ECON 439

Quiz 5
Dr. Kevin Hasker

1. (3 points) Please read and sign the following statement:

I promise that my answers to this test are based on my own work without reference to any notes, books, calculator or other electronic device. I will also neither give nor receive assistance from any other student.
Name and Surname:

$$
\begin{aligned}
& \text { Student ID: } \\
& \text { Signature: }
\end{aligned}
$$

2. (19 points total) Consider the following extensive form game.

Round 1 Firm 1 chooses their location, $l_{1} \in\{1,2,3,4,5\}$
Round 2 Firm 2 chooses whether to enter or not, if they enter it will cost them F.

Round 3 Firm 2 chooses their location, $l_{2} \in\{1,2,3,4,5\}$
At each location $l \in\{1,2,3,4,5\}$ their are c_{l} customers, the distribution is given in the table below:

If firm 2 enters, the customers will go to the firm closest to their location, if firm 2 does not they will go to firm 1. Firms seek to maximize their number of customers. (You may assume firm 2 makes one unit of money for each customer.)
(a) (5 points) Find firm 2's best response for each location of firm 1-be sure to show some work explaining your answer. Fill it into the table below:

Solution 1 The answer is in the key above, they should do some work explaining the answer. My explanation is the in this class of problems if l_{m} is the median location then the best response is always

$$
B R_{2}\left(l_{1}\right)=\left\{\begin{array}{cc}
l_{1}+1 & l_{1}<l_{m} \\
l_{m} & l_{1}=l_{m} \\
l_{1}-1 & l_{1}>l_{m}
\end{array}\right.
$$

but for the students I expect some work in at least some cases. Though if they find the median location and use the explanation I did, that is enough.
(b) (3 points) Assuming firm 2 enters, find the optimal location for firm 1.

Solution 2 It is $l_{1}=l_{m}$ if they locate at l_{m} firm two will as well, and they will have $C / 2$ customers. If they locate at any other location the other firm will be strictly closer to l_{m}, and by definition (and uniqueness) of l_{m} they will earn strictly less than half the customers. I told them I expect some work here, so let me show you the work I would use to prove this statement. For the economy:

$l:$	1	2	3	4	5
	2	10	2	4	12

If $l_{1}=$
$B R_{2}=$

$\pi_{1}=D_{1}=$| 1 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 3 | 4 | 4 | 4 |
| 2 | 12 | 14 | 15 | 12 | l

it is clear that $l_{1}=l_{m}=4$ is the option that gives the highest profit.
(c) (8 points) Write down all pure strategy equilibrium strategies below, it should be a function of F. Warning: I expect precision in your answers, if you miss an element you will not get credit for it.
Solution 3 Each element is worth one point.

$$
\begin{array}{llll}
F \geq \frac{C}{2} & l_{1} \in\{1,2,3,4,5\} & \text { Not Enter } & B R_{2}\left(l_{1}\right) \text { (which is written above) } \\
F \leq \frac{C}{2} & l_{1}=l_{m} & \text { Enter } & B R_{2}\left(l_{1}\right) \text { (which is written above) }
\end{array}
$$

note that it is important that when F is high they point out that firm 1 's optimal location is unspecified, and that $B R_{2}\left(l_{1}\right)$ is still part of firm 2's strategy.
(d) (3 points) Firm 1 has a weakly dominant strategy, what is it? Explain.

Solution $4 l_{1}=l_{m}$ is a weakly dominant strategy, it is the unique best response if firm 2 enters, and when firm 2 does not enter it is as good as any other location.

