 > 0

. By definition of infimum, there exists s̃ ∈ Ω with s̃ > s̄ such that Pr(S−i > s̄|Si = s̃) < p∗ + ε. But,

since p∗ + ε = p+p∗

2 < p, this implies Pr(S−i > s̄|Si = s̃) < p, a contradiction to (i) as s̃ ∈ Ω with s̃ > s̄.

Thus, Pr(S−i > s̄|Si = s) ≤ p ≤ inf{Pr(S−i > s̄|Si = s) : s ∈ Ω with s > s̄} for both i ∈ {1, 2}.
(⇐) Suppose Pr(S−i > s̄|Si = s) ≤ p ≤ inf{Pr(S−i > s̄|Si = s) : s ∈ Ω with s > s̄} for both

i ∈ {1, 2}. We will show that (i) and (ii) holds.
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MLRP implies that Pr(S−i > s̄|Si = s) is (weakly) increasing in s for all s ∈ Ω. This follows from

applying MLRP twice: when player i gets a higher signal, he puts higher weight on higher states, and in each

of those higher states he puts higher weight on the other player getting higher signals. Because Pr(S−i >

s̄|Si = s) is (weakly) increasing in s, for any s′ < s̄, Pr(S−i > s̄|Si = s′) ≤ Pr(S−i > s̄|Si = s̄). Since

Pr(S−i > s̄|Si = s̄) ≤ p, this implies Pr(S−i > s̄|Si = s) ≤ p for all s ∈ Ω with s ≤ s̄, i.e., (ii) holds.

To see that (i) also holds, observe that as Pr(S−i > s̄|Si = s) is (weakly) increasing in s for all s ∈ Ω,

we have for any s′ > s̄, Pr(S−i > s̄|Si = s′) ≥ Pr(S−i > s̄|Si = s̄). But since, p ≤ inf{Pr(S−i >
s̄|Si = s) : s ∈ Ω with s > s̄}, we must have Pr(S−i > s̄|Si = s) ≥ p for each s ∈ Ω with s > s̄.

C Evolutionary Dynamics

The simulations in this manuscript were performed using DyPy, which is available at https://github.

com/aaandrew152/dynamics_sim. The code for these simulations and all others in this section is

available for download at https://github.com/aaandrew152/CtsDisc.

C.1 Details of the Simulation Reported in Fig. 4 of the Manuscript

C.1.1 Fig. 4a: A single, representative simulation

We analyzed a single population of players playing the game described in Section A. The parameters we

employed were: N = 7, a = 4, b = 2, c = 0, and d = 4, so that p = 2/3. The strategy space was restricted

to the following ten strategies: always U , U if and only if si > 0/7, si > 1/7, U if and only if si > 2/7,

. . . , U if and only if si > 7/7, always D.

Each simulation proceeded as follows. First, we assigned all the players to the play the strategy U if and

only if si > 5/7. In each round:

1. Players receive the expected payoffs from playing against another player randomly selected from the

population with signals uniformly selected from [0, 1].

2. Strategies are re-assigned proportionally to payoffs, δi,t+1 = δi,t · eui,t where δi,t is the proportion of

the population playing strategy i in round t and ui,t is the expected payoff from strategy i in round t.

3. Players are randomly selected with probability 0.05 to “mutate”. That is, if they are selected, they are

assigned a strategy randomly selected from the ten strategies.

At the end of each round, we recorded the frequency of and payoffs associated with each strategy. Each

simulation lasted for 190 rounds. In Fig. 4a, we present a single simulation such simulation.

C.1.2 Fig. 4b: Average frequencies of each strategy

In Fig. 4b, we ran the simulations described in Section C.1.1 500 times, and presented the average frequency

of the strategies in each period.
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Figure 2: Average Frequency of Strategies, 500 simulations, p < 1/2

We also run the same simulations, but start by assigning all players to play the strategy U if and only if

si > 1/7, and let payoffs equal a = 4, b = 0, c = 2, and d = 4, so that p = 1/3. We present the average

frequency of the strategies in each period in Fig. 2.

C.1.3 Fig. 4c: A single, representative simulation for the model with n = 10 discrete possible values
of the state, and p = .8

The simulations are identical to those described in Section C.1.1 except that the state can take 10 possible

values, {1, 2, . . . , 10}, and the set of possible strategies is {Sanction if and only if Si > 0, . . . , Sanction if

and only if Si > 10}.

C.1.4 Fig. 4d: A single, representative simulation for the model with n = 10 discrete possible values
of the state, and p = .67

The simulations are identical to those described in Section C.1.3, except that p = .67.

C.1.5 Fig. 4e: A single, representative simulation for the model with normally distributed states

The simulations are identical to those described in Section C.1.1 except that the state is distributed H ∼
N [0, 1].
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C.2 Additional Simulations

C.2.1 Arbitrary Assignment of Starting Strategies for Fig. 4a and 4b

We run the same simulations as in Fig. 4a and 4b of the manuscript, but, instead of starting the entire

population off at the same strategy, we start by assigning strategies randomly. Fig. 3a and 3b present a

single run with p > 1/2 and p < 1/2, respectively. Fig. 3c and 3d present the average frequency of the

strategies in each period for p > 1/2 and p < 1/2, respectively.

