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Abstract

Our paper utilizes semi-nonparametric and nonparametric methods
to directly estimate consumer surplus in eBay computer monitor sales.
We also use nonparametric methods to select among alternative paramet-
ric models wherein the private values are assumed to have log-normal,
gamma, Weibull, half-logistic, and Pareto distributions. We �nd sub-
stantial comparability between the estimated consumer surplus based on
nonparametric methods and the parametric model selected using the non-
parametric testing criteria. Although nonparametric estimators have
their advantages in terms of robustness to distributional misspeci�cation
they require substantial sample sizes in order for standard asymptotic re-
sults to hold when observed covariate e¤ects must be estimated. This
suggests that at least for our eBay data, parametric models chosen in
this way may o¤er advantages that can overcome their potential lack of
distributional robustness.

JEl classi�cation : C22, C51

Key words and phrases : eBay auction, semi-nonparametric estimation,
nonparametric estimation, consumer surplus, consumer share of surplus

�We would like to thank Sandra Campo and participants at the Conference on Auctions
and Games, Virginia Polytechnic Institute and State University, Blacksburg, Va., October
12- 14, 2007 as well as Ravi Bapna and participants of the FTC Roundtable: Economics of
Internet Auctions, October 27th, 2005, Washington, DC. for insightful and needed criticism
on earlier drafts of this paper. The usual caveat applies.

1



1 Introduction

It is well established that eBay is a signi�cant economic marketplace. Econo-

mists have long hailed the price discovery power of auctions, but unfortunately

the cost of establishing a cohesive electronic market place prevented their wide-

spread usage. eBay overcame this problem by allowing people to auction items

over the Internet. Because of this eBay has become a signi�cant marketplace,

and due to the economies of the marketplace it is likely to remain one in the

future. However we are still unsure how much eBay bene�ts the economy. One

measure of this bene�t is the consumer surplus that eBay generates. Our pa-

per measures this important economic fundamental in the market for computer

monitors. There are, however, important methodological issues that must be

addressed in any empirical study of auctions. As has been shown for sec-

ond price private-value auctions considered in this paper, the standard model

is nonparametrically identi�ed and nonparametric methods can be employed

whose asymptotic properties of consistency and normality remain unchanged

under alternative distributions of private values. However, when auction mod-

els such as these are faced with the necessity of controlling for observed het-

erogeneity with covariates, parametric models have an advantage. Although

semi-nonparametric and nonparametric methods may accommodate regressors,

the rates of convergence are slowed substantially by the curse of dimensionality

problem inherent in applied nonparametric analyses. Our paper suggests an

alternative middle ground that empirical researchers may �nd appealing and

which ultimately may address both the lack of robustness of parametric meth-

ods and the curse of dimensionality problem. We propose a testing strategy in

which nonparametric methods are used as model selection criteria for a �nite

set of parametric submodels. This has a link to the semiparametric e¢ ciency

bound literature which we do not formally address in this paper.1

In addition to nonparametric and semi-nonparametric methods to estimate

consumer surplus, the nonparametric model selection criteria we use chooses

among a �nite set of alternative parametric submodels and the consumer sur-

plus measures estimated therein. The distributions of private values that com-

plete our family of parametric submodels, are the log-normal, gamma, Weibull,

1Models in which semiparametric e¢ ciency bounds and adaptive estimators for order sta-
tistic models, such as those used in the auction literature to identify an equilibrium observation
can found in,among others, Adams, Berger, and Sickles (1999), Adams and Sickles (2007),
Park and Simar (1994), and Park, Sickles and Simar (1998, 2003, 2007). These papers con-
sider such estimators for samples with repeated measures such as those used in the empirical
auction literature.
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half-logistic, and Pareto distributions�all with positive support. We �nd sub-

stantial comparability between the estimated consumer surplus based on semi-

parametric and nonparametric methods and the parametric submodel selected

using the nonparametric testing criteria. Although nonparametric estimators

have their advantages in terms of robustness to distributional misspeci�cation

they require substantial sample sizes in order for standard asymptotic results to

hold when observed covariate e¤ects must be estimated. This suggests, at least

for our eBay data, parametric models selected using this model selection crite-

ria may o¤er advantages that can overcome their potential lack of distributional

robustness.

Our data set for this analysis contains 2934 PC color computer monitors

with a screen size of between 14 and 21 inches which were auctioned between

February 23, 2000 and June 11, 2000. Although recent methods for accessing

data via "spider" programs have become commonplace2 we believe ours was the

�rst use of such a program to construct such large scale data sets (Gonzales,

2002, Gonzalez, et al. 2007, revised). We also discuss the data collection

techniques that allowed us to construct our relatively large set of auction data.

Relatively few attempts have been made to estimate consumer surplus in

auction models, although this is presumably one of the arguments in favor of

such mechanisms in terms of consumer bene�ts. Song [27] estimates a semi-

nonparametric model using both the second and third highest bids in university

yearbook auctions. She constructs an innovative methodology using the second

and third highest bids and estimates the median consumer surplus in university

yearbook auctions at $25:54. With a median price in her study of $22:50; the

median consumers�share of the surplus is 53%. Our strategy is to search over

various parametric models, which not only allows us to dispense with the need

to use the third highest bid but it allows us to suggest a best parametric model

which might be useful in other research. We also provide comparable semi

nonparametric and nonparametric estimates of consumer surplus which utilize

second and third highest bid data. Bapna, Jank, and Shmueli [6] also estimates

consumer surplus, utilizing an innovative data collection technique that allows

them to directly observe a bidder�s stated value. With their rather heterogenous

data, however, they cannot estimate a structural bidding function. They do,

however, �nd that consumers capture at least 18:3% of the total surplus. Several

other articles estimate consumer surplus in multi-unit auctions� Carare [10];

2See, for example, the website at http://www.baywotch.de/. We thank Rouwen Hahn
from the University of Münster, Germany for this information.
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Bapna, Paulo and Gupta [3], [4] and Bapna, Goes, Gupta, and Jin [5]� but

these papers primarily focus on mechanism design issues and tend to use ad hoc

techniques since the equilibrium bidding function in general multi-unit auctions

is unknown.

eBay has two di¤erent auction formats. The common format is an English

auction with a hard stop time. This is the type of auction used in 87 percent

of our original data set and the type of auctions on which we focus. When our

data was collected bidding went from three to ten days and then stopped at a

preset time.

Our estimation techniques are based on methods developed by Donald and

Paarsch [13]. We do not need to estimate the minimum or maximum value a

bid can take since in our auctions the natural lower boundary is zero and there

is no reasonable binding upper boundary. We also are able to estimate a full

likelihood function since our data set includes all auctions where no one decided

to bid.

There are a number of methodologies available in the literature. The non-

parametric technique developed by Song [27] requires the use of some of the data

from the third highest bid. While for clear theoretic reasons one can always as-

sume that the second highest bid is a bidders�value it is unclear that compelling

arguments can provide the same guarantee for the third highest bid. One must

instead rely on the bidders planning not to update their bid and if this is not

the case then results based on these methods could be biased. Adams [1] has

recently signi�cantly extended Song�s technique and developed a methodology

that non-parametrically identi�es both the distribution of bidders�values and

the probability of entry. This is a signi�cant advancement because it is based

only on the second highest bids. However, the current theory requires that there

is some variable that a¤ects entry but does not a¤ect bidders�values. We do

not �nd support for this assumption in our data. There are of course other

generic problems with non-parametric estimators such as slow rates of conver-

gence that are exacerbated by the need to estimate moments of sample order

statistics. Another interesting technique is a Bayesian methodology developed

in Bajari and Hortaçsu [2]. However these techniques require that the bidding

functions are linearly scalable, a restriction unnecessary with our approach and

violated by our structural form. Non-linear simulated least squares, developed

by La¤ont, Ossard, and Vuong [20] [17], is but another estimation methodology.

This approach overcomes the complexity of calculating the likelihood function

by simulating the auctions, and it is a �exible methodology that can be used
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for any bidding model where revenue equivalence holds.

Our paper is organized as follows. In section 2 we discuss our data set

and collection techniques. In section 3 we outline the model we use in our

estimation. Section 4 presents our estimates and brie�y discusses them. In

section 5 we present the core of our results, our estimates of consumer surplus.

We also discuss a new measure of presenting consumer surplus, consumer share.

Consumer share is the fraction of total available surplus that consumers capture.

In section 6 we conduct a series of tests of which distribution best �ts the

data. Section 7provides our semi-nonparametric and nonparametric estimates.

Section ?? concludes.

2 The Data Set and Our Collection Techniques.

At the time our data set was collected eBay saved all information about closed

auctions on their website for a month after the auction closed. This allowed

people who participated in the auction to verify the outcome and provides the

source for our data set. Our data was collected using a �spider�program which

periodically searches eBay for recently closed computer monitor auctions and

downloads the pages giving the item description and the bid history. Software

development was done in Python� a multi-platform, multi-OS, object-oriented

programming language. It is divided into three parts. It �rst goes to eBay�s

site and collects the item description page and the bidding history page. It

next parses the web pages and makes a database entry for each closed auction.

The �nal part iterates through the stored database entries and creates a tab-

delimited ASCII �le.

The original data processing program did not process all of the data. It pro-

vided us with the core of the data which was augmented with further processing

of the raw html �les. Using string searches we have managed to collect extensive

descriptive information for the entire data set. With further data processing we

have managed to collect all of the bidding histories.

