
Reward and Punishment
on the equilibria of Repeated Games.

8 January, 2013
by Kevin Hasker

1 Introduction

Of all the topics I teach, I think repeated games terrify the students the most. I
�nd this rather odd, in fact downright mysterious, because these are the types of
strategies students use the most in their personal interactions. These strategies
are all based on reward and punishment. If you do the right thing you will be
rewarded (or get a high payo¤) later on, if you do the wrong thing then you
will be punished (by getting a low payo¤.)

Example 1 When you were a child, did your parents require you to be back
home by, say, 9 PM? If they did why did you follow their rules? Because you
were afraid of punishment, no? They wouldn�t let you go out at all if you didn�t
get back on time tonight.

Example 2 Guys, let me make a recommendation to you, if you have been
dating the same girl for a long time be SURE to remember your anniversaries.
Now, I know this is a somewhat hopeless task (one of my friends was upbraided
for not remembering the day of his engagement) but do try. Why? Because if
you do she will reward you enormously.

Example 3 What would you do if you got food poisoning at a restaurant? Or
even received really bad service or food? You don�t go back. Obviously, you
say? Well, yes, repeated game strategies are part of the fabric of our life, we
all know how to use them instinctively. You will punish the restaurant by never
going back there again.

Example 4 Do you know what my real goal as a teacher is? Primarily it is to
encourage you to learn. I just want you to work at trying to learn the material I
put before you. I don�t, actually, think that we should be grading based on natural
ability at all. A great student to me is someone who works on the material every
week. I �rmly believe that if students do then they will do well, even if they
don�t get an A.
So you may ask me, why do I have frequent quizzes? The answer is that

I �nd that without any incentive students just wait for the midterm to study.
Unfortunately then they try to cram over a month�s learning into their head in
two days, and it absolutely doesn�t work. The intention of the quizzes is to give
you an incentive to study as you go along.
In fact the only reason that teachers grade at all it so transform class into a

�nitely repeated game. If you are good (study) in the early periods of the class,
you will do well on the exams. If you are not, then you will do less well. Thus
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we get you to behave well early in the game so that in the end you will get a
high payo¤. Reward and Punishment.

All of these examples show how rewards and punishments are part of the
fabric of our social life. One of the terrifying things about repeated games is
that there are so many possible strategies, even equilibrium strategies, but they
all are based on one basic, fundamental, concept:

If you do what you are supposed to you will be rewarded. If you
do not then you will be punished.

Now I will formally introduce a repeated game, discuss the equilibrium con-
cept and equilibrium in general, and then show some examples.

2 A Repeated Game

A Repeated Game is a stage game, which is just some normal form game, that is
repeated T times. T may be �nite or in�nite. An important part of this game is
that in period t 2 (1; 2; 3; :::; T ) the players know what happened at every t0 < t.
I.e. everyone knows the past. If T is �nite, then the value from the repeated
game is the sum of the utilities in the stage games. If T is in�nite then it is
the sum of payo¤s except that payo¤s t periods in the future are discounted by
�t�1 where 0 � � < 1.
To give a little more precision let G = (I;A; u) be a normal form game. I

is the number of players in the game (in every example it will be two), Ai is
the set of possible actions for i 2 (1; 2; 3; :::; I), and A = �Ii=1Ai is the set of
action pro�les. Let me give several examples of stage games just to help you
understand this concept.

Player 2 Customer (P2)
C D B N

Player 1 C 5; 5 1; 7 Restaurant (P1) H 2; 2 �1; 0
D 7; 1 3; 3 L 3;�1 0; 0

E1: Prisoner�s Dilemma E2: Quality Game

Player 2 Player 2
C D N L C R

C 5; 5 1; 7 0; 0 U 5; 5 5; 4 1; 12
Player 1 D 7; 1 3; 3 0; 0 Player 1 M 3; 2 0; 0 2; 11

N 0; 0 0; 0 0; 0 D 10; 0 6; 1 0; 0

E1a: Prisoner�s Dilemma with E3: Abstract Game
Outside Option

So that�s several examples of games that we might want to discuss. The �rst
game (E1) is the classic Prisoner�s Dilemma, this is the classic problem where
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following short term incentives (dominant strategies in the stage game) results in
the socially undesirable equilibrium ((D;D) is the equilibrium strategy pro�le).
The hope is that by looking at the repeated game we can get a more optimistic
outcome. The second game (E2) is the restaurant quality game. The customer
would like it if the restaurant produces high quality food (H) but this has a
higher cost for the restaurant and the sales price can not depend on the quality
(for example, food poisoning won�t become obvious until after you have paid
the bill.) Again the Nash equilibrium of the stage game is socially undesirable,
the customer does not go to the restaurant because it expects the restaurant to
produce low quality. The third game (E1a) is the Prisoner�s Dilemma with an
outside option, a relatively innocuous variation on the standard game that has
the feature that the game now has two Nash equilibria. The fourth game (E3)
is a random abstract game that I will use for examples.
Now I want to be more precise about the value of a given sequence of actions.

Let �!a = fatgTt=1 be a sequence of action pro�les. Or in other words each at
is what each person in the stage game does. For example in the Prisoner�s
Dilemma at is either (C;C) ; (C;D) ; (D;C) ; or (D;D). Then if T is �nite:

Vi (
�!a ) = �Tt=1ui (at)

if T is in�nite then:
Vi (
�!a ) = �1t=1�t�1ui (at)

Again, let me give a few examples: Let T = 3 and in game E1 consider �!a =
((C;D) ; (D;C) ; (C;C)). This means that in period one the players play (C;D),
in period two they play (D;C), and in period three they play (C;C). This is
not an equilibrium but I just want to show you how to calculate the payo¤s.

V1 (
�!a ) = u1 (C;D) + u1 (D;C) + u1 (C;C)

= 7 + 1 + 3 = 11

V2 (
�!a ) = u2 (C;D) + u2 (D;C) + u2 (C;C)

= 1 + 7 + 3 = 11 .

Quite simple, no? Now let�s deal with the more complicated case, when T is
in�nite. Consider the sequence �!a = f(C;D) in every periodg. In order to
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calculate this sequence we�re going to need to use a cool math trick.