C.2.2 N Discrete Values

In Fig. 4 we present analogous simulations to those in Fig. 4d of the manuscript, with identical parameters,

except that we now let the domain of H be {1, 2, . . . , 100}. We start the entire population at U if and only

if N >= 10. The threshold strategy profile is no longer expected to be stable. Indeed, it is not.

C.2.3 Uniform Distribution with an Atom at Ω = ωl

In Fig. 5, we present the same simulations as those in Fig. 4a-b, but we now let the state be distributed

Ω ∼ F (ω) = 1/5 + 4/5ω. The strategy space includes the following 20 strategies: Sanction if and only if

Si > s̄ with s̄ ∈ {0, 0.06, . . . , 0.94, 1}. We start the population at U if and only if Si > 0.12. We run the

simulations for 5000 generations.

C.2.4 State-Dependent Payoffs

In Fig. 6, we present the same simulations as those in Fig. 4a-b, but we now let payoffs be a = 4(2ω +

1/2), b = 2(2ω + 1/2), c = 0, d = 5. The strategy space includes the following 20 strategies: Sanction if

and only if Si > s̄, with s̄ ∈ {0, 0.06, . . . , 0.94, 1}. We start the population at U if and only if Si > 0.12.

We run the simulations for 190 generations. We run the same simulations for p = 1/3.

D Experimental Evidence: Vignettes

D.1 Ethics Compliance and Preregistration

This research complies with relevant ethical regulations and was approved by the MIT University Institu-

tional Review Board. We obtained informed consent from all participants. Participants were paid the going

wage on the online platform that we used to recruit (Amazon Mechanical Turk). This study was preregis-

tered through AsPredicted.com [I will include the link as a final step when we submit and “release” it to be

viewable].2

2This study is a near replication of a pilot study with 300 subjects that yielded similar results. Based on the pilot study we
omitted one vignette (reducing from six to five), decided generally not to ask questions related to prediction 2 in the control
conditions (where they were not so relevant), and made some changes to the control condition for the vignette in which a country
invades another country’s territory. Stimuli and data from our pilot study are available upon request.
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(a) Frequency of Strategies, Random Starting Point, Single
Run, p > 1/2

(b) Frequency of Strategies, Random Starting Point, Single
Run, p < 1/2

(c) Average Frequency of Strategies, 500 simulations, Ran-
dom Starting Point, p > 1/2

(d) Average Frequency of Strategies, 500 simulations, Ran-
dom Starting Point, p < 1/2

Figure 3: Arbitrary Assignment of Starting Strategies for Fig. 4a and 4b
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Figure 4: Average Frequency of Strategies, 100 Discrete Values

D.2 Subjects

We recruited all subjects for all studies online through Amazon Mechanical Turk (AMT). AMT is an online

marketplace where employers pay users for completing short tasks (generally about 10 minutes), usually

referred to as Human Intelligence Tasks (HITs)—for a relatively small payment (generally less than a $1).

Workers who have been recruited on AMT receive a baseline payment and can also be paid a bonus depend-

ing on their performance and/or choices in the task. This setup lends itself well to incentivized experiments,

such as our Study 2: the baseline payment acts as the ‘show up’ fee and the bonus payment is based on the

workers’ choices, if applicable.

Subjects were 501 respondents on Amazon Mechanical Turk (mean age = 41.0, SD = 12.5, range from

18 to 74). Participation was limited to subjects from the United States and Canada. 45.0% were male, 54.0%

female, 1% other/prefer not to say. 74.1% were White/Caucasian, 9.8% African American, 5.0% Hispanic,

6.6% Asian American, 1% marked “other,” and 0.4% marked “prefer not to say.” 90.0% had graduated at

least from high school, and 28.3% had graduated at least from college.

D.3 Sample size determination

As described above, this study was based on a pilot study that was very similar except for a few changes,

giving us confidence that we were requesting ample subjects. As preregistered, we requested 500 subjects

from Amazon Mechanical Turk. We set the sample size for each study at the beginning by requesting a

certain round number of subjects via Turkprime.com (a website that facilitates running studies on Amazon

Mechanical Turk), and then let the study run to completion without ever altering the sample size. Studies

typically returned a few more subjects than we requested, likely because some people completed the sur-

vey (hosted by Qualtrics) without entering their completion code into Amazon Mechanical Turk and being
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(a) Frequency of Strategies, Starting at Sanction if and only
if S > 0.22, Single Run, p > 1/2

(b) Frequency of Strategies, Starting at Starting at Sanction
if and only if S > 0.78, Single Run, p < 1/2

(c) Average Frequency of Strategies, 500 simulations,
Starting at Sanction if and only if S > 0.22, p > 1/2

(d) Average Frequency of Strategies, 500 simulation, Start-
ing at Sanction if and only if S > 0.78, p < 1/2

Figure 5: Uniform Distribution with an Atom at Ω = ωl
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(a) Frequency of Strategies, Starting at Sanction if and only
if S > 0.22, Single Run, p > 1/2

(b) Frequency of Strategies, Starting at Sanction if and only
if S > 0.78, Single Run, p < 1/2

(c) Average Frequency of Strategies, 500 simulations,
Starting at Play U if and only if S > 0.22, p > 1/2

(d) Average Frequency of Strategies, 500 simulation, Start-
ing at Starting at Sanction if and only if S > 0.78, p < 1/2

Figure 6: State-Dependent Payoffs
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counted by that system.