Running this program from February 23, 2000 to June 11, 2000 we were able

to capture information on approximately 9000 English auctions of computer

monitors, e¤ectively all monitors auctioned during that time period. We deleted

many of these monitors because they are clearly not in the same market as the

one we are interested in� PC color computer monitors with a size between

14 and 21 inches. We also deleted some of our observations because they

didn�t contain enough information to construct measures of the competition
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each auction faced, resulting in 2934 auctions being used in our estimates. The

monitors we analyze were in working order, were not touch screen monitors or

LCD monitors, Apple monitors, or other types of monitors that are bought for

di¤erent purposes than the monitors in our sample. Also, if there were any bid

retractions or cancellations (this happened in 7.4 percent of the auctions) we

dropped the observation because the retractions might indicate collusion. We

also deleted several auctions in which the auctioneer cancelled the auction early

(usually within ten to �fteen minutes of the beginning of the auction.)

Since the level of competition a given auction faces is based on the number

of auctions open at the same time we dropped auctions from our sample that

took place within ten days of a break in our data collection. We then counted

the number of auctions (including the given auction) that were open and had

the same size of monitor, or open and were in the same category. This gave us

three variables that measure the amount of competition an auction faces.

Descriptive variables except for monitor size were constructed using string

searches. In Gonzalez, et al. [17] the strings that were used for each variable

are detailed. This allowed us to collect data on whether there was a secret

reservation price, whether it was met, monitor resolutions, dot pitch, whether

a warranty was o¤ered, several di¤erent brand names, whether the monitor

was new, like-new, or refurbished, and whether it was a �at screened monitor.

�Brand name� is used for monitors that are from one of the ten largest �rms

represented in our data set. These �rms are Sony, Compaq, NEC, IBM, Hewlett

Packard, Dell, Gateway, Viewsonic, Sun, and Hitachi in order of size. Sony has

close to a 10 percent market share while the smallest have close to a 3% market

share. These 10 �rms represent 57% of the market. Dot pitch and resolution

are not reported in all of the auctions. Dot Pitch is reported in 35 percent of

the auctions, resolution in 58 percent. Descriptive statistics of the variables are

presented in the Appendix.

3 The Model and Likelihood Functions.

In this section we use maximum likelihood to estimate bidders�values and an

exogenous entry process in eBay auctions.

Bidding on eBay takes place by a proxy program. The bidder submits

a reservation price and the computer raises the price until only one bidder

remains. In such an auction the obvious action is to enter your reservation

value (or simply �value�) as your reservation price. However, bidders frequently
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do not do this, so to be certain that at least the second highest bidder does we

will follow Haile and Tamer [18] by assuming that bidders follow two intuitive

rules:

1. No bidder ever bids more than he is willing to pay.

2. No bidder allows opponents to win at a price he is willing to pay.

We assume that bidders�values are private, independent, and log-linear in

a set of auction speci�c characteristics xn (where n indicates the auction) and

a private component �j (where j indicates the person). If the winning price is

bwn , rn is the traditional open reservation price, and I is the number of potential

bidders who bid in the auction the formula for the winning bid is:

ln bwn = max
n
ln rn; x

0
n� + ln �

(2:I)
n

o
(1)

where �(2:I)n is the private component of the second highest bidder in auction

n. We allow for various models for the distribution of values and thus the

distribution of bwn .

Let Fn (z; �) be the cumulative distribution function (cdf) of the bidders�

values at z and fn (z; �) be the probability density function (pdf)� where �

may include some distribution speci�c coe¢ cients. Let Ian be the number of

active bidders in auction n� or the number who actually submitted bids, and

for i 2 f0; 1g Di
n = 1 if I

a
n = i, D

i
n = 0 otherwise. If I � Ian is the number of

potential bidders in auction n the likelihood of auction n given I is:

ln (�jI) =
�
Fn (rn; �)

I
�D0

n ��
IFn (rn; �)

I�1
(1� Fn (rn; �))

�D1
n � (2)�

I (I � 1)Fn (bwn ; �)
I�2

(1� Fn (bwn ; �)) fn (bwn ; �)
�(1�D0

n�D
1
n)
.

We can not identify inactive bidders. Although we know there have been

at least Ian who have bid but there might also be any number of bidders who

thought about bidding and did not. Therefore I will be a stochastic variable

that can range from Ian to I� an arbitrary upper bound. One can view our

treatment of identi�cation and estimation of the number of bidders I as a direct

treatment for what would otherwise be unobserved heterogeneity in each auction

that potentially could be correlated with outcomes of the bidding process. We

do not explicitly correlate the number of bidders with the other heterogeneity
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controls for di¤erences in monitors types or the feed-back rating of the seller,

but rather estimate this potential auction speci�c unobservable in our model.

For an extensive treatment of unobserved heterogeneity in �rst-price auctions

see Bierens and Song (2006a,b).

The number of bidders in an auction will be determined by a Poisson entry

process. The parameter of the entry process, �n, will be log-linear in a set

of auction speci�c characteristics zn� where xn � zn. Some auction charac-

teristics might a¤ect entry but not values, but we assume that if the auction

characteristic a¤ects values it must a¤ect entry. The estimated functional form

for entry is:

ln�n = z
0
n : (3)

Let Tn be the length of the auction (Tn 2 f3; 5; 7; 10g) and Dsr
n be a dummy

which is one if there is a secret reservation price. Then the total likelihood for

auction n is:

ln (�; ) =
�Ii=Ian+Dsr

n

(�nTn)
i

i! e��nTn ln (�ji)

�Ii=Dsr
n

(�nTn)
i

i! e��nTn
. (4)

notice that the lower bound on i in both the denominator and the numerator

are increased by one if there is a secret reservation price, thus we are following

Bajari and Hortaçsu [2] in treating the auctioneer as another bidder if there is

a secret reservation price.

Notice that we can use full maximum likelihood since our data collection

technique captures all auctions that do not result in sales. This is a rarity in

auction data.

The choice of �I is obviously arbitrary. In order to derive the estimates we

chose �I = 30 and then tested the results with �I = 50. Changing �I did not

a¤ect the coe¢ cients. It appears our choice of �I = 30 is reasonable.

Since we cannot be certain a-priori of the true distribution of bidders�values,

we utilize an array of distributions that have been proposed in the literature:

half-logistic, gamma, Weibull, log-normal, and Pareto, all with positive support.

4 The Estimates

We �rst present estimated e¤ects of the exogenous variables (ex
0
n�) on the win-

ning bids. We then present estimates of the parameter of the entry process

(�). The right- hand side variables in our models are the size of the monitor,

diagonal screen size, the dot pitch (the distance between dots on the screen),
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and resolution (the size of picture that can be seen on the monitor). We also

have a series of dummies indicating whether or not the monitor is new, like new,

or refurbished (the omitted category is used) and whether or not the monitor

has a warranty, is a brand name, or is �at panel.

<Table 1 about here>

Results are in Table 1 in the Appendix. We �rst note the general stability of

coe¢ cients across estimates. The least stable coe¢ cients are those for dot pitch

and resolution. The coe¢ cient on band name changes sign in one regression

and is never signi�cant, probably because what information brand name really

conveys to the bidder is that the monitor is a common brand. While the

di¤erences in coe¢ cients are generally small, the value of a computer monitor

can be very di¤erent for a given auction using the di¤erent distributions. In

Table 2 we report the descriptive statistics of the logs since the exponential

function creates a skewed distribution and signi�cantly biases the mean.

Table 2 �Log of Exogenous Values
Half-Logistic Gamma Weibull Log-Normal Pareto

Average 3:63 4:58 2:38 1:74 3:33
Exponential of Ave. $37:71 $97:51 $10:80 $5:70 $27:94

Median 3:64 4:57 2:37 1:72 3:32
Exponential of Med. $38:09 $96:54 $10:70 $5:58 $27:66

The exponential of the average and median are in dollar terms Looking at

either the median or the average one can see a wide variation in the estimates.

The gamma distribution produces the highest estimate ($98) the Pareto and

half-logistic both predict medium values ($28 or $38 respectively), and the log-

normal and Weibull distributions produce very low values ($6� $11).
In our estimation of the entry process we include all variables that a¤ect

bidders�values and other variables that only a¤ect entry. The �rst two addi-

tional variables are the log of the seller�s feedback and a squared term for seller�s

feedback� allowing for a decreasing marginal bene�t of experience. Feedback

increases by one with every sale that results in a pleased customer, so it is an

indicator of both the seller�s experience and reputation. We also have a series

of category dummies� the default is the �general� classi�cation but a seller is

allowed to put the monitor into the � 1700 screen, � 1900 screen or the mono-

chrome sub-categories if he wishes. Notice that all monitors that are put in
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the monochrome sub-category are misplaced� all monitors in our data set are

color monitors. Since our data collection process captured every monitor auc-

tioned during our sampling period, we can construct three variables capturing

the amount of competition a given auction faced. The �rst variable (Com-

peting Auctions, all) is simply how many other auctions were open while this

auction was running, divided by the length of the auction. The second variable

(Competing Auctions, Same Size) is how many of those open auctions had a

monitor of the same size normalized, again, by the length of the auction. The

�nal one (Competing Auctions, Same Cat.) is the number of open auctions in

the same category, and this variable is also normalized.