V1 (
�!a ) = u1 (C;D) + �u1 (C;D) + �

2u1 (C;D) + �
3u1 (C;D) + :::(1)

(1� �)V1 (�!a ) = (1� �)
�
u1 (C;D) + �u1 (C;D) + �

2u1 (C;D) + :::
�

(2)

= (u1 (C;D)� �u1 (C;D)) +
�
�u1 (C;D)� �2u1 (C;D)

�
(3)

+
�
�2u1 (C;D)� �3u1 (C;D)

�
+ :::

= u1 (C;D) + (��u1 (C;D) + �u1 (C;D)) (4)

+
�
��2u1 (C;D) + �2u1 (C;D)

�
(5)

+
�
��3u1 (C;D) + �3u1 (C;D)

�
+ :::

(1� �)V1 (�!a ) = u1 (C;D) (6)

V1 (
�!a ) =

1

1� � u1 (C;D) =
1

1� � 7 . (7)

Now let me go through the steps here one by one. First of all equation 1
is just the value of this sequence written in the most obvious form. In the
next line, equation 2, I multiply both sides by (1� �). Then I expand this
multiplication in equation 3, and then I regroup the terms in equation 4. Notice
what happens, the �� times u1 (C;D) cancels out the second period�s payo¤ of
�u1 (C;D). Multiplying �� by the second period�s payo¤ cancels out the third
period�s payo¤ �2u1 (C;D), and so on and so forth. Wow! Cool math trick,
no? While we have to discount the future in an in�nitely repeated game in
order to make sure that values aren�t in�nite, the reason we use this form of
discounting is almost de�nitely because of this cool math trick. There are many
reasons to think this is not appropriate, even time additive utility is rightfully
criticized, but lets face it: it�s convenient. The result is equation 6. This is
great except that the left hand side is not the value, it is something multiplied
by the value, so we divide both sides by (1� �) in order to get the �nal result,
which is equation 7.
There is another way to prove this, which will be of use in the future. This

is the value function method, obviously given the path we are analyzing V1 (
�!a )

will be the same no matter what period we do the calculation in, because the
future will always be the same. Thus:

V1 (
�!a ) = u1 (C;D) + �V1 (

�!a )
(1� �)V1 (�!a ) = u1 (C;D)

V1 (
�!a ) =

1

1� � u1 (C;D) .

Quite a bit simpler, but it relies on properties of the value function and thus
should be thought of as a second order method.
I did this using u1 (C;D) just to emphasize the point that what the utility

of the action pair is does not matter. Whatever it is the value of an in�nite
sequence of that action pair will just be the utility of that action pair divided
by 1� �. From this work you can immediately see that:

V2 (
�!a ) = 1

1� � u2 (C;D) =
1

1� � :
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3 Equilibrium: a Discussion and the Super Strate-
gies.

3.1 De�nition

First of all it should be obvious that the equilibrium concept we want to use
in these games is subgame perfect equilibrium. Let me give a de�nition as it
applies to repeated games.

De�nition 5 A subgame perfect equilibrium in a repeated game is a strategy
that is optimal from period t on no matter what has occurred in any period t0 < t.

Why is this such an good idea here? Well, what are we going to do?
Basically we are going to use threats to keep people on their good behavior.
Now, should we accept that something is an equilibrium if the threats are not
believable? Let�s consider... Say that your girlfriend told you that if you did
not open every door for her she was going to kill herself. What would you do?
I would either: a) laugh in her face, or b) check her into a loony bin (psychiatric
hospital). Rewards and Punishments are going to be critical to our analysis. If
the Rewards and Punishments are not credible then exactly why should we pay
attention to them? If I told you I would give you a million TL if you got an A
in my class, would that make you study harder? No, because frankly I don�t
have a million lira� and wouldn�t give it to you if I did.
So basically this means that our rewards and punishments also have to be

equilibria. If I promise you something I have to be willing and able to deliver on
it. How are we going to do this? Well �rst of all our punishments will always be
Nash equilibria of the stage game. That way all I have to pay attention to is my
short term incentives, and in a Nash equilibrium these short term incentives are
always aligned properly. In �nitely repeated games are rewards are also going
to have to be (di¤erent) Nash equilibria, again because that way our short term
incentives are enough to guarantee that the reward is delivered.
Now a second issue, how many subgames will there be? To understand this

issue it is best to think about the in�nitely repeated game. Say that after
two histories I face the same stream of action pro�les in the future. In other
words the future is the same after these two histories, but the past is di¤erent.
Do I need to analyze both situations separately? No, because if the strategy
works in one of them it must work in the other one. Thus the number of
relevant subgames is the number of possible futures. Now remember that our
punishments and rewards will all be static Nash equilibria, and in the super
strategies once you start playing one of them you will never change what you
are doing. This makes proving the strategy is subgame perfect in these subgames
rather trivial. I myself will not always do it below, but on a quiz or exam you
will always get points for doing it.
The formal proof is:

1. What happens in the future will not be a¤ected by what happens today.
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2. What happens today is a static Nash equilibrium.

Thus each player�s best response is given by the static game, and everyone
is behaving optimally. The reason I give points for this relatively trivial proof
is because there can be situations (which we will discuss below) where these
characteristics are not met, and this can make the strategy not an equilibrium.
A �nal thing which I will never make you prove but you should know about

is the one shot deviation principle. This states that something is a Subgame
Perfect equilibrium if and only if it is impervious to all one shot deviations� in
other words changing the strategy in one period alone. This statement strongly
relies on checking every subgame� which will be trivial with the super strategies
but may not be in general.

3.2 Discussion

Now, on a fundamental level, what is it about repeated games that so confuses
and frightens the students? After thinking about it for some time I think it is
the fact that the equilibria we �nd are not, honestly, that closely related to the
payo¤s of the stage game. In all previous analysis on a basic level the payo¤s of
people have determined what can and can not be an equilibrium. This is utterly
false in the repeated game, in the repeated game the entire point is to overcome
these short term incentives to achieve long run goals. I.e. the short term
payo¤s do not matter! This is fairly disturbing. To understand repeated game
equilibria you really need to think about one of the key alternative de�nitions of
a Nash equilibrium. While I say Nash equilibrium it is really just any equilibrium
concept.

De�nition 6 A (Nash) equilibrium is a self-enforcing social convention. It is
something that you do because of what you expect others to do.

The clearest and simplest example of this is the equilibria of the side of the
road game.