D.4 Methods

This study showed subjects a series of six vignettes about hypothetical transgressions to test two key predic-

tions: (1) whether the psychology of punishment is relatively insensitive to continuous violations compared

to categorical violations, and (2) whether there are incentives to treat violations as categorical rather than

continuous. In more detail:

Prediction 1: Moral judgments and punishment intuitions will be more sensitive to categorical than contin-

uous distinctions with the same magnitude of impact.

Prediction 2: There are costs to “miscoordination”–to treating norms as continuous, given that others treat

them as categorical.

Sub-prediction 1: Deterrence is categorical (subjects perceive the likelihood of a repeat transgression to

depend on whether a transgression is punished, but are relatively insensitive to how large that transgression

was).

Sub-prediction 2: Judgments of and support for the punisher are categorical. (Subjects view the punisher of

a transgression more favorably, and are more likely to support their decision, if they punish a transgression

relative to not punishing, but these judgments are relatively insensitive to the magnitude of the transgression.

Subjects expect relevant others to behave and feel likewise.)

To test these predictions, subjects saw five vignettes featuring different transgressions. We presented

these vignettes in random order. All vignettes had eleven conditions, one control condition in which no

transgression (or in one case, good deed) occurred, and ten levels of “impact.” After each vignette, we asked

a number of corresponding questions to test our predictions. (The full text of these questions, including

specific scale endpoints, can be found in our online-only materials). Based on what made sense for the

scenario, the first three vignettes were used to test both predictions, and the last two were used only to test

the first prediction. Subjects run in the control conditions of vignettes 1-3 did not see questions intended to

test prediction 2, because the contrast with the control condition was not our focus for this second prediction.

After reading each vignette and answering its key questions, subjects completed a few understanding

check questions, before moving on to the next vignette. At the end of the study, subjects answered a few

demographic questions.

D.5 Statistical Analyses

We used regressions for all analyses. As preregistered, we used one-tailed tests for cases in which we

predicted a significant result in a particular direction, and committed in our preregistration not to interpret

results in the opposite direction as meaningful. Analyses were between-subjects unless specified as within-

subjects.
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For all questions testing prediction 1, we wished to obtain two estimates: (1) of the difference in the

outcome between the control group and the first level of impact, and (2) of the average difference in the

outcome between each level of impact and the one below it, for levels 2-10. We obtained these via a linear

regression of the outcome of interest on a ‘dummy’ indicating whether the participant was in the control or

any treatment of level, and a variable indicating the impact level (1-10).

We predicted that (1) will be significant, with higher means/more “yes” answers with the lowest impact

transgression/good deed, compared to the control condition where there is no transgression/good deed. This

reflects finding even the lowest impact transgression immoral and worthy of punishment, and the lowest

impact good deed altruistic and worthy of reward.

We also predicted that (2) would not be significant, or would be very small relative to (1). In other words,

given a transgression/good deed, the impact of that transgression or good deed would not matter much for

perceptions of moral wrongness, altruism, etc., compared to the impact of having a transgression in the first

place. We also expected (and preregistered the prediction) that this slope would be quite close to zero, and

that the pattern of means would appear random rather than generally increasing or decreasing.

We felt that any specific ratio of the effect of a transgression versus impact would be arbitrary, so we

committed (including in our preregistration) to analyzing both (1) and (2) and reporting the results, and

showing the graph of the pattern of means (plus error bars). Our readers can determine whether they are

convinced that we have found strong evidence for our hypothesis.

For questions testing prediction 2, we asked subjects questions about their expectation for deterrence and

support for potential punishers when these potential punishers did or did not punish a transgression (asked

within subjects). We calculated the difference between the answers to these two questions, and regressed

this difference on the level of impact of the transgression.

For ease of understanding, we will present further details of the methods and results vignette by vignette.

D.6 Vignette 1: Government Killing Protesters

D.6.1 Methods

For subjects who received the transgression treatment, the vignette read:

You will now read a vignette about a foreign government.

Imagine that there are large-scale protests in a foreign country (let’s call it Country X) in re-

sponse to perceived election fraud. The crowds of protestors are large and chaotic, but nonvio-

lent. In response to the protests, state police arrest and execute [one to ten] unarmed, peaceful

protest leader[s]. Incontrovertible evidence of this poisoning is leaked and becomes interna-

tional news.