<Table 3 about here>

While these coe¢ cient estimates are less stable than the estimates of bidders�

exogenous values in general, the sign is consistent in all estimates and only

one coe¢ cient is surprising. This is the coe¢ cient on the secret reservation

price dummy. Theoretically we expect this coe¢ cient to be negative but the

estimate is positive� though generally statistically insigni�cant. We have tried

using instruments for this variable and have also allowed for a distinct arrival

probability for the �rst bidder but estimates of the impact of a secret reservation

price remain relatively unchanged. We think the most likely reason for this

positive and insigni�cant coe¢ cient is because secret reservation prices are often

used on items with very high values. On these items there will be more entry

and the log-linear model of entry may not be able to fully capture this increase.

Indeed, even if we control for the e¤ect of the secret reservation price on entry,

auctions with a secret reservation price generally can expect 50% more bidders

than auctions without a secret reservation price.

It is also interesting to note that coe¢ cients on the open reservation price

are insigni�cant. The log-normal speci�cation again has the wrong sign. It is

well known that on eBay auctioneers are afraid to raise their reservation prices

thinking they might drive bidders away. These coe¢ cients indicate that they

succeed in this goal and bidder behavior is essentially una¤ected by the open

reservation price.

The coe¢ cients on the competitive variables have an interesting implication.

Increasing the number of competing auctions increases the likelihood that a

bidder will enter a given auction. This dramatically illustrates the economies

of the marketplace that is the basis of eBay�s market power. The primary
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reason buyers visit eBay instead of its competitors is because so many sellers

use eBay. Likewise the sellers go to eBay because buyers use eBay. Thus

we can not be certain that increasing the number of auctions will decrease

the number of bidders per auction and these coe¢ cients support this economic

insight. Notice that increasing the number of competing auctions in an item�s

category decreases the number of bidders per auction. It is interesting to be

able to �nd empirical support of the hypothesized reason for eBay�s success, and

would be exciting to know if these e¤ects continue in the current market where

there are a many more auctions each day.

The change in sign on the coe¢ cient of the dummy for not reporting dot

pitch merely indicates that in the log-normal speci�cation not reporting dot

pitch always decreases the number of bidders who enter. For other speci�cations

it only sometimes decreases the number who enter. Again, except for this case,

the ratio of the coe¢ cients on dot pitch and resolution to the dummies for not

reporting these variables are stable, around �0:85 for dot pitch and 0:14 for
resolution. Notice that while a high resolution raises the item�s value it seems

to lower the expected number of bidders. This indicates some heterogeneity in

our bidders. A high resolution means that for given screen size you can see a

larger picture or page of text. Of course this also means that the details of the

picture or the text size are smaller, and it is reasonable that some bidders do

not want to pay more for such a monitor. Our results illustrate this. Some

bidders do not value resolution and thus are not willing to bid on items with a

high resolution. The same tendency (though to a lesser degree) is found with

�at screen monitors. While this is clearly a positive aspect not everyone will

be willing to pay for it. In general this has a small negative e¤ect on entry but

a small positive e¤ect on the monitor�s value. This same e¤ect is sometime seen

with refurbished and brand name monitors.

The coe¢ cients on the log of seller�s feedback and its square deserve spe-

cial attention. Notice that these coe¢ cients are signi�cant in every regression

but the half-logistic, and the coe¢ cient on the square indicates a diminishing

marginal impact of increasing feedback. There are two reasons that we should

expect a positive impact of feedback. First, more experienced auctioneers know

more about setting up auctions. For example, their descriptions will be clearer

or there will be pictures of the item for sale and this tends to encourage bidders

to enter. Second, these coe¢ cients could re�ect bidders not trusting a seller who

has a negative feedback. Indeed, Cabral and Hortaçsu [9] follow auctioneers

over time and �nd that one negative feedback can decrease the growth rate of
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an auctioneer�s sales from 7% to �7%.
Many papers have terms re�ecting a seller�s feedback in the sales price re-

gression. However most of these papers do not estimate an entry model. If

high feedback is actually a¤ecting the number of bidders who enter the auction

this would result in a higher sales price in a model where entry is not estimated.

Perhaps regressions that do not explicitly model entry should include the num-

ber of bidders as a right hand side variable. In the few papers which do estimate

both entry and sales price, the evidence is mixed, with much of it supporting

our �ndings. Of these papers the only one that estimates a structural model of

entry (Bajari and Hortaçsu [2]) does not include feedback in the entry equation.

Jin and Kato [19] �nd that there is a trivial and negative e¤ect of feedback

on sales price but it has a signi�cant and positive e¤ect on the probability of

sale. The methodology in Song [27] allows for any non-speci�ed exogenous en-

try process, and she �nds that feedback has an insigni�cant but positive impact

on the bidders�values. Bajari and Hortaçsu [2] �nd that feedback has a positive

and signi�cant e¤ect on bidders�values, but this regressor is missing from their

entry equation. Livingston [21] found a signi�cant and positive impact on both

price and the probability of sale.

It may be that the literature has not paid enough attention to whether

feedback a¤ects entry or values. In our model trust is binary, either bidders

trust a seller or they don�t. If they trust the auctioneer they enter and bid. In

a model where feedback a¤ects values bidders who do not trust an auctioneer

enter but shade their bids. We hope that in future research others will test our

simple model of trust versus the more complicated models others have used.

We have examined non-homogeneous models of Poisson entry. Speci�cally

we have allowed the probability of zero bidders to be unconstrained. Casual

observation of the pdf of the number of bidders in Figure 1 indicates there are

too many zero occurrences.

Figure 1: PDF of the Number of Bidders.

The average number of bidders is 3.92. One might expect that the pdf should

be symmetric, increasing up to about 4 and then decreasing after that. Of

course this does not take into consideration the covariance of our right hand side

variables with the number of bidders. We found that allowing for a di¤erent

probability of zero bidders did not meaningfully alter results.
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We report in Table 4 the descriptive statistics of the log of � since the

exponential introduces a right skewness to the distribution.

Table 4 �Log of Entry Parameter
Half-Logistic Gamma Weibull Log-Normal Pareto

Average 2:01 2:86 2:63 5:04 2:49
Exponential of Ave. 7:5 17:46 13:9 154:5 12:1

Median 1:28 1:93 1:82 2:32 1:7
Exponential of Med. 3:6 6:89 6:2 10:2 5:5

Even though we look at the log of � there is right skewness in the distribution,

which is illustrated by the di¤erences between the average and the medians.

For this reason, we prefer to look at the medians. For the gamma, Weibull,

and Pareto the estimates of � are essentially the same. The median number of

bidders per day is between 6 and 7. For the half-logistic and the log-normal they

vary signi�cantly. The half-logistic it is surprisingly low and for the log-normal

it is surprisingly high.

In our model � is the expected number of bidders per time unit (one day).

Thus in a three day auction the median number of bidders will be between 10

and 30, in a ten day auction between 35 and 100. Even our most conservative

estimates suggest there are a large number of potential bidders for each computer

monitor.

5 Consumer Surplus and Consumer Share.

Perhaps one of the most useful summary statistics for understanding the wel-

fare impact of eBay is consumer surplus. The welfare impact can be calculated

directly from our estimates because it is independent of the number of bidders

in an auction. Ex-ante consumer surplus is derived in Appendix C for the dif-

ferent parametric distributions. Ex-post consumer surplus (the received welfare

impact of the sale) in auction n is:

E
�
v(1:I)n jv(2:I)n = bwn jI � 1

�
� bwn (5)

where rwn = b
w
n when I = 1. For all I � 1 ex-post consumer surplus is:R1

bwn
zfn (z; �)

1� Fn (bwn ; �)
� bwn (6)

The proof is nothing more than simplifying E
�
v
(1:I)
n jv(2:I)n = bwn jI � 2

�
to show

that it is equal to E
�
v
(1:I)
n jv(2:I)n = bwn jI = 1

�
, which is the above expression.
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Lemma 1 If I � 1 then ex-post consumer surplus is independent of I, and

thus independent of the entry process.

Proof. The explicit form of the expectation is:

E
�
v(1:I)n jv(2:I)n = bwn jI � 2

�
=

R1
bwn
(I) (I � 1) zfn (z; �) fn (bwn ; �) (Fn (bwn ; �))

I�2

(I) (I � 1) (1� Fn (bwn ; �)) fn (bwn ; �) (Fn (bwn ; �))
I�2

=

R1
bwn
zfn (z; �)

1� Fn (bwn ; �)

= E
�
v(1:I)n jv(2:I)n = rnjI = 1

�
if we let bwn = rn when I = 1.

Using this insight we can estimate ex-post consumer surplus for the di¤erent

parametric distributions we consider in this section. Summary statistics for

estimates of consumer surplus for the various distributions are given in Table 5.

Table 5 �Expected Consumer Surplus
Half-Logistic Gamma Weibull Log-Normal Pareto

Average $52:54 $95:58 $112:90 $194:81 $190:91
Median $39:69 $72:26 $87:55 $142:95 $139:72

There is wide variation in these estimates across distributions and in general

the estimates are high given our median computer monitor sold for $100. There

is also signi�cant right skewness. Because of this we will focus on median

estimates in the remaining discussion. The half-logistic produces the lowest

estimates, and the gamma the next lowest (their averages are actually the same).

The distributions that �t the worst (the log-normal and the Pareto) also produce

the highest estimates.

An alternative measure of consumer surplus is the consumers�share of the

surplus instead of the consumer�s absolute level of surplus. If vb is the buyers�s

value and va the auctioneer�s value then this statistic is
vb�bwn
vb�va , or in terms of

consumer surplus it is CSn
CSn+bwn�va

. We can not accurately estimate va from our

data and set it equal to its lower bound of zero. Using this assumption the

estimates of the consumer share of surplus are presented in Table 6.

Table 6 �Expected Consumer Share of Surplus
Half-Logistic Gamma Weibull Log-Normal Pareto

Average 0:333 0:451 0:489 0:624 0:573
Median 0:298 0:433 0:472 0:614 0:559

This gives a clearer picture of how much of the total surplus the bidders are

capturing. Even though there are many bidders per monitor consumers are

still receiving between one third and two thirds of the surplus.
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These estimates also can be compared with those from other studies. Song

[27] uses a non-parametric distribution and her median consumer share is 53% in

yearbook auctions. Bapna et al. [?] elicit bidders�values via a sniping program
and estimate the average consumer share to be 18%. Our results are closer to

Song�s estimates though her average number of bidders in auctions with three

or more bidders is 3.6 while ours is 6.8. This implies our auctions are more

competitive yet our consumer shares are similar, possibly because either the non-

parametric techniques understate the tail probabilities or because parametric

techniques overstate them.

The di¤erence between our results and those of Bapna et al. [?] may also
be due to the type of items their clients are buying and/or sample selection

problems. In general those who use a sniping program are the most concerned

about getting the lowest possible price. These bidders might both have low

reservation values and might understate their values to the sniping program.

We can check the sensitivity of our estimates to the tail properties of our set

of parametric distributions by constructing another estimate that is independent

of the tails. This alternative estimate can be viewed as a �lower bound�for the

true consumer surplus. If I were constant then assuming v(1:I)n = v
(2:I)
n = bwn

in every auction would provide us with a strict lower bound on the distribution

of private values. Since I is stochastic in our auctions it is not a true lower

bound, but we can still use this empirical distribution to construct estimates.

The consumer�s share of surplus using these lower bound estimates are in Table

7.

Table 7 �Lower Bound Estimates for Consumer Share
Half-Logistic Gamma Weibull Log-Normal Pareto

Average 0:374 0:369 0:371 0:367 0:373
Median 0:318 0:314 0:315 0:311 0:319

These results are more comparable to Song�s estimates. On average there are

twice as many bidders in our auctions and the consumer share is 30% lower.

The fundamental point is clear. Consumers are capturing a large amount

of surplus in these auctions. Even in the worst case approximately 30% of the

surplus is being captured by the consumers.

6 Finding the best distribution.

We use two statistical approaches to test for the best parametric speci�cation of

private values. The �rst relies on information criteria tests ([1]). The second
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relies on goodness-of-�t tests between the empirical distribution of winning bids

and their predicted distribution from the structural model based on di¤ering

parametric assumptions. We avoid pretest bias by using a portion of the original

data set not used in estimation. We explain below two di¤erent methods to

obtain these data. If the null hypothesis of a particular distribution for private

values is true, then the probabilities have a uniform distribution on the interval

from 0 to 1 (Fisher, 1948).

6.1 Tests based on Information Criteria.

The three information criteria tests, Akaike, Schwartz, and Browne-Cudek, favor

the same parametric distributions since our sample size is relatively large and

di¤erences among the three test-statistics are o(1): Results are in Table 8.

Table 8: Information Criteria Statistics.
Half-Logistic Gamma Weibull Log-Normal Pareto

AIC 3: 806 3: 729 3: 770 3: 852 3: 856
BIC 3: 840 3: 765 3: 806 3: 889 3: 892
BCC 3: 806 3: 720 3: 770 3: 852 3: 856

The favored distribution is the gamma, followed by the Weibull, the half-

logistic, log-normal, and Pareto, although di¤erences in the test-statistics and

corresponding p-values are not substantial.

6.2 Tests Against the Empirical Distribution.

A goodness-of-�t test between the empirical distribution of winning bids and

the predicted distribution based on structural model estimates requires an out-

of-sample forecast since we need data that was not used in estimation in order to

avoid pre-test bias. Our data collection program sampled the entire population

of monitors in eBay�s records, but in order to know how much competition an

auction faces we needed to know how many other auctions closed during a given

auction we were examining. This led us to drop a signi�cant subset of our data,

a subset which we can now use. We can also employ a technique that Song [27]

implemented in her estimation methodology and utilize the third highest bids

to construct the predicted distributions of the winning bids. We thus construct

two goodness-of-�t tests, one set using the data we dropped in order to measure

the amount of competition an auction faced and another set using data for the

third highest bids.
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In our sample of dropped auctions we have 3608 data points. Our sample of

third highest bids is drawn from our data for estimation so we have 2934 data

points. We �rst drop all auctions where there are not two or three bidders

(losing 1505 and 1408 data points respectively). We next drop auctions where

there was a secret reservation price because this secret reservation price could

be the true second highest or third highest bid and is unobserved, losing an

additional 517 and 479 observations.

6.2.1 An Out of Sample Second Highest Values Test.

In a private value auction such as we consider in our paper, the winning bid

is also the private value of the second highest bidder if there are at least two

bidders who bid above the reservation price. After dropping the observations

as discussed above, we are left with 1586 auctions out of the 3608 not used in

estimation. In order to use these auctions we have to impute the values of

three variables� competing auctions, all; competing auctions, same size; and

competing auctions, same cat (category). Imputations for these missing obser-

vations are based on their average values over the auctions used in estimation

(before normalizing by the auction length). This assumes that the market was

not changing much over time and since our data was collected within a four

month window this assumption is not unrealistic.

Conditional on I; the cdf of the of the second highest order statistic is:

Gn (b
w
n ; �jI) =

Z bwn

0

I!

(I � 2)!Fn (z; �)
I�2

(1� Fn (z; �)) fn (z; �) dz . (7)

If we then integrate over I:

Gn (b
w
n ; �; ) =

�Ii=Ian
(�nTn)

i

i! e��nTnGn (b
w
n ; �ji)

�Ii=2
(�nTn)

i

i! e��nTn
(8)

this variable should be uniformly distributed. The resulting distributions based

on structural estimates are compared to the uniform in Figure 2.

Figure 2 : Probabilities of Estimated Second Highest Bids

Probabilities based on the various structural estimates appear to have too

many high values and all of them, except those based on the for the half-logistic,

are approximately the same. The half-logistic is much closer to the uniform
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than any of the other distributions but none of the probabilities based on the

structural estimates appear to be uniform. Test statistics reinforce this con-

clusion. The tests we use are Kolmogorov-Smirnov, the Kuiper, Cramer-von

Mises, Watson, and the Anderson-Darling. Results are in Table 9. Although

the half-logistic has the smallest test-statistic all tests are rejected at reasonable

signi�cance level.3

Table 9: Comparing Probabilities of Second Highest Bids to Uniform
Half-Logistic Gamma Weibull Log-Normal Pareto

Kolmogorov 5:679 11:410 11:754 12:850 11:971
Kuiper 6:016 12:535 12:459 13:621 12:460

Cramer-von Mises 13:044 52:943 57:489 66:546 59:646
Watson 2:886 16:174 16:736 19:840 16:876

Anderson-Darling 63:822 243:293 263:040 303:727 273:823

Our model is apparently too parsimonious to be able to �t all of the vagaries

of eBay auctions. Relaxing structural assumptions like the distribution of

private values will always result in a better �t but often at the cost of less

precisely estimated coe¢ cients. Of course for all practical purposes any model

will be rejected with enough data and our study uses a relatively large data set.

However, one of our goals with this analysis is to �nd the best parsimonious

structural model for bidders�private values and thus we are also interested in

which of these distributions best �ts the empirical distribution. The structural

model based on the (folded) logistically distributed private values best �ts the

empirical distribution of private values using this second highest values test.

6.2.2 A Third Highest Values Test.

We can also use the third highest bid data to construct the same test. Unfor-

tunately, however, the third highest bid may not be the true value of the third

highest bidder. Second highest bids will always be the true private value of the

second highest bidder. This is because if the second highest bidder raises their

bid they might win the auction. On the other hand if both higher bidders bid

before the third highest can update his bid then he might realize that he does

not want to raise his bid. To give an example, assume that a bidder�s true

value is $100, but his �rst bid is $50. If two bidders then simultaneously bid

$150 the price in the auction will rise to $150, and the �rst bidder will not �nd

it worthwhile to raise his bid. We know that this sort of problem does occur

3 For a full discussion of the strenghs and weakness of these tests see D�Agostino and
Stephens [12].
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because bidders do bid multiple times and thus we have evidence they did not

initially bid their true value.

Due to the hard stop time on eBay we know that this can not be true for

all bidders. If, for example, the third highest bid is submitted with only �fteen

seconds left in the auction a rational bidder should bid their true value� since

the probability he can update his bid is zero. We can be fairly sure that the

bids submitted in the last few minutes are almost certainly the bidders� true

values. When we compare the distribution of these bids to earlier periods we

�nd that we can not reject that bids as early as ten hours from the end of the

auction are from the same distribution. There are 621 such cases and this

constitutes the sample we use to analyze the third highest bid.4

Given I the cdf of the third highest bid is:

Gn
�
b3n; �jI

�
=

Z b3n

0

I!