Driver 2
L R

Driver 1 L 1; 1 �9;�10
R �10;�9 0; 0

E4 : The Side of the Road Game

This game has two Nash equilibria, (L;L) and (R;R). If you expect other
driver�s to drive on the right hand side, you want to drive on the right hand side
too. If you expect them to drive on the left, then you want to drive on the left
as well. Clearly you don�t need to know what the law is in a given country to
know which side of the road to drive on� all you need is to know what others
are doing. The reason there is a law in most countries is merely to make it easy
to know the equilibrium. If you go to England you know automatically to drive
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on the left because it is the law, if you go the United States you know to drive
on the right for the same reason.
Equilibria of repeated games are like this with a vengeance. Why do men

usually open the door for women? Because if they do not the women they are
with, and perhaps their male friends as well, will give them a hard time about
their bad manners. That expectation of a small negative payo¤ is enough to
cause most men to make the small exertion necessary to open the door. In the
United States some women actually feel that it is an insult for men to open the
door for them. They hold that it is treating them as unequal, and they want
equality in all things. So if you interact long enough with those women then
you would learn not to open doors. In other words, your behavior depends on
society around you. If society expects one behavior then you will exhibit that
behavior. If society expects a di¤erent one then you will follow the rules and
exhibit whatever behavior society expects.

3.2.1 The Super Strategies

However at the same time this is a curse, it is also our savior. Because we are
looking for equilibria that do not depend on the game we basically are looking
for a one-size-�ts-all solution. A strategy that will work no matter what the
game is. And, in fact, we can �nd one such strategy that will work in �nitely
repeated games and one strategy that will work in in�nitely repeated games.
These are also the best strategies in many games, in other words if anything is
an equilibrium one of these strategies is.
Now these strategy will require two, or maybe three, strategy pro�les from

the stage game. The �rst one is what we want these people to do, we write this
as c. The second one is our punishment strategy, or p. The third (which we
only need for �nitely repeated games) is our reward strategy, we write this as r.
Both r and p have to be Nash equilibria of the stage game. p should be one of
the Pareto Worse equilibria (i.e. no other Nash equilibrium gives lower payo¤s
to both people). r should be one of the Pareto E¢ cient equilibria (i.e. no other
Nash equilibrium gives higher payo¤s to both people).
For example, in game E1a (Prisoner�s Dilemma with Outside Option) the

obvious candidate for c is (C;C). The punishment, p, should be (N;N), since
this has the worst payo¤ for both parties. The reward, r, should be (D;D)� I
know that seems a little strange but it is the Pareto E¢ cient Nash equilibrium.
Now for the strategies.

Finitely Repeated Games Super Strategy (Mark 1) .

1. In period 1 play c.

2. In period t > 1 if in period 1 people played c play r.

3. In period t > 1 otherwise play p.

So, in the �rst period we want you to do what society wants (play c). If you
do that you are rewarded by playing r, if you do not then you are punished by
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playing p. Why do you play c? Because if you do not then you get punished,
and if you do you get rewarded.
The surprising thing is that this strategy is almost the same in the in�nitely

repeated game. The only di¤erence is now that cooperation (playing c) is its
own reward. That is the only di¤erence.

In�nitely Repeated Games Super Strategy (Mark 1) .

1. In period 1 play c.

2. In period t > 1 If you played c last period play c in this period.

3. In period t > 1 otherwise play p.

These strategies are not quite as general as I would like you to understand.
To see the completely generalized strategies look in Section REF below. However
these strategies are generally enough, and the more general strategies only are
needed in cases where the stage game is not "cooperative." An example of this
is game E3. Neither (D;C) or (M;R) is a punishment for both people, if
we want people to play (T;L) then we need to use di¤erent punishments for
di¤erent people. (For now don�t worry about the reward will be.) Not much
of a generalization, but a generalization that can strongly increase the power of
what we can do. These are the Mark 2 strategies. In these games you play pi if
i deviated, where again pi is a Nash equilibrium.

Finitely Repeated Games Super Strategy (Mark 2) .

1. In period 1 play c.

2. In period t > 1 if in period 1 c occurred play r.

3. In period t > 1 if player 1 was the �rst to deviate, play p1.

4. In period t > 1 otherwise play p2.

The equivalent In�nitely repeated game again just dispenses with playing r.

In�nitely Repeated Games Super Strategy (Mark 2) .

1. In period 1 play c.

2. In period t > 1 If you played c last period play c in this period.

3. In period t > 1 if player 1 was the �rst to deviate, play p1.

4. In period t > 1 otherwise play p2.

This simple modi�cation can greatly increase the strength of our analysis,
but it won�t always. It is needed only if there is no unique worst Nash equilib-
rium, like game E3 above.
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4 Two Period (Finite) Repeated Games.

Everything you need to know about �nite repeated games can be learned from
two period games. The only di¤erence is that with more than two periods
you can have bigger rewards and punishments. So let�s look at the two period
repeated game. To do this I want to use a short hand extensive form game tree.
Each "decision node" in this tree is the stage game. Each "action" in this tree
is an action pro�le (an action for each person).
Using this type of graph also makes it absolutely clear what a subgame

perfect equilibrium is. In a sequential game it is an optimal decision at each
decision node, in a repeated game it is an optimal decision in each stage game.
The critical di¤erence is that in a sequential game there is almost always only
one optimal decision, in a repeated game there can be multiple Nash equilibria
in a stage game� thus there can be more than one optimal decision.
Let�s actually physically draw one of these game trees for the Prisoner�s

Dilemma (game E1).

5,5

7,1 3,3

1,7C

D

C D

8;8

7;4 6;6

4;7C

D

C D

12;6

14;2 11;4

8;8C

D

C D

6;12

8;8 4;11

2;14C

D

C D
10;10

12;6 8;8

6;12C

D

C D

(C,C) (C,D) (D,C) (D,D)

5,5

7,1 3,3

1,7C

D

C D

5,5

7,1 3,3

1,7C

D

C D

8;8

7;4 6;6

4;7C

D

C D

8;8

7;4 6;6

4;7C

D

C D

12;6

14;2 11;4

8;8C

D

C D

12;6

14;2 11;4

8;8C

D

C D

6;12

8;8 4;11

2;14C

D

C D

6;12

8;8 4;11

2;14C

D

C D
10;10

12;6 8;8

6;12C

D

C D

10;10

12;6 8;8

6;12C

D

C D

(C,C) (C,D) (D,C) (D,D)

