ECON 204

Quiz 9: Market Power.
Kevin Hasker

1. (2 Points) ${ }^{1}$ Please read and sign the following statement:

I promise that my answers to this test are based on my own work without reference to any notes, books, calculators or other electronic devices. I further promise to neither help other students nor accept help from them.
Name and Surname:
Student ID:
Signature:

a	b	χ	$F O C$	Q^{m}	P^{m}	Q^{e}	Π^{m}	$C S$	$D W L$
21	2	5	$16-4 Q$	4	13	8	32	16	16
22	2	2	$20-4 Q$	5	12	10	50	25	25
21	1	9	$12-2 Q$	6	15	12	36	18	18
19	$\frac{1}{2}$	11	$8-Q$	8	15	16	32	16	16

2. (15 points total) Consider a market where the inverse demand curve is $P=a-b Q$ and the costs of the monopolist who serves this market are $c(Q)=\chi Q$.
(a) (1 point) Set up the Monopolist's profit function, it should be a function of Q.

$$
\Pi(Q)=(a-b Q) Q-\chi Q
$$

(b) (6 points) Find the first order condition of the Monopolist's objective function, find the optimal amount of output for them to supply and the price they will charge consumers.

Solution 1 The first order condition is:

$$
(a-b Q)-b Q-\chi=0
$$

thus the optimal quantity is $Q^{m}=\frac{1}{2 b}(a-\chi)$ and the price should be set to clear the market

$$
\begin{aligned}
P^{m} & =a-b Q^{m} \\
& =a-b\left(\frac{1}{2 b}(a-\chi)\right) \\
& =\frac{1}{2} a+\frac{1}{2} \chi
\end{aligned}
$$

(c) (2 points) Find the efficient quantity in this market and explain why it is efficient.

[^0]Solution 2 In order to find the efficient quantity we should set the price equal to marginal cost, if $P=\chi$ then:

$$
\begin{aligned}
P^{e} & =\chi=a-b Q \\
Q^{e} & =\frac{a-\chi}{b}
\end{aligned}
$$

(d) (6 points) In this market find the profits of the monopolist, the consumer surplus, and the deadweight loss.

Solution 3 First the profits:

$$
\begin{aligned}
\Pi & =(P-\chi) Q=\left(\frac{1}{2} a+\frac{1}{2} \chi-\chi\right) \frac{1}{2 b}(a-\chi) \\
& =\frac{1}{4 b}(a-\chi)^{2}
\end{aligned}
$$

Now $C S=\frac{1}{2} b h$, where the base is $Q^{m}=\frac{1}{2 b}(a-\chi)$ and $h=a-P^{m}$ or the vertical intercept of demand minus the price. Thus this is

$$
\begin{aligned}
C S & =\frac{1}{2} \frac{1}{2 b}(a-\chi)\left(a-\left(\frac{1}{2} a+\frac{1}{2} \chi\right)\right) \\
& =\frac{1}{8 b}(a-\chi)^{2}
\end{aligned}
$$

Like consumer surplus, deadweight loss is a triangle, $D W L=\frac{1}{2} b h$, now $b=Q^{e}-Q^{m}=\frac{a-\chi}{b}-\frac{1}{2 b}(a-\chi)=\frac{1}{2 b}(a-\chi)$ and $h=P^{m}-P^{e}=$ $\frac{1}{2} a+\frac{1}{2} \chi-\chi=\frac{1}{2} a-\frac{1}{2} \chi$ thus

$$
D W L=\frac{1}{2} \frac{1}{2 b}(a-\chi)\left(\frac{1}{2} a-\frac{1}{2} \chi\right)=\frac{1}{8 b}(a-\chi)^{2}
$$

3. (3 points) Assume that a firm has the cost function $c(q)=c q+F$. Explain how we know that either this firm must have market power or will shut down.

Solution 4 If this firm was competitive, than $p=m c=c$ and their profits would be:

$$
p q-c q-F=c q-c q-F=-F<0
$$

so this firm must price above marginal cost to survive, and thus must have some market power.

[^0]: ${ }^{1}$ On the quiz I wrote 6 , but just use 2 to make the total 20 at most.