Country X is a member of an economic and military alliance with a number of other nations,

none of whom has executed a peaceful protestor in recent history. These other member nations

are considering whether to sanction the government responsible.
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We varied the levels of impact by varying the number of protesters killed by the hypothetical government

from 1-10.

For subjects in the control group, the vignette read:

You will now read a vignette about a foreign government.

Imagine that there are large-scale protests in a foreign country (let’s call it Country X) in re-

sponse to perceived election fraud. The crowds of protestors are large and chaotic, but nonvio-

lent. There are some rumors that in response to the protests, state police arrested and executed

one or several unarmed, peaceful protest leaders, but these rumors turn out to be unsubstanti-

ated.

Country X is a member of an economic and military alliance with a number of other nations,

none of whom has executed a peaceful protestor in recent history. These other member nations

are considering whether to sanction the government responsible.”

D.6.2 Results

Results for Prediction 1 are summarized in SI Table 1.1, and for prediction 2 are summarized in Table 1.2.

CXRTP stands for “Country X’s Response to the Protests.” Questions here and for the other vignettes may

be abbreviated in the tables, but the full question text can be found in our online materials. See Tbl ?? and

??.

D.7 Vignette 2: Invading Another Country’s Territory

D.7.1 Methods

For subjects who received the transgression treatment, the vignette read:

You will now read a vignette about two countries.

Country A and Country B both include territory distributed around the world. This territory

varies quite a bit in size, natural resources, and population. Country B borders an island that

belongs to Country A. This island is called Greener Island. Only about [a thousand people to

ten thousand people] live on Greener Island, who are all citizens of Country A. Greener Island

also contains no natural resources and has no strategic defense value. Country B decides that

it wants to expand its territory to include Greener Island, and attacks Greener Island with the

intent of taking it over. Country A has to decide whether to defend Greener Island or let Country

B have it. Country A is essentially assured victory, but at considerable expense–the defense will

be expensive and involve significant loss of life.

We varied the levels of impact by varying the number of people living on the invaded island, from 1000-

10,000, in increments of 1000. The invaded island belongs to one country but is attacked by another.

For subjects in the control group, the vignette read:
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You will now read a vignette about two countries.

Country A and Country B both include territory distributed around the world. This territory

varies quite a bit in size, natural resources, and population. Some of their citizens also live

outside of their territories. About a thousand citizens of Country A live on an island called

Greener Island that actually belongs to Country B. Greener Island contains no natural resources

and has no strategic defense value. Country B has no citizens living on the island, and has

historically ignored it. Country B borders this island, and decides that it wants to have more

presence there. Country B lands members of its military on Greener Island. Country A has to

decide whether to vie for Greener Island and try to take it over by sending its own military, or let

Country B land its military and continue to own it. Country A is essentially assured victory if

it vies for Greener Island, but at considerable expense–the effort will be expensive and involve

significant loss of life.

D.7.2 Results

Results for Prediction 1 are summarized in SI Tbl ??, and for prediction 2 are summarized in SI Tbl ??.

D.8 Vignette 3: Shoplifting

D.8.1 Methods

For subjects who received the transgression treatment, the vignette read:

You will now read a vignette about a college student named Jenny.

A college student named Jenny enters a local family-owned drugstore on her own and, after

looking around carefully, quickly slips an item from the beauty aisle into her purse. The item

is worth [$2 to $20]. She does not really need this item, but gets a thrill from the idea of taking

it without paying. She tries to leave the store without paying for the item. However, she hadn’t

realized that the bar codes on all products trigger an alarm if someone tries to exit the door

without purchasing them. The alarm is triggered, and Jenny is approached by store employees.

We varied the levels of impact by varying the value of the item stolen, from $2 to $20, in increments of $2.

For subjects in the control group, the vignette read:

You will now read a vignette about a college student named Jenny.

A college student named Jenny enters a local family-owned drugstore on her own and, after

looking around carefully, notices an item worth $2. She does not really need this item, but gets

a thrill from the idea of taking it without paying. She considers slipping the item into her purse,

but thinks better of it and decides not to take it. Jenny leaves the store without taking anything.
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D.8.2 Results

Results for Prediction 1 are summarized in SI Tbl ??, and for prediction 2 are summarized in SI Tbl ??.

D.9 Vignette 4: Murder in a Trolley Problem

D.9.1 Methods

For subjects who received the transgression treatment, the vignette read:

You will now read a ”trolley problem” vignette.

Let us introduce a contrived scenario that philosophers call a “thought experiment” that helps us

gauge people’s moral intuitions. First, imagine that a trolley is headed toward a repairman who

is stuck on a track. If the trolley continues on its current course, it will hit the repairman and

kill him. A control worker nearby sees this. He also sees that there is a fork coming up, and that

the trolley can be diverted to a second track at the fork to save the repairman. But the control

worker’s brand new car is parked on the second track. The control worker also knows that the

repairman stuck on the first track is a forty-five-year-old who has unknowingly swallowed a pill

that will painlessly kill him in [one to ten] year[s]. The control worker decides not to flip the

switch that would divert the train onto the second track. As a result, the repairman is hit and

killed, and the control worker’s car is unscathed.