Before analyzing this game let me just point out how complex even a two
period �nitely repeated game is. How many strategies are there in this game?
Well each person has two actions in the �rst period, then depending on the
action pro�le that happens in the �rst period they have two actions in the second
period. There are four di¤erent possible action pro�les in the �rst period, thus
in the second period they have 2 � 4 = 8 actions that need to be speci�ed in a
strategy, each of these can be paired with a di¤erent �rst period action, giving
a total of 16 strategies for each player. OK, that�s a pretty big number, but
an equilibrium speci�es a strategy for each player, so it is a strategy pro�le.
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How many strategy pro�les are there? Well with 16 strategies per player there
are 16 � 16 = 256 strategy pro�les! And it will just get worse if we look at
games with more than two actions, or more than two periods. Obviously this is
beyond analyzing with any standard techniques, we will not be able to �nd the
equilibrium by (for example) looking at a normal form game representation.
But we don�t have to, we can use backward induction here and hopefully

that will make things much simpler (just like in the sequential game.) So what
can be the equilibrium in the second stage? You can easily check that no matter
what happens in the �rst period D is still a dominant action for each player
in the second period. This is because the optimal strategy does not depend
on the absolute payo¤s, rather the payo¤ di¤erences, and these will always be
determined only by the payo¤s of the stage game. So no matter what happens
in the �rst period the equilibrium outcome in the second period will be (D;D).
OK, now we go back to the �rst period, and like when we were using backward
induction in sequential games we can combine the payo¤s from the second stage
into the �rst period�s payo¤s.

Player 2
C D

Player 1 C 8; 8 3; 10
D 10; 3 6; 6

Again you can quickly determine that the dominant strategy equilibrium is
(D;D). So the only subgame perfect equilibrium is: play (D;D) no matter
what happens.
Weird. What happened? We analyzed the repeated game and gosh, it just

turned into the static game� except now it happened more than once. What
then is the point of analyzing the repeated game? Well, this is something of a
strange result. It is not general, but understanding why it happens is critical to
understanding how we might achieve something di¤erent in the repeated game.
So let�s go through the logic, and think about things. First of all, obviously

in the �nal period whatever happens must be a Nash equilibrium. Why is that?
Well because there is no future so only short term incentives have any e¤ect�
thus we must be playing a Nash equilibrium. Now what if in the stage game
there is only one Nash equilibrium? That means that the same thing will happen
in the �nal period no matter what happens earlier. In other words the future is
�xed, it is written in stone. In period two the (unique) Nash equilibrium will
occur. So, now the future is �xed. No matter what happens in the �rst period
what will happen in the second period is known. So what incentives should one
pay attention to in the �rst period? Obviously the only incentives that are left
are the incentives given by the stage game. The short term incentives must
again dominate, and according to the short term incentives you only can do one
thing, play the Nash equilibrium of the stage game.

Proposition 7 In a �nitely repeated game, if the stage game has only one Nash
equilibrium then the only subgame perfect equilibrium of the repeated game is to
always play that Nash equilibrium.
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Proof. (Two Period) In the second period no matter what has happened in the
past the only incentives player have to respond to are their short term, stage
game, incentives. Thus they must play a Nash equilibrium. If there is only one
Nash equilibrium then they must play this Nash equilibrium no matter what
happened in the �rst period.
Thus in the �rst period the future is �xed, no matter what happens in the

�rst period in the second period both players will receive their Nash equilibrium
payo¤s. Thus the only incentives they have to pay attention to are their short
term incentives, and the only thing to do is to play the Nash equilibrium of the
stage game.
(Finite Periods) In the last period, T , like above they must play the Nash

equilibrium of the stage game. In period T � 1 since the future is �xed again
they must play the Nash equilibrium of the stage game, thus by induction they
must always play the Nash equilibrium of the stage game.
Weird, hunh? And isn�t it fortunate that so many of the games we have

looked at have only one Nash equilibrium. That�s great, so now we can throw
repeated games into the trash and go back to more interesting topics.
Yea, you wish. This argument depends critically on their only being one

Nash equilibrium in the stage game, and honestly that is something of a freak
occurrence. I know that a lot of the games I have shown you have only one
Nash equilibrium, and that was on purpose. I wanted to simplify your life and
my own. Frankly �nding a game with only one Nash equilibrium in it is either
due to: a) luck, b) the modelling decisions of the theorist. For example, you will
agree that in most interactions you have the outside option of not interacting,
right? This is a fundamental choice and it is a rare interaction where this is
absolutely impossible. It may be undesirable, but it is possible. Now we go to
game E1a, which I will rewrite below for clarity:

Player 2
C D N

C 5; 5 1; 7 0; 0
Player 1 D 7; 1 3; 3 0; 0

N 0; 0 0; 0 0; 0

E1a: Prisoner�s Dilemma with
Outside Option

Notice that the outside option is very undesirable, even if the other player
cheats you (plays D when you play C) it is better to interact. But our analysis
will change dramatically when we consider the game with this outside option,
because obviously (N;N) is a Nash equilibrium.
To understand this point lets �rst look at a game where we can actually look

at the complete two period game without going crazy. In game E1a there are
nine possible action pro�les in the �rst period. Do you really want to try and
analyze a game with nine subgames? So let�s look at a game with only two
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actions for both players, the High/Low Game:

Player 2
H L

Player 1 H 3; 3 0; 2
L 0; 0 1; 1

E4: The High/Low Game

In this game the Pareto Dominant payo¤ is also a Nash equilibrium of the stage
game, so the optimal equilibrium from societies point of view is obviously to
always play (H;H). However there are other equilibria. Let�s look at the two
period repeated game:

3,3
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0,2H
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H L

4,4
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L
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L
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L
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(H,H) (H,L) (L,H) (L,L)

3,3

0,0 1,1

0,2H

L

H L

3,3

0,0 1,1

0,2H

L

H L

4,4

1,1 2,2

1,3H

L

H L

4,4

1,1 2,2

1,3H

L

H L

3,3

0,0 1,1

0,2H

L

H L

3,3

0,0 1,1

0,2H

L

H L

3,5

0,2 1,3

0,4H

L

H L

3,5

0,2 1,3

0,4H

L

H L
6,6

3,3 4,4

3,5H

L

H L

6,6

3,3 4,4

3,5H

L

H L

(H,H) (H,L) (L,H) (L,L)

What is the key di¤erence here? Well, now, what happens in the second period
can depend on what happens in the �rst period. If they do the "right thing"
we play the (H;H) Nash equilibrium. If they do the "wrong thing" we play
the (L;L) Nash equilibrium. So, we can use the Super Strategy (Mark 1) and
we might be able to get something other than Nash equilibrium behavior in the
�rst period.

