ECON 204

Quiz 8: Externalities and Public Goods.
Kevin Hasker

1. (4 Points) Please read and sign the following statement:

I promise that my answers to this test are based on my own work without reference to any notes, books, calculators or other electronic devices. I further promise to neither help other students nor accept help from them.
Name and Surname:

Student ID:
 Signature:

P	a	b	c	d	$\frac{\partial U_{\alpha}}{\partial q_{\alpha}}$	$\frac{\partial U_{\beta}}{\partial q_{\beta}}$	q_{α}^{s}	q_{β}^{s}
14	32	1	38	2	$18-2 q_{\beta}-2 q_{\alpha}$	$24-4 q_{\beta}-4 q_{\alpha}$	9	6
24	34	1	38	1	$10-2 q_{\beta}-2 q_{\alpha}$	$14-2 q_{\beta}-2 q_{\alpha}$	5	7
12	40	2	22	1	$28-4 q_{\beta}-4 q_{\alpha}$	$10-2 q_{\beta}-2 q_{\alpha}$	7	5
30	36	$\frac{1}{2}$	40	$\frac{1}{2}$	$6-q_{\beta}-q_{\alpha}$	$10-q_{\beta}-q_{\alpha}$	6	10
14	34	1	42	2	$20-2 q_{\beta}-2 q_{\alpha}$	$28-4 q_{\beta}-4 q_{\alpha}$	10	7
20	36	1	30	1	$16-2 q_{\beta}-2 q_{\alpha}$	$10-2 q_{\beta}-2 q_{\alpha}$	8	5
16	36	2	32	1	$20-4 q_{\beta}-4 q_{\alpha}$	$16-2 q_{\beta}-2 q_{\alpha}$	5	8
12	48	2	20	$\frac{1}{2}$	$36-4 q_{\beta}-4 q_{\alpha}$	$8-q_{\beta}-q_{\alpha}$	9	8

2. (16 points) Consider two citizens (α and β) who are privately contributing to the pulbic good. Person α buys q_{α} units at a price of P, person β buys q_{β} units at the same cost per unit, thus the total amount of the public good is $Q=q_{\alpha}+q_{\beta}$.
Since this is a public good it is non-rival not excludable and thus they both benefit from the total amount provided regardless of whether they contribute or not. Their total benefit is:

$$
\begin{aligned}
B_{\alpha}(Q) & =(a-b Q) Q \\
B_{\beta}(Q) & =(c-d Q) Q
\end{aligned}
$$

(a) (2 points) Assuming they maximize their benefit minus their cost, write down each person's objective function - do not use abstract coefficients.

$$
\begin{aligned}
U_{\alpha}\left(q_{\alpha}, q_{\beta}\right) & =(a-b Q) Q-P q_{\alpha} \\
& =\left(a-b\left(q_{\alpha}+q_{\beta}\right)\right)\left(q_{\alpha}+q_{\beta}\right)-P q_{\alpha} \\
U_{\beta}\left(q_{\alpha}, q_{\beta}\right) & =(c-d Q) Q-P q_{\beta} \\
& =\left(c-d\left(q_{\alpha}+q_{\beta}\right)\right)\left(q_{\alpha}+q_{\beta}\right)-P q_{\beta}
\end{aligned}
$$

(b) (6 points) Write down all the first order conditions for this problem with care to consider all cases.

Solution 1 They should get one point for the $F O C \frac{\partial U}{\partial q}=0$ and two points for each FOC where $\frac{\partial U}{\partial q}<0$.

$$
\begin{aligned}
\frac{\partial U_{\alpha}}{\partial q_{\alpha}} & =a-2 b\left(q_{\alpha}+q_{\beta}\right)-P \\
\frac{\partial U_{\alpha}}{\partial q_{\alpha}} & =0, q_{\alpha} \geq 0 \\
\frac{\partial U_{\alpha}}{\partial q_{\alpha}} & <0, q_{\alpha}=0 \\
\frac{\partial U_{\beta}}{\partial q_{\beta}} & =c-2 d\left(q_{\alpha}+q_{\beta}\right)-P \\
\frac{\partial U_{\beta}}{\partial q_{\beta}} & =0, q_{\beta} \geq 0 \\
\frac{\partial U_{\beta}}{\partial q_{\beta}} & <0, q_{\beta}=0
\end{aligned}
$$

(c) (4 points) Assuming the other person provides nothing, find out how much each person would provide if they were the only person in this society.

Solution 2 I will call these the "stand alone quantities" and denote them q_{α}^{s} and q_{β}^{s}.

$$
\begin{aligned}
\frac{\partial U_{\alpha}}{\partial q_{\alpha}} & =a-2 b\left(q_{\alpha}+0\right)-P=0 \\
q_{\alpha}^{s} & =\frac{1}{2 b}(a-P) \\
\frac{\partial U_{\beta}}{\partial q_{\beta}} & =c-2 d\left(0+q_{\beta}\right)-P \\
q_{\beta}^{s} & =\frac{1}{2 d}(c-P)
\end{aligned}
$$

(d) (4 points) Find the (unique) Nash equilibrium and show that it is an equilibrium.
Solution 3 If $q_{\alpha}^{s}>q_{\beta}^{s}$ then $q_{\alpha}=q_{\alpha}^{s}, q_{\beta}=0$ if $q_{\alpha}^{s}<q_{\beta}^{s}$ then $q_{\alpha}=0$, $q_{\beta}=q_{\beta}^{S}$.
Assume that $q_{\alpha}^{s}>q_{\beta}^{s}$, then to verify this is a Nash equilibrium they should establish that $\frac{\partial U_{\beta}}{\partial q_{\beta}}<0$ when $q_{\alpha}=q_{\alpha}^{s}$ and then mention that
clearly in this case their answer in part c verifies that α is providing the right amount.
Alternatively, they could start with a random guess at either q_{α} or q_{β} and in a few steps they will arrive at this solution. That should be worth full credit.