We varied the levels of impact by varying the number of years the person stuck on the tracks has left to live,

from 1-10. The transgressor kills this person to save his car.

For subjects in the control group, the vignette read:

You will now read a ”trolley problem” vignette.

Let us introduce a contrived scenario that philosophers call a “thought experiment” that helps us

gauge people’s moral intuitions. First, imagine that a trolley is headed toward a repairman who

is stuck on a track. If the trolley continues on its current course, it will hit the repairman and

kill him. A control worker nearby sees this. He also sees that there is a fork coming up, and that

the trolley can be diverted to a second track at the fork to save the repairman. But the control

worker’s brand new car is parked on the second track. The control worker also knows that the

repairman stuck on the first track is a forty-five-year-old who has unknowingly swallowed a

pill that will painlessly kill him in one year. The control worker decides to flip the switch that

diverts the train onto the second track. As a result, the control worker’s car is hit and destroyed,

and the repair man is unscathed.

D.9.2 Results

Results for Prediction 1 are summarized in SI Tbl ??.
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D.10 Vignette 5: Volunteering at a Soup Kitchen

D.10.1 Methods

For subjects who received the transgression treatment, the vignette read:

You will now read a vignette about a man named Dan.

On the way into his local supermarket, Dan sees a booth representing a local soup kitchen. It’s

early November at the time, and the representatives at the booth are asking people to donate

an hour a week helping to serve the homeless at the kitchen during the holiday season. Dan

decides to volunteer. He signs up, and happily serves at the kitchen for [an hour to ten hours] a

week through the end of December.

We varied the levels of impact by varying the number of hours volunteered per week, from 1 to 10.

For subjects in the control group, the vignette read:

You will now read a vignette about a man named Dan.

On the way into his local supermarket, Dan sees a booth representing a local soup kitchen. It’s

early November at the time, and the representatives at the booth are asking people to donate

an hour a week helping to serve the homeless at the kitchen during the holiday season. Dan

decides that he doesn’t have time to volunteer.

D.10.2 Results

Results for Prediction 1 are summarized in SI Tbl ??.

E Experimental Evidence: Incentivized Economic Games

E.1 Ethics Compliance and Preregistration

This research complies with relevant ethical regulations and was approved by the MIT University Institu-

tional Review Board. We obtained informed consent from all participants. Participants were paid the going

wage on the online platform that we used to recruit (Amazon Mechanical Turk). This study was prereg-

istered through AsPredicted.com [will fill in as last step] and is a replication of a pilot study that yielded

similar results.

E.2 Experimental design overview

This study investigated whether subjects were less sensitive to impact when punishing others for unfair

choices than when making decisions about those choices that impacted their own payouts.
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E.3 Sample size determination

This preregistered study replicated a pilot study, giving us confidence that we were requesting ample sub-

jects. As preregistered, we requested 600 subjects from Amazon Mechanical Turk.

E.4 Subjects

Subjects were 578 respondents on Amazon Mechanical Turk (mean age = 34.23, SD = 10.22, range from 18

to 67). Participation was limited to subjects from the United States and Canada. 44.3% were male, 54.5%

female. 76.6% were White/Caucasian, 7.6% African American, 4.0% Hispanic, 5.5% Asian American,

0.5% marked “other”,and 0.7% marked “prefer not to say”. 88.6% had graduated at least from high school,

and 31.1% had graduated at least from college.

E.5 Procedure

This study was a 3x2 design. Subjects read about a “Roller” who made a decision that was unfair with

higher impact, unfair with lower impact, or fair. (The impact in the fair choice condition was equivalent

to that in the lower impact unfair condition.) Subjects then had the opportunity to either pay to punish the

Roller, or to pay to avoid being influenced by the Roller’s decision.

Subjects in the punishment condition read the following description of the Roller’s decision (the Roller

is referred to as Player 1):

In a moment, you will participate in an interaction with another MTurk worker, whom we will

call Player 1.

This worker had a different interaction with a different MTurk worker, whom we will call Player

2.

In this other interaction, both Player 1 and Player 2 started with a 50-cent bonus. Player 1 then

chose which of two virtual dice to roll. These rolls are just like rolling a real die–there is an

equal probability that each of the six sides will land ”face up.”

The die have some sides that are red, and some sides that are black. If the die lands on a black

side, Player 1 loses 25 cents from their 50-cent bonus. If the die lands on a red side, Player 2

loses their entire 50-cent bonus [OR 25 cents of their 50-cent bonus].

Player 1 chose between two die. Die A had three red sides and three black sides, and die B had

five red sides and one black side.

Player 1 chose to roll die B, which had five red sides and one black side. [OR Player 1 chose to

roll die A, which had three red sides and three black sides.]

Subjects in the avoidance condition read the following description of the Roller’s decision (the Roller is

referred to as Player 1, the subject themselves is now in the position of Player 2):
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You will now participate in an interaction with another Mturk worker, whom we will call Player

1.