Finitely Repeated Games Super Strategy (Mark 1) 1. In period 1 play
c.

2. In period 2 if in period 1 people played c play (H;H).

3. In period 2 otherwise play (L;L).

12



Obviously this will work if c is either (H;H) or (L;L), so let�s look at the
other options. What if c is (H;L)? Can we get cooperation on playing (H;L)
in the �rst period? What this e¤ectively does is means that in the �rst period
you play (H;L) you get an extra 3 points from playing (H;H) in the second
period. If you play anything else you only get 1 point in the second period. So
with these second period strategies the �rst period payo¤s are:

Player 2
H L

Player 1 H 3 + 1; 3 + 1 0 + 3; 2 + 3
L 0 + 1; 0 + 1 1 + 1; 1 + 1

=

Player 2
H L

Player 1 H 4; 4 3; 5
L 1; 1 2; 2

And thus now H is the best response to L and L is the best response to H. In
other words, yes we can. If we play (H;H) in the second period only when we
play (H;L) in the �rst period then it is best to play (H;L) in the �rst period.
This is an equilibrium.
Well, that methodology is �ne, and for two period games it can generally

be applied without any concerns, but it is a little awkward. The standard
methodology is to compare the value of the "equilibrium" payo¤s with the value
of the best deviation.

V �1 = u1 (H;L) + u1 (H;H)

V̂1 = u1 (L;L) + u1 (L;L)

There are several ways to proceed here. The easiest is just to do the calculations,
I call this the value function method :

V �1 = 0 + 3 = 3

V̂1 = 1 + 1 = 2

and verify that V �1 � V̂1 so this strategy is optimal for player 1. But you can
also do a little bit of analysis to make the bene�ts and costs of deviating more
obvious. I call this the di¤erence method.

V �1 � V̂1
u1 (H;L) + u1 (H;H) � u1 (L;L) + u1 (L;L)
u1 (H;H)� u1 (L;L) � u1 (L;L)� u1 (H;L)

2 = 3� 1 � 1� 0 = 1

In this formulation, u1 (L;L) � u1 (H;L) is bene�t of deviating� the amount
the short term payo¤s have increased� while u1 (H;H)�u1 (L;L) is the cost of
deviating� the amount that this player will lose in the future.
We obviously also need to check this for player 2.

V �2 = u2 (H;L) + u2 (H;H) = 2 + 3 = 5

V̂2 = u2 (H;H) + u2 (L;L) = 3 + 1 = 4

13



V �2 � V̂2
u2 (H;L) + u2 (H;H) � u2 (H;H) + u2 (L;L)
u2 (H;H)� u2 (L;L) � u2 (H;H)� u2 (H;L)

2 = 3� 1 � 3� 2 = 1

and using either method we arrive at the right answer, this strategy is also
optimal for player 2, so it is an equilibrium.
Now, what about the strategy: (L;H) in the �rst period, if (L;H) in the

�rst period (H;H) in the second, otherwise (L;L). First let�s do the normal
form game analysis of this strategy:

Player 2
H L

Player 1 H 3 + 1; 3 + 1 0 + 1; 2 + 1
L 0 + 3; 0 + 3 1 + 1; 1 + 1

=

Player 2
H L

Player 1 H 4; 4 1; 3
L 3; 3 2; 2

Obviously this is not an equilibrium, player 1 wants to deviate to H. The value
function method:

V �1 = u1 (L;H) + u1 (H;H) = 0 + 3 = 3

V̂1 = u1 (H;H) + u1 (L;L) = 3 + 1 = 4 ,

the di¤erence method:

V �1 < V̂1

u1 (L;H) + u1 (H;H) < u1 (H;H) + u1 (L;L)

u1 (H;H)� u1 (L;L) < u1 (H;H)� u1 (L;H)
2 = 3� 1 < 3� 0 = 3

since the last line is true we know this is not an equilibrium. Notice one of the
bene�ts of the di¤erence method. The left hand side is the same for this strategy
and the strategy "(H;L) in the �rst period, if (L;H) in the �rst period (H;H)
in the second, otherwise (L;L)." So all I need to do is analyze the right hand
side, the bene�t of deviating. This is one of the advantages of the di¤erence
method. By doing the calculations once I can see that the cost of deviating for
both players is 2, thus if the bene�t of deviating for a given strategy pair is
lower than that it can be an equilibrium.
By the way, a word about complexity. Above I mentioned that there are 256

strategy pro�les in this game (it has the same number of actions as the Prisoner�s
Dilemma, and thus the same number of strategies.) How many of them do you
think are equilibria? Well �rst of all in an equilibrium what is expected to
be played in the second period must be the same for both parties, thus there
are 16 possible equilibrium action pro�les in the second period, combined with
the 4 possible action pro�les for the �rst period we (only) have to consider
4 � 16 = 64 strategy pro�les. Furthermore we know that there are only two
possible equilibrium action pro�les for the second period, which can depend on

14



the actions in the �rst period, thus this means there are only 4 � 4 � 2 = 32
possibilities that are really viable. If (H;H) is prescribed for the �rst period,
then we can assign (H;H) or (L;L) to any of the four action pro�les, thus there
are 8 equilibrium strategy pro�les with (H;H) being played in the �rst period.
If (L;L) is prescribed in the �rst period and (H;H) in the second if (L;L) occurs
then we can again assign the other three pro�les at random, giving us another
6 equilibria. If (L;L) is expected to be played in both periods then we have to
assign (L;L) if (H;L) or (L;H) occurs, thus we only have two equilibria like
this. the same analysis holds if we expect (H;L) in the �rst period (note that
this time we have to have (L;L) if (H;H) or (L;L) occurs), thus we have two
more. So what�s the total? Of the 32 strategy pro�les that we recognize might
be subgame perfect Equilibria 18 of them actually are equilibria.
Just to understand how complicated this would be in general, consider an

arbitrary stage game with n static Nash equilibria. Then we can easily see that
in the T period repeated game there are at least nT subgame perfect equilibria�
and that is only analyzing strategies where what happens depends only on the
period.
This is the primary reason we use "super strategies." Obviously if I said

"�nd all the equilibria" then the answer would be impossible to �nd.1 All I can
really ask is "in the T period �nitely repeated game what action pro�les can be
a subgame perfect outcomes in the �rst period?"
Now let�s return to a game we care about, the Prisoner�s Dilemma with the

outside option. The Super Strategy is:

Finitely Repeated Games Super Strategy (Mark 1) The strategy is:

1. In period 1 play c.

2. In period 2 if in period 1 people played c play (D;D).

3. In period 2 otherwise play (N;N).

Can we have c = (C;C)?

