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1 The Cournot Model:

In this model �rms choose output, and price is determined to clear market. For
comparison with the Bertrand Model below we will assume Q = a � bP , or
P = a

b �
Q
b . We will work with the standard costs of c (q) = cq.
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1.1 The Stackleberg Model

Now we have �rm 2 choose their output after �rm 1 does. By the normal
arguments we still have:
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but now �rm 1 takes this into consideration when choosing their output
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this is because q1 and q2 are strategic substitutes, or that
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< 0.

2 Di¤erentiated Bertrand

Now �rms choose price, and quantity is:

q1 = a� bp1 + p2
q2 = a� bp2 + p1
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Notice that if p1 = 0 that this is the monopoly price in the Cournot model, but
that in general p2 will be higher than the monopoly price. The equilibrium is
where p = p1 = p2.
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2.1 A "Stackleberg" Variation on the Bertrand model.

Now we will, like before, have �rm 2 choose their price after �rm 1.
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Notice that �rm 1 is charging the higher price:
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and selling the lower quantity. However if you calculate their pro�t:
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So again, all of the statements I made in class are generally true. The fundamen-
tal reason for this is because p1 and p2 are strategic compliments or
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in the best response.
To get a solvable problem it is actually easiest to set b = 1. Then we get:
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which makes it easy for you to verify what took several pages of math above.
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