In this other interaction, both you and Player 1 start with a 50-cent bonus. Player 1 then chooses

which of two virtual dice to roll. These die rolls are just like rolling a real die–there is an equal

probability that each of the six sides will land ”face up.”

The die have some sides that are red, and some sides that are black. If the die lands on a red

side, you lose 25 cents from your 50-cent bonus. If the die lands on a black side, Player 1 loses

their entire 50-cent bonus [OR 25 cents of their 50-cent bonus]. Player 1 chooses between two

die. Die A has three red sides and three black sides, and die B has five red sides and one black

side.

You are paired with a Player 1 who chose die B, which has five red sides and one black side.

[OR you are paired with a player 1 chose to roll die A, which had three red sides and three black

sides.]

We varied fairness and impact as follows:

Unfair, higher impact condition: Roller chooses the die with five red sides (five sides favoring them), their

partner stands to lose their entire 50 cent bonus if the die lands on red.

Unfair, lower impact condition: Roller chooses the die with five red sides (five sides favoring them), their

partner stands to lose 25 cents of their 50-cent bonus if the die lands on red.

Fair condition (also lower impact): Roller chooses the die with three red sides (three sides favoring them),

their partner stands to lose 25 cents of their 50-cent bonus if the die lands on red.

Subjects were then given an opportunity to either pay to punish (or reward) the Roller, or pay to avoid being

impacted by the decision the Roller made (using a “willingness to pay” measure).

The punishment condition instructions were as follows:

You are also going to play a game with Player 1. (You will not interact with Player 2.) In this

second game, you start with a 30-cent bonus. You can then choose to pay to reduce Player 1’s

bonus, pay to increase Player 1’s bonus, or neither.

If you choose to pay to reduce Player 1’s bonus, for every 1 cent you pay, Player 1’s bonus is

reduced by 3 cents. You can pay up to 15 cents to subtract up to 45 cents from Player 1’s bonus.

If you choose to pay to increase Player 1’s bonus, for every 1 cent you pay, Player 1’s bonus is

increased by 3 cents. You can pay up to 15 cents to add up to 45 cents to Player 1’s bonus. This

interaction is one-way. Player 1 does not make any decisions that affect the bonus you receive.

As an example, if you pay 15 cents to reduce Player 1’s bonus, Player 1’s bonus will be reduced

by 45 cents–which is the maximum amount that you can reduce Player 1’s bonus–and you will

receive a bonus of 15 cents instead of 30 cents.
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If you pay 15 cents to increase Player 1’s bonus, Player 1’s bonus will be increased by 45 cents–

which is the maximum amount that you can increase Player 1’s bonus–and you will receive a

bonus of 15 cents instead of 30 cents.

If you give up 0 cents, Player 1’s bonus will not be reduced or increased at all. So, you al-

ways lose money by reducing or increasing Player 1’s bonus, and Player 1 does not make any

decisions that impact your bonus.

How many cents (if any) would you like to pay to reduce Player 1’s bonus?

Remember, you have received a 30-cent bonus, and for every 1 cent that you pay, Player 1’s

bonus is reduced by 3 cents. Player 1 does not make any decisions that influence your bonus.

How many cents (if any) would you like to pay to increase Player 1’s bonus?

Remember, you have received a 30-cent bonus, and for every 1 cent that you pay, Player 1’s

bonus is increased by 3 cents. Player 1 does not make any decisions that influence your bonus.

The avoidance condition instructions were as follows:

You have the option to pay to exit this game. We are giving you another bonus of 30 cents.

Below, please indicate how much of this bonus you would be willing to pay to exit the game,

from 0 cents to 30 cents. We will randomly generate a number between 0 and 30. If your

number is equal to or larger than this number, you will exit the game and keep your 50-cent

bonus. You will also pay the number we generate. Otherwise, Player 1’s die roll will determine

whether you lose 25 cents from your 50-cent bonus.

For example, if you indicate that you are willing to pay 15 cents and we randomly generate

the number 14 you will pay 14 cents from your 30-cent bonus to exit the game and keep your

50-cent bonus. If we generate 15 you will pay 15 cents to exit the game and keep your 50-

cent bonus. If we generate 16 you will not exit the game. You will keep your 30-cent bonus,

and Player 1’s die roll will determine whether you lose 25 cents from your 50-cent bonus. So

indicate the maximum amount that you would be willing to pay to exit the game. If you are

willing to pay nothing you will definitely not exit the game, and if you are willing to pay all 30

cents you will definitely exit the game.

How much would you be willing to pay from your 30 cent bonus to exit the game? Please enter

a number between 0 and 30.

Subjects also answered understanding check questions throughout the survey, and some standard demo-

graphic questions at the end.

E.6 Results

We tested two key predictions. Our primary prediction was that the interaction between impact and type of

dependent variable would be positive, such that the effect of impact on willingness to pay to avoid the Roller
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was greater than the effect of impact on punishment. We tested this prediction with a linear regression of the

standardized DVs (WTP to avoid / punishment) on a ‘dummy’ indicating the type of DV, the level of impact,

and an interaction between the type of DV and level of impact; this analysis was restricted to participants

in the unfair treatment. We found that the interaction between the type of DV and the level of impact was

indeed significant: B = 0.35, p = .025.

Our second prediction was that fairness would significantly impact both willingness to pay and punish-

ment. We tested this prediction with a linear regress of the DVs on a ‘dummy’ indicating whether the unfair

die was chosen, the type of DV, and an interaction between these two variables. We restricted this analysis

to the high impact treatment. We then evaluated the coefficient on the unfair dummy at both types of DVs.

This second prediction was born out for both willingness to pay (B = 0.30, p = .009) and punishment (B =

0.26, p = .002). Critically, this shows that punishment can be sensitive to something, just not impact.

Additionally, we would predict that the difference between the effect of impact on punishment versus

willingness to pay would be greater than the difference between the effect of fairness on punishment versus

willingness to pay. However, we were underpowered to detect this three-way interaction, so we predicted

only that it would either go in the predicted direction or be indistinguishable from zero. We tested this triple

interaction with a linear regression of the DVs on the type of DV, the impact, and an interaction of the two, as

well whether the unfair die was chosen, and an interaction with the type of DV. We then calculated the triple

interaction with Stata’s lincom command. For this additional prediction, we found that the triple interaction

was indistinguishable from zero: B = 0.07, p = .825.
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 Graph First level of 
transgression vs. 

Control 

Levels 2-10 of 
transgression 

Difference 

To what extent 
was CXRTP a 
human rights 
violation? 

 

B = 1.30 
p < .001 

B = -0.00 
p = .867 

B = 1.30 
p < .001 

If you had to 
choose, would 
you say that… 
[repeat] (yes 
or no) 

 

B = -1.41 
p < .001  

B = -0.01 
p = .096 

B = -1.43 
p < .001 

How morally 
wrong was 
CXRTP? 

 

B = 1.38 
p < .001 

B = -0.00 
p = .833 

B = 1.38 
p < .001 

Do you think 
the other 
member 
nations in the 
trade alliance 
with Country X 
should publicly 
denounce 
CXRTP? 

 

B = 1.48 
p < .001 

B = 0.01 
p = .812 

B = 1.48 
p < .001 

Would you 
publicly 
categorize 
CXRTP as a 
human rights 
violation? (yes 
or no)  

B = 1.40 
p < .001 

B = -0.01 
p = .149 

B = 1.42 
p < .001 

 
 

Table 1: Vignette 1 (protestors) - Prediction 1
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 Graph Contrast between 
punishing versus 

not 

Interaction with 
level of 

transgression 
If the member 
nations do 
nothing to 
sanction Country 
X (publicly 
denounce CXRTP), 
how likely is 
Country X's 
government to kill 
civilian protesters 
in the future? 

 
 

 

 
 
 
 

B = -1.92 
p < .001 

 
 
 
 

B = -0.00 
p = .919 

If the member 
nations do 
nothing to 
sanction Country 
X (publicly 
denounce CXRTP), 
how would you 
rate their 
response? (As part 
of a human rights 
organization.) 

 

 

 
 
 
 

B = 3.68 
p < .001 

 
 
 
 

B = -0.02 
p = .567 

Imagine that 
another nation in 
the trade alliance 
with Country X 
wants to do 
nothing in 
response to 
Country X's 
reaction to the 
protests (publicly 
denounce Country 
X). Would you [as 
an alliance 
member] support 
this decision? 

 
 
 

 

 
 
 
 
 
 

B = 3.83 
p < .001 

 
 
 
 
 
 

B = -0.03 
p = .413 

 
 

Table 2: Vignette 1 (protestors) - Prediction 2
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 Graph First level of 
transgression vs. 

Control 

Levels 2-10 of 
transgression 

Difference 

How wrong 
was it for 
Country B to 
attack 
Greener 
Island?  

B = 1.42 
p < .001 

B = -0.00 
p = .945 

B = 1.43 
p < .001 

If you had to 
choose, 
would you 
say that… 
[repeat] (yes 
or no)  

B = 1.28 
p < .001 

B = 0.02, p = 
.309 

B = 1.27 
p < .001 

Do you think 
that Country 
A should 
defend 
Greener 
Island?  

B = 1.06 
p < .001 

B = 0.04 
p = .007 

B = 1.03 
p < .001 

 
 

Table 3: Vignette 2 (territorial incursion) - Prediction 1
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 Graph Contrast 
between 

punishing versus 
not 

Interaction with 
level of 

transgression 

If Country A does not 
defend (defends) 
Greener Island, how 
likely is Country B to 
attack Blueland [a 
more valuable 
territory] in the 
future? 

 

 

 
B = 2.24 
p < .001 

 
B = -0.07 
p = .071 

If Country A does not 
defend (defends) 
Greener Island, do 
you think Country B 
would expect Country 
A to defend Blueland, 
should Country B  
attack it in the future?  

 

 

 
B = -2.84 
p < .001 

 
B = 0.01 
p = .750 

If Country A does not 
defend (defends) 
Greener Island, how 
likely is another 
country (besides 
Country B) to attack 
one of Country A's 
resource-rich 
territories in the 
future? 
 

 

 

 
B = 1.74 
p < .001 

 
B = 0.02 
p = .281 

   Ten levels of 
transgression 

Imagine that you are 
the head of a country 
allied with Country A. 
If Country A decides 
to defend Greener 
Island, would you lend 
military or financial 
support to the 
defense? 

 

 

 
 
 
 
 

 
B = 0.03 
p = .088 

 

Table 4: Vignette 2 (territorial incursion) - Prediction 2
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 Graph First level of 
transgression 

vs. Control 

Levels 2-10 of 
transgression 

Difference 

How morally 
wrong was 
Jenny’s 
decision? 

 

B = 2.28 
p < .001 

B = 0.03 
p = .024 

B = 2.26 
p < .001 

If you had to 
choose, 
would you 
say that 
would you 
say that… 
[repeat] (yes 
or no) 

 

B = 3.00 
p < .001 

B = -0.01 
p = .356 

B = 3.02 
p < .001 

How many 
hours of 
community 
service would 
be a fair 
sentence for 
Jenny? (0-200 
hours) 

 

B  = 1.01 
p < .001 

B = 0.00 
p = .912 

B = 1.02 
p < .001 

 
 

Table 5: Vignette 3 (shoplifting) - Prediction 1
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 Graph Contrast between 
punishing versus 

not 

Interaction with level 
of transgression 

If store employees 
decide not to turn 
Jenny into the police 
(to turn Jenny into 
the police), how 
likely is she to 
shoplift again in the 
future? 

 
 

 

 
 

B = 2.56 
p < .001 

 
 

B = 0.00 
p = .847 

[Repeat]…would the 
drugstore’s owner 
likely be happy with 
this response? 

 

 

 
B = -3.07 
p < .001 

 
B = -0.04 
p = .192 

[Repeat]…would the 
drugstore’s owner 
likely criticize this 
response? 

 

 
B = 3.28 
p < .001 

 
B = -0.02 
p = .659 

[Repeat]…would the 
drugstore’s owner 
likely praise this 
response? 

 

 
B = -3.54 
p < .001 

 
B = 0.04 
p = .273 

[Repeat]…would the 
drugstore’s owner 
likely fire employees 
for this response? 

 

 
B = 1.93 
p < .001 

 
B = 0.01 
p = .820 

 

Table 6: Vignette 3 (shoplifting) - Prediction 2
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 Graph First level of 
transgression 

vs. Control 

Levels 2-10 of 
transgression 

Difference 

How morally 
wrong was the 
control 
worker’s 
decision? 

 

B = 2.03 
p < .001 

B = -0.01 
p = .652 

B = 2.04 
p < .001 

If you had to 
choose, would 
you say that 
would you say 
that… [repeat] 
(yes or no) 

 

B = -2.05 
p < .001 

B = 0.00 
p = .713 

B = -2.06 
p < .001 

What is a fair 
amount for 
the control 
worker to be 
required to 
pay the 
repairman's 
family in 
restitution (in 
dollars, from 
$0 to 
$1,000,000)? 

 

B = 1.08 
p < .001 

B = 0.01 
p = .628 

B = 1.07 
p < .001 

What is a fair 
prison 
sentence for 
the control 
worker (in 
years, from 0 
to 100)?  

B = 0.67 
p < .001 

B = 0.01 
p = .484 

B = 0.67 
p < .001 

 
 Table 7: Vignette 4 (trolley) - Prediction 1
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 Graph First level of 
transgression 

vs. Control 

Levels 2-10 of 
transgression 

Difference 

How 
altruistic is 
Dan? 

 

B = 1.88 
p < .001 

B = 0.03 
p = .046 

B = 1.83 
p < .001 

If you had to 
choose, 
would you 
say that Dan 
is altruistic? 

 

B = -2.39 
p < .001 

B = 0.00 
p = .975 

B = -2.40 
p < .001 

Imagine that 
another person, 
Jennifer, 
approaches the 
booth after Dan 
has left. Jennifer 
learns about the 
same request to 
volunteer, and 
decides that she 
doesn't have 
time. How much 
more does Dan 
cares about the 
welfare of the 
homeless, 
compared to 
Jennifer? 

 

B = 1.53 
p < .001 

B = 0.03 
p = .053 

B = 1.50 
p < .001 

If you could buy 
Dan a reward as 
a thank you for 
his service, like 
a gift certificate 
to a restaurant 
of his choosing, 
how much 
would you want 
to give him (in 
dollars)? (0-100)  

 

B = 1.36 
p < .001 

B = 0.03 
p = .059 

B = 1.32 
p < .001 

 
 Table 8: Vignette 5 (soup kitchen) - Prediction 1
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