V �1 = u1 (C;C) + u1 (D;D)

V̂1 = u1 (D;C) + u1 (N;N)

V �1 � V̂1
u1 (D;D)� u1 (N;N) = 3� 0 = 3 � 2 = 7� 5 = u1 (D;C)� u1 (C;C)

Obviously since this game is symmetric we don�t need to check for person 2
independently, so yes this is an equilibrium.
What else can we support? Well we need a strategy pair where the bene�t to

deviating for both parties is less than 3. Obviously (D;D) or (N;N) will work
since these are Nash equilibria of the stage game. (C;D) will work because

1Or trivial, if the stage game has only one Nash equilibrium.
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player 2 is best responding and player 1�s bene�t from deviating is only 2 =
u1 (D;D)�u1 (C;D). Therefore obviously so will (D;C). What about (C;N) or
(N;C)? Well consider (N;C), obviously player 2 has no bene�t from deviating,
but player 1 can get 7 by playing D instead of N (7 = u1 (D;C) � u1 (N;C)).
Thus neither of these are equilibria. What about (D;N) or (N;D)? Like
with (N;C) if they are supposed to play (N;D) then player 1�s short run best
response is to play D, this gives him a bene�t to deviating of 3, which is exactly
the cost. This is an equilibrium, but only weakly.
In other words, with the rather minor alteration to the Prisoner�s Dilemma

of allowing people not to interact we went from having one equilibrium to having
many. We most certainly can get the socially appealing (C;C), we can also get
other things.

5 In�nitely Repeated Games

In an in�nitely repeated game we no longer have a last period. Why does this
matter? Because we can�t use backward induction. But this problem also
makes our lives easier, no �nal period means that cooperating can be its own
reward. All we need is a punishment. Thus we can �nally look at two of the
most important games and �nd out when and how cooperation can be achieved.
I will copy them here for your convenience.

Player 2 Customer (P2)
C D B N

Player 1 C 5; 5 1; 7 Restaurant (P1) H 2; 2 �1; 0
D 7; 1 3; 3 L 3;�1 0; 0

E1: Prisoner�s Dilemma E2: Quality Game

Before we analyze these games let us �rst talk about �. All of the results
in in�nitely repeated game are going to be "for � close enough to 1 this is an
equilibrium." So what exactly is �? Well there are several important ways to
interpret it.

Interpretation of � � can be thought of as a combination of:

� Patience� if people are more patient they discount the future less,
the future is relatively more important. So as patience increases �
should increase.
As an example if we are analyzing a �rm then the proper value for �
is 1

1+r , where r is the real interest rate. If r decreases this means that
the real interest rate has fallen. The opportunity cost of investing
money is the interest you could get from holding it for a period, so if
r falls it is less important whether you get money today or tomorrow.
In other words the �rm is more patient.
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� Frequency of Interaction� the more frequently you interact the more
patient you are going to be. It is like the di¤erence between being
paid in a day and a year. If someone tells you that they will pay you
tomorrow you probably won�t care, but if they start talking about
paying you back in a year you probably start demanding interest�
more money to make up for the delay.

� Probability of Interacting again� instead of saying that you are going
to interact an in�nite number of times, say that you will interact
again with probability �. With probability (1� �) the interaction
will terminate and you will never interact again. This causes a re-
normalization of values, but essentially it is as if you are playing an
in�nitely repeated game. (This trick is often used by experimenters
who want to analyze behavior in in�nitely repeated games.)

Now let�s show that we can �nally get cooperating in these two paradigmatic
games. Let us �rst focus on E1, the Prisoner�s Dilemma. The Super Strategy
for this game is:

In�nitely Repeated Games Super Strategy (Mark 1) 1. In period 1 play
(C;C).

2. In period t > 1 If you played (C;C) last period play (C;C) in this
period.

3. In period t > 1 otherwise play (D;D).

First of all let me point out that this is a very harsh strategy, another way
of writing the same strategy is:

In�nitely Repeated Games Super Strategy (Mark 1) 1. In period 1 play
(C;C).

2. In period t > 1 if there was (C;C) every period in the past, play
(C;C) in this period.

3. In period t > 1 otherwise play (D;D).

Basically one mistake unleashes an in�nite punishment. For this reason it is
called the trigger strategy, it is like both parties are being held up at gunpoint.
One mistake and they�re dead. It is also called the Grimm strategy, after the
Brother�s Grimm, a pair of Germans who are famous for collecting and writing
down fairy tales. It is supposed to be a "folk wisdom" strategy. There is no
doubt that it is a very harsh strategy, and one that is not often used in practice.
However it does have the bene�t that it is easy to analyze, and that often it is
the "best" strategy. In other words if this strategy is not an equilibrium then
nothing is. So when will it be an equilibrium? First of all, the trivial case
where you expect (D;D) forever. In this case since the current period�s action
will not a¤ect the future and it is a Nash equilibrium, everyone will follow the
strategy in this subgame. Now let

����!
(C;C) be "play (C;C) every period in the
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future)" and
����!
(D;D) be "play (D;D) every period in the future." Then using

what I showed above you can �nd out that:

V1

�����!
(C;C)

�
=

1

1� � u1 (C;C) =
1

1� � 5

V1

�����!
(D;D)

�
=

1

1� � u1 (D;D) =
1

1� � 3

Thus

V �1 = u1 (C;C) + �V1

�����!
(C;C)

�
= u1 (C;C) + �

�
1

1� � u1 (C;C)
�

= u1 (C;C) +
�

1� � u1 (C;C)

V̂1 = u1 (D;C) + �V1

�����!
(D;D)

�
= u1 (D;C) +

�

1� � u1 (D;D)

Like before you can use the value function method to see whether this is an
equilibrium, but I think it is better to use the di¤erence method.

V �1 � V̂1

u1 (C;C) +
�

1� � u1 (C;C) � u1 (D;C) +
�

1� � u1 (D;D)

�

1� � [u1 (C;C)� u1 (D;D)] � u1 (D;C)� u1 (C;C)

and like before we can see that what matters is whether the bene�t of deviating
(the right hand side) is less than the cost (the left hand side). Notice that
the left hand side is multiplied by �

1�� , thus as � ! 1 �
1�� ! 1 and the left

hand side will surely be bigger than the right hand side no matter how small
the di¤erence in payo¤s between (C;C) and (D;D). In this case � can be really
rather small.

�

1� � (5� 3) � 7� 5

�

1� � 2 � 2

�2 � 2 (1� �)
�2 � 2� 2�
�4 � 2

� � 1

2

Since this equilibrium is symmetric we don�t need to independently check player
2, thus if � � 1

2 then this is an equilibrium.
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Let us do the same analysis in the quality game. The strategy we want to
support is:

In�nitely Repeated Games Super Strategy (Mark 1) 1. In period 1 play
(H;B).

2. In period t > 1 If you played (H;B) last period play (H;B) in this
period.

3. In period t > 1 otherwise play (L;N).

We will �rst concern ourselves with player 1, the restaurant.

V �1 = u1 (H;B) + �V1

�����!
(H;B)

�
V �1 = u1 (H;B) +

�

1� � u1 (H;B)

V̂1 = u1 (L;B) + �V1

�����!
(L;N)

�
V̂1 = u1 (L;B) +

�

1� � u1 (L;N)

V �1 � V̂1

u1 (H;B) +
�

1� � u1 (H;B) � u1 (L;B) +
�

1� � u1 (L;N)

�

1� � (u1 (H;B)� u1 (L;N)) � u1 (L;B)� u1 (H;B)

�

1� � (2� 0) � 3� 2

�2 � 1� �

�3 � 1; � � 1

3

So this is optimal for player 1 if � � 1
3 . Now we also need to check the incentives

for person 2.

V �2 = u2 (H;B) +
�

1� � u2 (H;B)

V̂2 = u2 (H;N) +
�

1� � u2 (L;N)

u2 (H;B) +
�

1� � u2 (H;B) � u2 (H;N) +
�

1� � u2 (L;N)

�

1� � (u2 (H;B)� u2 (L;N)) � u2 (H;N)� u2 (H;B)

�

1� � (2� 0) � 0� 2 .
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Whoops, don�t I feel stupid now, the right hand side is negative and the left
hand side is positive, so this strategy is optimal for player 2 as long as � � 0.
This is actually fairly obvious because a) he is always best responding to his
opponents�action and b) he is better o¤ at (H;B) than at (L;N). (Notice we
need both.) So this is an equilibrium if � � 1

3 .

5.0.2 A Forgiving Strategy:

The restaurant quality game is a good time to investigate an alternative strategy.
One that does not always work but is more forgiving than the trigger strategy.
So consider the following strategy:

A forgiving strategy 1. In period 1 play (H;B).

2. In period t > 1 If the strategy was followed last period play (H;B)
in this period.

3. In period t > 1 otherwise play (L;N).

Now this strategy looks more complicated than the previous one, but it really
isn�t. Basically: "if this restaurant provides low quality I won�t go back there
once." This is, in reality, what we usually do with restaurants. If the problem
was simply that the service or food was terrible we don�t actually stay away
from the restaurant forever. In fact even if we say we will we often forget it,
and go back after a while. This is also probably the type of punishments your
parents used on you. It certainly is the type I use on my children. Right now
generally the worst punishment I ever impose is making a kid sit in his room
for �ve minutes or not watch TV for a day.
In general, however, it is hard to establish when these strategies are equilib-

ria, but for this one it is not too hard.

V �1 = u1 (H;B) + �u1 (H;B) + �
2V1

�����!
(H;B)

�
V̂1 = u1 (L;B) + �u1 (L;N) + �

2V1

�����!
(H;B)

�
When is this an equilibrium? When V �1 � V̂1 or V �1 � V̂1 � 0

V �1 � V̂1 = u1 (H;B) + �u1 (H;B)� (u1 (L;B) + �u1 (L;N))
= 2 + �2� (3 + � � 0) = 2� � 1 � 0

� � 1

2

so in this game, since the bene�t of deviating is so small, going back once will
work. Notice that the restaurant (player 1) has to be more patient, however.
Also notice that if we even consider 2 period punishments then the math gets
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insanely complicated:

V �1 = u1 (H;B) + �u1 (H;B) + �
2u1 (H;B) + �

3V1

�����!
(H;B)

�
V̂1 = u1 (L;B) + �u1 (L;N) + �

2u1 (L;N) + �
3V1

�����!
(H;B)

�
V �1 � V̂1 = u1 (H;B) + �u1 (H;B) + �

2u1 (H;B)�
�
u1 (L;B) + �u1 (L;N) + �

2u1 (L;N)
�

= 2 + �2 + �22�
�
3 + � � 0 + �2 � 0

�
= 2�2 + 2� � 1

and if you can solve for � without using a calculator, well, more power to you.
Since I am sitting at a computer I can tell you the answer is �~0:366 03, but
there is no way you can solve a problem like this on a quiz or an exam.
Notice a bottom line comparative statistic that can be useful for you. Let

T be the number of periods you don�t go back to the restaurant, and �� (T )
be the minimum required �, then �� (1) = 1

2 ; �
� (2) ~ 25 , �

� (1) = 1
3 . In other

words �� (T ) is decreasing in T . Remembering that one way to interpret � is
the frequency of interaction, what this basically means is that if you go very
often it may be enough not to go back once. If you interact less frequently then
you shouldn�t go back for more times, until in the extreme you shouldn�t go
back at all. Further notice that this is the number of interactions you skip, not
the amount of time. Thus the amount of time you stay away from a restaurant
should increase at more than a linear rate. Roughly a square rate would prob-
ably work. (If I usually go every week, I can skip them for a week. Then if I
usually go once a month I should stay away for 4 months, etceteras.)

6 The Folk Theorems

A "Folk Theorem" is a result that is well known, but has never been proven in a
body of theory. In economics these theorems all are variations on the following
statement:

In the repeated game almost anything can be equilibrium behav-
ior.

The Folk Theorem was �rst generally established in the 1980�s for both the
�nite and the in�nitely repeated game. What can "almost anything" be? Well
let�s establish a benchmark, the worst payo¤ a rational person can get. This is
what is called the minmax or minimax payo¤. Remember that �i = �(Ai) is
the set of mixed strategies in a normal form game, and �i 2 �i is an arbitrary
mixed strategy, �nally let ��i = �j 6=i�j , then we can de�ne:

ui = min
��i2��o

max
ai2Ai

ui (ai; ��i) ,

and let mi be the strategy pro�le that achieves this minimax. Then a more
precise way of writing the Folk Theorem is:
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In the repeated game as long as everyone is at least getting an
average payo¤ of ui then this can be an equilibrium.

We know that it can�t be lower than this, because no matter what strategy
his opponents use a player can always best respond each period, resulting in at
least getting an average payo¤ of ui, so the key question is can it be this bad?
At this point I want you to notice how... Machiavellian this goal is. A

natural a-priori motivation for analyzing repeated games is because in some
games (like the Prisoner�s Dilemma) the static Nash equilibrium is not Pareto
E¢ cient. Thus you want to know "can Pareto E¢ cient outcomes be subgame
perfect Equilibria?" But once you start analysis, you begin asking "can really
bad outcomes be subgame perfect Equilibria?" First, let me point out to you
that the two goals can be in congruence. Consider the divide the pie game2 , if
the two players are a fat man and a thin man then it may be socially desirable
to have the fat man get a very thin slice of pie� and what we want to know
is how thin it can be. Secondly, answering the �rst question obviously answers
the second as well. Can the Pareto E¢ cient strategy x be supported? Well yes,
if ui (x) > ui for all parties. Otherwise it can not be (in the Pie game consider
the very unequal example of person 1 getting the whole pie, this may not give
high enough payo¤s to both parties.)
I would also like to point out the basic dynamics of adding equilibria to

a game. Consider an arbitrary game G, with a set of equilibria E�. Now if
we add an equilibria to G then it may Pareto dominate everything in E�, it
may be Pareto worse than everything in E�, or it may be neither. When we
analyze repeated games what we are doing can essentially be thought of as
adding equilibria to G, and sometimes this will result in a Pareto dominant
equilibria, but sometimes it will not. If you just spend your life focusing on
the best things that happen, then you will often be surprised. Equilibria are
Pareto E¢ cient only by coincidence, and just because there is a Pareto E¢ cient
equilibria doesn�t mean that it will be the equilibrium.
For example in the side of the road game I made the equilibrium (L;L)

Pareto dominate (R;R). I did this on purpose, if you are driving on the left
hand side of the road then oncoming tra¢ c is on the right hand side of the car,
and since most of us are right handed we react more quickly to stimuli on our
right hand side. It is, in fact, Pareto dominant to drive on the left hand side,
but still in most of the world people drive on their right.
A more complex example is the social norm that a woman is supposed to

work at home. Before the industrial revolution there was a clear need to have
some people specialize in housework. If you don�t believe this try washing your
own clothes for the next week, without any machines and (if you want to be a
purest) only using hand soap. Scared? You should be. I�m not even going to
encourage you to cook your own meals without a modern stove� I don�t want to
be responsible for any �res in the dorms. It was hard maintaining a household,

2Just to be speci�c, the strategies are (s1; s2) where s1 2 [0; 1] and s2 2 [0; 1] and if
s1 + s2 � 1 u1 (s1; s2) = s1, u2 (s1; s2) = s2, if s1 + s2 > 1 then u1 (s1; s2) = u2 (s1; s2) = 0.
You would have to add some strategy to make sure that the Nash equilibria are not s1+s2 = 1.
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and while it was not always a role forced on the woman the fact that she also
gave birth to the children does suggest her for this role.
But then, why should this rule also be applied to the wealthy? The wives of

aristocrats were generally not allowed to do anything but "proper womanly pur-
suits" which almost certainly precluded them becoming scientists or politicians
or many other productive enterprises. Surely some test should have been ap-
plied to young girls, many of them would have de�nitely been more productive
as scientists than as home makers. To prove this let me give one of the few ex-
amples of a woman who did manage to become a scientist. Marie (Sk÷odowska)
Curie was born in 1867. She was the �rst person to get a Nobel prize in two
sciences� Physics (1903, with colleagues) and Chemistry (1911, alone).3 Can
you imagine how much further along the sciences would be today if the potential
of all those women was properly channelled?4

And there is a second problem for a scientist, which is that with so many
equilibria around what do you predict people will do? If there is only one
equilibrium I can test it empirically and if it does not �t the data then my theory
is wrong. But if anything can be an equilibrium... well. I don�t know what to
do. This impression, I should mention, is only partially correct. Many valuable
papers have been written by economists looking at repeated game equilibria.
The key thing about analyzing these things in the real world is that you must
�nd the rewards and punishments. If you can identify them then you can explain
why and how people are doing what they do, if you can not then you have to
admit that your theory is wrong.
Now in our analysis (except the appendices) we will assume thatmi is a Nash

equilibrium, but I want to be clear that this is an arbitrary assumption. I can
easily �nd an intuitive game where it is not a Nash equilibrium, the punishment
game:

Child
O B

Parent N 5; 3 0; 6
P 0;�3 �5; 0

E5 : The Punishment Game.

The strategies for the child are to obey the rules or break the rules, notice
(obviously) they have a dominant strategy to break the rules. The strategies
for the parent are to punish or not, and notice they have a dominant strategy
to not punish. Thus if both players play their dominant strategies the outcome
is (N;B), which results in a spoiled child who gets away with everything they
want. You don�t want to go there, trust me.
These are the payo¤s that your parents claimed they received when they

punished you for breaking the rules as a small child, and if you�ve ever been

3My source for these claims is wikipedia, http://en.wikipedia.org/wiki/Marie_Curie .
4 In all honesty I must admit that I do not have a tested alternative to the traditional

division of labor. I am merely pointing out that to casual analysis the traditional method
seems wrong.
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around small children you will realize they were correct. Punishment always
results in lots of crying, interpersonal battles to make sure the punishment is
enforced, etceteras. Trust me, as a parent it is de�nitely a short term dominant
strategy to not punish the child. Of course in the long run this is absolute
suicide.
But this is beside the point. All we really care about is that the minimax

strategy pro�le for the child is (P;B), and this is not a Nash equilibrium. Notice
something even more disturbing. The minmax strategy for the parent is (N;B),
which gives a utility of zero, thus playing the minimax strategy for the child
gives the parent less than their minimax payo¤. This makes analyzing these
games rather complicated and we will only address them at the end of this
handout (which you honestly don�t need to read.) A key rule in a game like this
is that breaking the rules must be forgiven after a while.
The minimax strategy may also be in mixed strategies. