ECON 204 Sec 01

Quiz 4
Dr. Kevin Hasker

1. (2 Points) Please read and sign the following statement:

I promise that my answers to this test are based on my own work without reference to any notes, books, or the assistance of any other person during the test. I also promise neither to help others nor to use calculators or other electronic devices.
Name and Surname:
Student ID:
Signature:
2. (18 points) Consider the following stage game. In this game player 2 (the column player) knows whether the state is L or R, player one only knows that the probability of L is γ.

L
$B R_{2}(A)=(\beta(L), \alpha(R)) \quad B R_{2}(B)=(\alpha(L), \beta(R))$
A eqm $\gamma \geq \frac{2}{5}, B$ eqm $\gamma \leq \frac{3}{7}$
$B R_{2}(A)=(\alpha(L), \beta(R)) \quad B R_{2}(B)=(\beta(L), \alpha(R))$

$$
\begin{aligned}
& A \text { eqm } \gamma \geq \frac{5}{7}, B \text { eqm } \gamma \leq \frac{2}{5}
\end{aligned}
$$

(a) (4 points) Write down all the strategies of player 2, be sure to indicate in which state the actions are being taken.

Solution $1 S_{2}=\{(\alpha(L), \alpha(R)),(\alpha(L), \beta(R)),(\beta(L), \alpha(R)),(\beta(L), \beta(R))\}$ If they are not clear mark them down at least half of the credit.
(b) (4 points) Write below the best response of player 2 to A and B.

Solution 2 See the tables above.
(c) (4 points) In the table below, write down the expected utility of both strategies to the best response of player 2, they should be a function of γ :

Solution 3 See the tables above. Note typo of not writing B in the second column, I corrected this during the quiz.
(d) (1 point) If $\gamma=\frac{1}{10}$, what is the Nash equilibrium?

Solution 4 Above I solve for the conditions where $\left(A, B R_{2}(A)\right)$ and $\left(B, B R_{2}(B)\right)$. In all cases one of them will be the equilibrium when $\gamma=\frac{1}{10}$ and the other when $\gamma=\frac{9}{10}$.
(e) (1 point) If $\gamma=\frac{9}{10}$, what is the Nash equilibrium?

Remark 5 Notice the small amount of credit for parts d and e. The point should be given for work towards the correct answer, in all honesty to be fair these should be about three points each.
Just to illustrate I would give credit to "if $\gamma=\frac{1}{10}$ ($\frac{9}{10}$ respectfully) then players will basically be playing the game R (L respectively) and so the strategy of player 1 in that game's Nash equilibrium will probably be the equilibrium in this case."