(I � 3)!2!Fn (z; �)
I�3

(1� Fn (z; �))2 fn (z; �) dz (9)

where b3n is the third highest bid in auction n. We can then integrate over I:

Gn (b
w
n ; �; ) =

�Ii=Ian
(�nTn)

i

i! e��nTnGn (b
w
n ; �ji)

�Ii=3
(�nTn)

i

i! e��nTn
(10)

The resulting distribution of probabilities should be uniform. In Figure 3 we

plot these probabilities against the uniform distribution.

Figure 3 : Probabilities of Third Highest Bids

Here we have two distributions that are very close to the Uniform, and

which we accept depends on which test statistic we look at. The half-logistic

dominates the gamma, Weibull, and log-normal, but the Pareto is not dom-

inated. Probabilities based on structural estimates using Pareto distributed

private values have changed substantially from those for the second highest

bids. Nonparametric goodness-of-�t test results are in Table 10.

4We have constructed the same tests as described below for subsets of this data set and
arrive at the same conclusions.
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Table 10: Comparing Probabilities of Third Highest Bids to Uniform
Half-Logistic Gamma Weibull Log-Normal Pareto

Kolmogorov 4:011 11:022 10:723 11:771 3:273
Kuiper 4:064 11:054 10:781 11:849 4:213

Cramer-von Mises 6:818 55:624 52:465 61:338 2:837
Watson 1:323 10:942 10:589 13:507 1:757

Anderson-Darling 33:402 289:968 274:861 320:447 33:841

For every test statistic either the Pareto or the half-logistic is always the lowest.

In general the di¤erence between the tests can be understood from their func-

tional form. For example note that the Pareto crosses the uniform distribution

while the half-logistic does not. This explains why the Kolmogorov-Smirnov

(based on the largest absolute deviation) prefers the Pareto while the Kuiper

(which punishes for both positive and negative deviations) prefers the half-

logistic. However the clear overall statement is that based on this test both the

Pareto and the half-logistic dominate the gamma, Weibull, and log-normal.

6.2.3 Comparing the distribution of Second and Third Highest Bids.

This di¤erence in results between the probabilities of the Second and Third

Highest bids for the Pareto raises an interesting issue. If our model is correct

then clearly these two distributions should be the same. For this two-sample test

we report only Kolmogorov-Smirnov statistic and results in Table 11 indicate

the half-logistic dominates the other parametric distributions of private values

in terms of this comparison.

Table 11� Comparing the CDF of the Second and Third Highest Bid
Half-Logistic Gamma Weibull Log-Normal Pareto

Kolmogorov 0:961 4:982 4:718 6:225 6:960
Probability of Equality 0:314 0:000 0:000 0:000 0:000

7 Semi-nonparametric and Nonparametric Esti-
mators of Consumer Surplus

Athey and Haile (2002, 2005) show that the parent distribution is uniquely

determined if the distribution of any order statistic with a known sample size

is identi�ed. However, in eBay auctions, the number of potential bidders is

generally not observable. Song (2004) addressed this issue by showing that
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within the symmetric independent private values model, observation of any two

valuations of which ranking from the top is known nonparametrically identi�es

the bidders�underlying value distribution. Based on this theorem, Song argues

that we can use the second and third highest bids to identify the distribution

of bidders�private values. This approach is not without attendant problems,

however, since whether or not the third highest bids re�ect the third highest

bidders�true private valuations can be questioned. To deal with this issue, Song

suggests that we should �use data from auctions where the �rst or the second

highest bidder submitted a cuto¤ price greater than the third highest valuation

late in the auction". With this in mind, she suggested an econometric method

to decide "how late" is proper. In this section, we follow Song�s technique in

estimating the distribution of bidders�valuations.

The following are the assumptions we make throughout this section.

1 No bidder ever bids more than he is willing to pay.

2 No bidder allows opponents to win at a price he is willing to pay.

3 Bidders�values are private, independent, and log-linear in a set of auction

speci�c characteristics.

The assumptions 1 and 2 are the same as the ones used in parametric es-

timation in Section 3. Assumption 3 is also very standard in the research on

auctions (c.f., Song, 2004). Private values are given by:

lnV (i)t = x
0

t� + v
(i)
t ;

with t = 1; :::; T; where T is the number of auctions and i = 1; 2:::; Nt, where Nt
is the number of potential bidders in auction t. For the estimation procedure

we outline below, we require the potential number of bidders in any auction

to be greater or equal to 3. V
(2)
t and V (3)t represent the second and third

highest bidders�valuations in auction t, respectively. We use the second and

third highest bids as estimates of these two valuations. v(2)t , and v(3)t are the

corresponding error terms. xt is the control variable including 7 auction speci�c

characteristics that we specify below, � = [�1; � � � ; �7] is the corresponding
coe¢ cient. We consider the partial likelihood speci�ed by Song (2004) which is

the sample counterpart of p(v(2)t jv(3)t ), since the full likelihood (the joint density

of (v(2)t ; v
(3)
t )) requires the unknown number of potential bidders. According
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to the basic theory of order statistics, the sample likelihood function can be

written as:

LT (f̂) =
1

T

TX
t=1

ln
2[1� F̂ (v(2)t )]f̂(v

(2)
t )

[1� F̂ (v(3)t )]2
;

where

F̂ (v) =

Z v

c

f̂(z)dz:

Here and below, c is the lower bound of bidders� private value. We choose

c = min(v(2)t ), since no information about F (v) for v < c can be observed. In

order to estimate the unknown distribution of v, as in Song (2004), we employ

the method proposed by Coppejans and Gallant (2002) and use the hermite

series to approximate the unknown distribution:

fT (z) =
[1 + â1(

z�u
� ) + � � �+ âk( z�u� )k]2�(z;u; �; c)R1

c
[1 + â1(

z�u
� ) + � � �+ âk( z�u� )k]2�(z;u; �; c)dz

:

Gallant and Nychka (1987), Fenton and Gallant (1996) and Coppejans and

Gallant (2002) provide details of this method to approximate the unknown dis-

tribution of private values. The optimal series length varies according to the

data set under consideration. We choose the optimal series length, k� using the

cross-validation strategy employing the Integrated Squared Error (ISE) criterion

(Coppejans and Gallant, 2002). The ISE criteria is de�ned as:

ISE(f̂) =

Z
f̂2(z)dz � 2

Z
f̂(z)f(z)dz +

Z
f2(z)dz

= M(1) � 2M(2) +M(3) (11)

Here, f̂(z) is an estimator of true density f(z).

Since M(3) only depends on the unknown true density we focus on the �rst

two terms. Following the steps suggested in Coppejans and Gallant (2002),

we randomly partition the data into J = 5 sub data sets with similar size. Let

f̂j;k(�) be the semi-nonparametric (SNP) estimate obtained from the data that

remains after deletion of the jth group when k is used as the series length. The

cumulative distribution associated with f̂j;k(�) is denoted by F̂j;k(�). Based on
the formula given out in Song (2004), we calculate M̂(1)(k) and M̂(2)(k) as:

M̂(1)(k) = 1=J
JX
j=1

Z
[p̂j;k(v

(2)jv(3))]2dv(2)dv(3)

= 1=J
JX
j=1

Z  
2[1� F̂j;k(v(2))]f̂j;k(v(2))

[1� F̂j;k(v(3))]2

!2
dv(2)dv(3) (12)
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and,

M̂(2)(k) = 1=T
JX
j=1

X
(v
(3)
t ;v

(2)
t )2�j

p̂j;k(v
(2)
t jv(3)t )

= 1=T
JX
j=1

X
(v
(3)
t ;v

(2)
t )2�j

2[1� F̂j;k(v(2)t )]f̂j;k(v
(2)
t )

[1� F̂j;k(v(3)t )]2
; (13)

where v(2) and v(3) are random variables, satisfying the condition that v(2) >

v(3). Following the notation used in Song (2004), we let CV H(k) = M̂(1)(k)�
2M̂(2)(k). According to Coppejans and Gallant (2002), a typical graph of

CV H(k) versus k is that CV H(k) falls as k increases when k is small, peri-

odically drops abruptly, and �attens right after the �nal abrupt drop. They

recommend a choice of k based on which CV H(k) has the last abrupt drop.

Our results, however, indicate that CV H(k) drops substantially when k changes

from 0 to 1, increases from 1 to 2, and drops again gradually after 2. These

results are in Appendix B.2. One possible reason for this is that the model

with k = 2 oversmoothes, but the e¤ect is partially o¤set when we include

higher order polynomial into the distribution function. Based on our results,

we choose k = 1 as the optimal series length. The density function of vt follows

immediately as:

fT (vt) =
[1 + a(vt�u� )]2�(vt;u; �; c)R1

c
[1 + a(vt�u� )]2�(vt;u; �; c)dvt

(14)

The nonparametric maximum likelihood estimator is then de�ned as:

(�1; � � � ; �9; â; û; �̂) = argmax�1;��� ;�9;a;u2R;�>0LT (f̂) =
1

T

TX
t=1

ln
2[1� F̂ (v(2)t )]f̂(v

(2)
t )

[1� F̂ (v(3)t )]2
:

A major criticism of this method is that the third highest bids usually do not

re�ect the bidders�private values. Remember that we use the second and third

highest bids as estimates of the second the third highest bidders�private values.

Song (2004) argues that �by looking at auctions where the �rst- or second-

highest bidder submitted a cuto¤ price grater than the third-highest bid late in

the auction, we can increase the probability of obtaining the actual third-highest

valuation". To determine �how late�is su¢ cient, Song (2004) provides a method

which also employs the ISE criterion. Following her procedure, we consider a

sequence of 5 sub data sets, Aw1; � � � ; Aw5; with di¤erent window sizes. Song
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(2004) does not provide out a general rule on how to choose the window sizes for

the sub data sets, although in her paper she chooses window sizes which make

the size di¤erences between successive sets similar. We will follow the same rule.

We choose window sizes as w1 = 1 minute, w2 = 5 minutes, w3 = 40 minutes,

w4 = 3:5 hours and w5 =all. Aw1 represents the auction set in which the �rst

or second highest bidder submits a bid greater than the third highest bid no

earlier than 1 minute before the auction ends. Other sub data sets are de�ned

in the similar way. Obviously, we have Aw1 � Aw2 � � � � ; � Aw5. It is

intuitive that the third highest bids are more likely to re�ect the third highest

valuations for auctions in set Aw1 than auctions in other sub sets. However,

Aw1 has the least number of observations and thus a potentially larger sample

variance. Song�s approach considers this trade-o¤ by applying the same cross-

validation strategy that is used for choosing the optimal series length. For each

auction set Awi, she computes CV Hwi(k�) using data from auctions in Awi in

the same way it is computed in choosing the optimal series length, except that

she uses M̂(2) de�ned in equation (15) instead of the one in equation (13).

M̂(2)(k
�) = 1=T1

JX
j=1

X
(v
(3)
t ;v

(2)
t )2�j\Aw1

p̂j;k�(v
(2)
t jv(3)t )

= 1=T1

JX
j=1

X
(v
(3)
t ;v

(2)
t )2�j\Aw1

2[1� F̂j;k�(v(2)t )]f̂j;k�(v
(2)
t )

[1� F̂j;k�(v(3)t )]2
; (15)

where T1 is the sample size of Aw1 and J = 5 as before. Note that p̂j;k�(�j�)
is evaluated only at sample points in Aw1 implying that �CV Hwi measures

how well the estimate obtained by using data from an auction set Awi �ts the

data from auctions in Aw1�(Song (2004)). We calculate CV Hwi based on her

method, and present the result in Appendix B.3. CV Hwi decreases from window

size 1 to window size 4, and then increases. Therefore, we choose w4 = 3:5 hours

as our optimal window size.

7.1 Data

In selecting the sample for the semi-nonparametric and nonparametric analysis

we needed to alter the criteria used for selecting the sample used in our para-

metric modeling above. This is in part because we need the second and third

highest bids which are not available for some observations in the data which was

used in parametric estimation since the parametric method does not need that
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information. Moreover, selecting a relatively homogeneous data set is impor-

tant in conducting and interpreting results from nonparametric analysis. Since

we needed the information for both the second and third highest bids in order

to estimate the models, we dropped the auctions that had less than 3 bidders.

In order to get a relatively homogeneous sample to make nonparametric estima-

tion both feasible and meaningful, we picked the auctions for the 17 inch colored

PC monitor only, which gave us 476 observations, subvs. Monitor size has the

most pronounced and signi�cant e¤ect on bidders�private values. To make the

data set even more more homogeneous, we also dropped 12 auctions in which

warranties were o¤ered on the auctioned monitors. Our �nal data set used

for estimating consumer surplus using nonparametric and semi-nonparametric

methods has 464 observations.

In estimating the distribution of bidders�private values with the semi-nonparametric

approach, we used the following 9 control variables: monitor dot pitch (sample

average of dot pitch is used when no dot pitch is reported), dummy for the

cases when no dot pitch is reported, monitor resolution (sample average of res-

olution is used when no resolution is reported), dummy for the cases when no

resolution is reported, condition of auctioned items (2 for new, 1 for like new

or refurbished, 0 for no condition report), dummy for �at screen and dummy

for "Brand name". We use 1 for both "like new" and "refurbished" because

we did not see signi�cant sample mean di¤erence for these two categories and

there are only 17 observations with condition speci�ed as "like new" in our re-

duced sample. Descriptive statistics of the variables for the second sample are

presented in Table 4 in Appendix A.

7.2 Estimation Results and Consumer Surplus

For the results that follow we choose the optimal hermite series number as

k� = 1 and the optimal window size as w4 = 3:5 hours, i.e., we choose the

auctions where the �rst or second highest bidder submits a bid greater than the

third highest bid no earlier than 3:5 hours before the auction ends. This yields a

sample of 376 observations on which to base our semi-nonparametric estimates

of consumer surplus.

The estimation results of the semi-nonparametric approach is presented in

Table B.3 in Appendix B and the statistics of bidders�private values is calcu-

lated accordingly. Because the data we use for the SNP analysis is relatively

homogeneous, we also present nonparametric results as comparison. In the non-

25



parametric estimation, we use Song�s method without considering the control

variables. The estimated expectation and standard deviation of bidders�private

valuation are in Table 12. SNP and NP denote semi-parametric and nonpara-

metric methods respectively.

Table 12
Statistics of Estimated Distribution

Mean Std
SNP $31:39 $3:48
NP $25:47 $26:63

The mean and standard deviation are computed with the median values of

x1; x2; � � � ; and; x7
In order to investigate the welfare impact of eBay, we also calculate the

consumer surplus and consumer share of surplus as well. A consumer�s surplus

at auction t is calculated as:

CSt = V
(1)
t � pt;

where pt denotes the price the winner paid, which equals to the second highest

bid in eBay auctions. V (1)t denotes the valuation of the winner. Since we do not

observe V (1)t , we estimate the expected consumer surplus as:

E(CStjV (2)t ) =

Z 1

v̂
(2)
t

f(v)

1� F (v̂(2)t )
� v dv + x0m�̂ � pt

Again, v̂(2)t is the estimator of v(2)t calculated with estimated coe¢ cient �̂ and

xm, which is the vector of median values of control variables. We include the re-

sults from the preferred parametric likelihood (PL) model above, which assumes

that private values are distributed as half-logistic. The descriptive statistics of

expected consumer surplus from our SNP, NP methods, and PL approaches are

presented in the following Table 13.

Table 13
Consumer Surplus

Mean Median Std Min Max
SNP $34:91 $34:44 $7:74 $14:96 $72:38
NP $33:39 $32:88 $6:07 $22:96 $68:09
PL $52:54 $39:69 $38:23 $13:51 $210:09

The alternative measure of consumer surplus is the consumers�share of sur-

plus, which is de�ned as:

CSSt =
CSt

V
(1)
t � V (a)t

:
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where V (1)t is the winning bidder�s private valuation in auction t, which we do

not observe. However, we can estimate its expected value with

V̂
(1)
t = pt + ĈSt

V
(a)
t is the auctioneer�s valuation in auction t which we do not observe either.

However, as above, we assume V (a)t = 0, which gives an underestimated result

for CSSt that provides us the lower bound of the consumers�share of surplus.

The descriptive statistics of expected lower bound of the consumers�share of

surplus is presented as follows:

Table 14
Lower Bound of Consumer Share of Surplus

Mean Median Min Max
SNP 22:54% 22:30% 11:09% 37:62%
NP 21:77% 21:51% 16:06% 36:20%
PL 33:90% 30:30% 8:70% 99:90%

Again, PL represents the parametric method with the assumption of half-

logistic distributed private valuations. The results from SNP and NP are com-

parable, however, obviously lower than those from PL except for the minimum.

If we simply substitute CSt and pt with their median values, we can have

results as shown in Table 15. The median winning price pm is $120 for the data

used in semi-nonparametric and nonparametric methods and 100 for the data

used in parametric estimation.

Table 15
Expected Consumer Share of Surplus

SNP NP PL
ECSS 22:30% 21:59% 28:41%

We can see that the results are very close, although the expected consumer

share of surplus from SNP and NP are smaller than that from PL. In Song

(2004), the consumer share of surplus for yearbook auctions is 53% if calculated

in the same way. This result is higher than the values in Table 13. The di¤erence

can be explained with competition levels involved. The average number of

bidders is 3:6 in Song (2004), 6:8 for the data used in the PL estimates and 8:1

for the data used in estimating the SNP and NP estimates. More competition

on the bidders�side would appear to result in lower consumers�share of surplus.
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8 Conclusion

In this paper, we estimate consumer surplus for eBay computer monitor auctions

with parametric, semi-nonparametric and parametric methods. In the paramet-

ric estimation, 5 distributions proposed in the auction literature for constructing

bidders�private value are considered separately. More speci�cally, Half-Logistic,

Gamma, Weibull, Log-Normal and Pareto distributions are considered, esti-

mated and compared with Out of Sample Second Highest Value Test and Third

Highest Value Test. The half-logistic distribution is shown to be the most fa-

vorable one among the class of distributions. As comparison, we also provide

nonparametric and semi-nonparametric estimation in line with the approach in-

troduced in Song (2004). Consumer surplus and share of consumer surplus are

calculated and compared among the nonparametric, semi-nonparametric and

the favorable parametric models. Comparable results from these three models

indicate that the nonparametrically chosen distributional assumption is reason-

able and that there is substantial agreement on the magnitude of the consumer

surplus generated in this particular eBay auction.
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Appendix A: Tables and Descriptive Statistics

Table 1: Estimates of the Exogenous Value.
. Logistic Gamma Weibull Log-Normal Pareto

Constant -11.3159*** -11.1785*** -13.7639*** -14.3522*** -12.1096***
. ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 1 ) ( 0 .0 0 6 )

Log, Size 4.6806*** 4.8012 4.7326*** 4.806*** 4.6192***
. ( 0 .0 0 4 ) ( 0 .8 9 4 ) ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 )

Log, Dot Pitch -0.5418 -0.7289 -0.5844 -1.1047 -0.2101
. ( 0 .7 9 3 ) ( 0 .5 0 0 ) ( 0 .4 2 5 ) ( 0 .5 6 3 ) ( 0 .9 1 2 )

Dummy, No Dot Pitch 0.6132 0.8606 0.6666 1.366* 0.1142
. ( 0 .4 8 7 ) ( 0 .5 2 1 ) ( 0 .8 1 5 ) ( 0 .0 5 5 ) ( 0 .8 7 2 )

Log, Resolution 0.1409 0.1695 0.2811 0.1448 0.307
. ( 0 .9 1 1 ) ( 0 .9 9 2 ) ( 0 .1 6 8 ) ( 0 .7 1 7 ) ( 0 .4 4 1 )

Dummy, No Resolution 1.0803 1.309 2.0814** 1.0922 2.2261***
. ( 0 .4 1 5 ) ( 0 .7 8 6 ) ( 0 .0 2 5 ) ( 0 .1 0 7 ) ( 0 .0 0 1 )

Dummy, New 0.2539 0.3345 0.3242 0.3939 0.3203
. ( 0 .8 6 4 ) ( 0 .9 0 7 ) ( 0 .9 4 5 ) ( 0 .1 4 9 ) ( 0 .2 4 1 )

Dummy, Like-new 0.0877 0.2247 0.2351 0.3396 0.2425
. ( 0 .9 6 0 ) ( 0 .9 2 3 ) ( 0 .8 0 2 ) ( 0 .1 8 8 ) ( 0 .3 4 7 )

Dummy, Refurbished 0.0594 0.0619 0.0482 0.04 0.0204
. ( 0 .9 9 8 ) ( 0 .9 8 7 ) ( 0 .9 9 8 ) ( 0 .9 6 5 ) ( 0 .9 8 2 )

Dummy, Warranty 0.0779 0.0976 0.1033 0.189 0.1154
. ( 0 .9 3 5 ) ( 0 .9 5 2 ) ( 0 .9 5 9 ) ( 0 .7 9 8 ) ( 0 .8 7 6 )

Dummy, Brand Name 0.016 0.0061 0.0055 0.009 -0.001
. ( 0 .8 6 1 ) ( 0 .9 9 6 ) ( 0 .9 9 7 ) ( 0 .9 9 0 ) ( 0 .9 9 9 )

Dummy, Flat Screen 0.1979 0.246 0.2246 0.2213 0.2047
. ( 0 .7 3 3 ) ( 0 .6 1 8 ) ( 0 .6 4 5 ) ( 0 .5 9 2 ) ( 0 .6 2 0 )

Distribution Variable+ NA -1.695 -0.6841 1.6563*** 0.7099**
. . ( 0 .7 6 2 ) ( 0 .5 2 7 ) ( 0 .0 0 0 ) ( 0 .0 2 2 )

Number of Auctions 2934 2934 2934 2934 2934
-Log Likelihood/Number of Auctions 3.7939 3.7175 3.7583 3.8402 3.8441

+
Fo r t h e L o g -N o rm a l t h i s i s t h e S t a n d a rd D e v ia t io n . Fo r t h e W e ib u l l , G am m a , a n d P a r e t o t h i s i s t h e lo g o f t h e s h a p e p a r am e t e r .

P -va lu e s a r e r e p o r t e d b e low th e c o e ¢ c i e n t s in P a r e n t h e s e s .

* C o e ¢ c i e n t i s s i g n i�c a n t a t t h e 1 0% L e v e l . * * C o e ¢ c i e n t i s s ig n i�c a n t a t t h e 5% L e v e l . * * * C o e ¢ c i e n t i s s i g n i�c a n t a t t h e 1% L e v e l .
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Table 2: Estimates of the Entry Parameter.
. Logistic Gamma Weibull Log-Normal Pareto

Constant -15.5587*** -13.033*** -14.5406*** -5.1905*** -16.1312***
. ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 )

Log, Size 3.3723*** 3.2725*** 3.4683 4.2382*** 3.8408***
. ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .4 6 3 ) ( 0 .0 0 0 ) ( 0 .0 0 0 )

Log, Dot Pitch -5.4067 -7.2483* -8.4491*** -3.4813 -7.9655
. ( 0 .6 3 7 ) ( 0 .0 8 0 ) ( 0 .0 0 6 ) ( 0 .9 9 2 ) ( 0 .9 8 1 )

Dummy, No Dot Pitch 6.5705*** 8.5044*** 10.0708*** -3.3655*** 9.6205***
. ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 0 )

Log, Resolution -0.8514 -1.4036* -1.5012*** -1.2527 -1.3859
. ( 0 .9 6 8 ) ( 0 .0 9 7 ) ( 0 .0 0 0 ) ( 0 .3 1 6 ) ( 0 .2 6 7 )

Dummy, No Resolution -6.0989*** -10.0171*** -10.7186 -8.966 -9.8957
. ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .1 3 0 ) ( 0 .5 5 4 ) ( 0 .5 1 4 )

Dummy, New 7.3845 7.4000 7.5104 5.5506 7.5072
. ( 0 .9 8 3 ) ( 0 .9 9 9 ) ( 0 .9 9 8 ) ( 0 .9 9 0 ) ( 0 .9 8 7 )

Dummy, Like-new 6.5463 6.5000 6.0767 3.0008 6.0748
. ( 0 .9 7 9 ) ( 1 .0 0 0 ) ( 0 .9 9 6 ) ( 0 .9 1 6 ) ( 0 .8 3 1 )

Dummy, Refurbished -0.0011 -0.0205 0.0039 0.0161 0.0366
. ( 1 .0 0 0 ) ( 0 .9 9 1 ) ( 0 .9 9 9 ) ( 0 .9 8 6 ) ( 0 .9 6 8 )

Dummy, Warranty 0.4447 0.8402 0.971 0.7463 1.0831
. ( 0 .5 7 3 ) ( 0 .9 6 4 ) ( 0 .7 4 1 ) ( 0 .4 8 8 ) ( 0 .3 1 5 )

Dummy, Brand Name -0.0075 0.0128 0.0092 -0.006 0.0147
. ( 0 .9 9 8 ) ( 0 .9 9 9 ) ( 0 .9 8 9 ) ( 0 .9 6 6 ) ( 0 .9 1 7 )

Dummy, Flat Screen -0.0549 -0.2003 -0.183 -0.1187 -0.2295
. ( 0 .9 6 7 ) ( 0 .9 6 4 ) ( 0 .7 9 7 ) ( 0 .9 7 4 ) ( 0 .9 5 1 )

Log, Seller�s Feedback +1 0.715 1.5201*** 1.4805*** 2.2702*** 1.7373***
. ( 0 .9 9 2 ) ( 0 .0 0 2 ) ( 0 .0 0 0 ) ( 0 .0 0 0 ) ( 0 .0 0 4 )

Log, (Seller�s Feedback +1)2+1 -0.3473 -0.7443*** -0.7198*** -1.1072** -0.8432*
. ( 0 .9 5 5 ) ( 0 .0 0 6 ) ( 0 .0 0 2 ) ( 0 .0 2 1 ) ( 0 .0 7 9 )

Category Dummy, � 1700 Screen 0.8153* 1.1007*** 0.9541 0.8032 0.7102
. ( 0 .0 9 4 ) ( 0 .0 0 1 ) ( 0 .1 1 4 ) ( 0 .2 0 5 ) ( 0 .2 6 2 )

Category Dummy, � 1900 Screen 0.1085 0.2498 0.1388 -0.2512 -0.0794
. ( 0 .9 5 1 ) ( 0 .7 1 7 ) ( 0 .8 9 7 ) ( 0 .9 3 1 ) ( 0 .9 7 8 )

Category Dummy, Monochrome -1.5328*** -1.6876 -1.411 -0.7847 -1.1656*
. ( 0 .0 0 2 ) ( 0 .2 8 3 ) ( 0 .9 8 9 ) ( 0 .2 2 7 ) ( 0 .0 7 3 )

Competing Auctions, all 1.2191*** 1.1813** 1.1274** 1.0966** 1.0732**
. ( 0 .0 0 7 ) ( 0 .0 1 4 ) ( 0 .0 1 4 ) ( 0 .0 2 1 ) ( 0 .0 2 4 )

Competing Auctions, Same Size 0.2364 0.241 0.2373 0.1552 0.2319
. ( 0 .7 3 8 ) ( 0 .6 2 9 ) ( 0 .9 1 4 ) ( 0 .7 9 7 ) ( 0 .7 0 1 )

Competing Auctions, Same Cat. -0.2957 -0.3409 -0.2529 -0.0674 -0.1192
. ( 0 .8 8 6 ) ( 0 .3 4 1 ) ( 0 .3 1 7 ) ( 0 .8 7 7 ) ( 0 .7 8 5 )

Open Reservation Price -0.0754 -0.0253 -0.0199 0.005 -0.0206
. ( 0 .9 9 7 ) ( 0 .9 8 3 ) ( 0 .9 8 0 ) ( 0 .9 9 4 ) ( 0 .9 7 6 )

Dummy, Secret Reserve 0.5861 2.2273 1.1178 1.3458 1.0856
. ( 0 .9 1 6 ) ( 0 .9 5 2 ) ( 0 .1 5 2 ) ( 0 .9 1 6 ) ( 0 .9 3 2 )

Number of Auctions 2934 2934 2934 2934 2934
-Log Likelihood/Number of Auctions 3.7939 3.7175 3.7583 3.8402 3.8441

P -va lu e s a r e r e p o r t e d b e low th e c o e ¢ c i e n t s in P a r e n t h e s e s .

* C o e ¢ c i e n t i s s i g n i�c a n t a t t h e 1 0% L e v e l . * * C o e ¢ c i e n t i s s ig n i�c a n t a t t h e 5% L e v e l . * * * C o e ¢ c i e n t i s s i g n i�c a n t a t t h e 1% L e v e l .
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Table 3: Descriptive Statistics of Key Variables-First Sample
Average Median Standard Skewness Maximum Minimum

deviation
Sales Price 135.7 100 132.85 2.01 1430 0.01

Open Reservation Price 75.65 35 106.37 2.56 1100 0.01
Number of Bidders 3.92 3 4.06 1.06 22 0

The Length of the Auction 5.08 5 2.16 0.65 10 3
Size 16.92 17 2.39 0.42 21 14

Dot Pitch+ 0.26 0.26 0.02 -0.7 0.31 0.2
Dummy, Dot Pitch Not Reported 0.64 1 0.48 -0.56 1 0

Resolution+ 1116.24 1024 271.05 0.32 1600 640
Dummy, Resolution Not Reported 0.38 0 0.49 0.49 1 0

Dummy, New Monitor 0.07 0 0.26 3.31 1 0
Dummy, Like-New Monitor 0.03 0 0.17 5.38 1 0
Dummy, Refurbished Monitor 0.13 0 0.33 2.23 1 0
Dummy, Warranty on Monitor 0.03 0 0.17 5.51 1 0
Dummy, Brand Name Monitor 0.59 1 0.49 -0.36 1 0
Dummy, Flat Screen Monitor 0.18 0 0.38 1.71 1 0

Seller�s Feedback 207.99 108 382.49 4.35 4343 1
Dummy, Item sold in <=17�size Screen Category 0.62 1 0.49 -0.5 1 0
Dummy, Item sold in >=19�size Screen Category 0.27 0 0.45 1.02 1 0
Dummy, Item sold in Monochrome Category 0.00 0 0.05 22.06 1 0

Competing Auctions, all 924.33 906 116.55 0.9 1322 705
Competing Auctions, Same Size 182.01 191 68.77 -0.06 357 3

Competing Auctions, Same Category 435.06 496 189.87 -0.35 903 3
Dummy, if there was a Secret Reservation Price 0.18 0 0.38 1.68 1 0

+Statistics for these variables are only for items where a value was reported
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Table 4: Descriptive Statistics of Key Variables-Second Sample
Average Median Standard Skewness Maximum Minimum

deviation
Sales Price 124.27 120 2.12 0.82 355 10.5

Number of Bidders 7.82 7 0.15 0.57 20 3
The Length of the Auction 5.30 5 0.10 0.40 10 3

Size 17 17 1 2.73 17 17
Dot Pitch+ 0.57 1 1.03 0.72 1 0.2

Dummy, Dot Pitch Not Reported 0.58 1 0.02 -0.32 1 0
Resolution+ 86.74 800 1.17 0.57 1600 1

Dummy, Resolution Not Reported 0.36 0 0.02 0.58 1 0
Dummy, New Monitor 0.08 0 0.010 3.23 1 0

Dummy, Like-New Monitor 0.04 0 0.01 4.79 1 0
Dummy, Refurbished Monitor 0.13 0 0.02 2.19 1 0
Dummy, Warranty on Monitor 0 0 0 0 0 0
Dummy, Brand Name Monitor 0.59 1 0.02 -0.38 1 0
Dummy, Flat Screen Monitor 0.28 0 0.02 1.01 1 0

Seller�s Feedback 42.87 57 1.09 0.76 4344 1
Dummy, Item sold in <=17�size Screen Category 0.96 1 0.01 -0.51 1 0
Dummy, Item sold in >=19�size Screen Category 0 0 0 0 0 0
Dummy, Item sold in Monochrome Category 0 0 0 0 0 0

Competing Auctions, all 929.67 907 5.13 0.63 1322 707
Competing Auctions, Same Size 246.08 248 1.54 0.41 357 172

Competing Auctions, Same Category 558.14 558 5.71 -1.81 903 76
Dummy, if there was a Secret Reservation Price 0.33 0 0.02 0.71 1 0

+Statistics for these variables are only for items where a value was reported
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Appendix B: Tables of Semi-nonparametric Estima-
tion

B.1
Relations Between CVH and k
k=0 k=1 k=2 k=3 k=4

CVH 36.35 26.78 57.52 52.63 29.35

B.2
Relations Between CVH and Window Size, k*=1

w1=1 min w2=5 min w3=40 min w4=3.5 hour w5=all
CVH 91.43 22.39 17.75 17.30 23.89

B.3
Table of Estimates from SNP Estimation

Constant* -0.343(0.0849) Status* 0.3222(0.1564)
Log, Dot Pitch* -1.6813(0.0624) Dummy, Brand Name 0.0213(0.1155)

Dummy, No Dot Pitch* -0.2271(0.1146) Dummy, Flat Screen 0.0458(0.2075)
Log, Resolution* 0.0216(0.0115) Dummy, No Resolution* -0.3045 (0.1696)

Note: * coe¢ cient is signi�cant at 2:5% level.
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Appendix D: Derivations of Consumer Surplus

We provide derivations of the formulas for consumer surplus using our �ve

competing parametric distributions. We use the notation ex
0
n� = jbj for nota-

tional clarity.

Half-Logistic:
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Gamma:

Let F (�; �) be the gamma distribution function with parameter �.
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(jbj)� e
� z
jbj dz

E (xjx � y) =
1

1� F (y; �)

Z 1

y

1

� (�)
z
z��1

(jbj)� e
� z
jbj dz

=
1

1� F (y; �)
� (�+ 1)

� (�)
jbj
Z 1

y

1

� (�+ 1)

z�

(jbj)�+1
e�

z
jbj dz

=
1� F (y; �+ 1)
1� F (y; �)

� (�+ 1)

� (�)
jbj

CS =
1� F (y; �+ 1)
1� F (y; �) � jbj � y:

Weibull:

fn (z; �) = �
z��1

(jbj)� e
�( z

jbj )
�

F (y; �) = 1� e�y
�jbj��

E (xjx � y) =
1

1� F (y; �)

Z 1

y

z�
z��1

(jbj)� e
�( z

jbj )
�

dz

=
1

e�y�jbj
��

Z 1

y

z�
z��1

(jbj)� e
�( z

jbj )
�

dz: (17)
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Note that with a change of variables, we can reform the integration as:Z 1

y

z�
z��1

(jbj)� e
�( z

jbj )
�

dz =

Z 1

( y
jbj )

�

jbjx 1
� e�xdx

with x = z
jbj
�. The result is derived according to fundamental calculus.

Moreover, the pdf for gamma distribution is:

gamma (x; �) =
1

� (�)
x��1e�x:

The conditional expectation then can be expressed as

E (xjx � y) =
jbj�

�
�+1
�

�
e�(

y
jbj )

�

Z 1

( y
jbj )

�

1

�
�
�+1
�

�z 1
� e�zdz

=
jbj�

�
�+1
�

�
e�(

y
jbj )

�

�
1� Fgamma

��
y

jbj

��
;
�+ 1

�
; 1

��
Therefore

CS =
jbj�

�
�+1
�

�
e�(

y
jbj )

�

�
1� Fgamma

��
y

jbj

��
;
�+ 1

�
; 1

��
� y: (18)

Log-normal:

fn (z; �) =
1

�z
p
2�
e�(ln z�x

0
n�)

2
=2�2

F (y) =

Z y

0

1

�z
p
2�
e�(ln z�x

0
n�)

2
=2�2

E (xjx � y) =
1

1� Fnorm (ln y)

Z 1

y

1

�
p
2�
e
�(ln z�jbj)2

2�2 dz

=
1
2e
jbj+ 1

2�
2

1� Fnorm (ln y)

 
1 + erf

 
1

2

p
2

�

�
� ln y + jbj+ �2

�!!
where erf is the error function and jbj represents x0n� instead of ex

0
n� like in

other distributions. Therefore,

CS =
1
2e
jbj+ 1

2�
2

1� Fnorm (ln y)

�
1 + erf

�
1p
2�

�
� ln y + jbj+ �2

���
� y (19)

Pareto:

fn (z; �) =
�

jbj

�
1 +

z

jbj

��(�+1)
F (y; �) = � jbj�

�
1

jbj+ y

��
+ 1

E (xjx � y) =
1

1� F (y; �)

Z 1

y

z

jbj�
�
1 +

z

jbj

��(�+1)
dz

=
1

�� 1 (�y + jbj)

Therefore, the consumer surplus is

CS =
1

�� 1 (�y + jbj)� y (20)

Note that for this to be true it is necessary that � > 1:
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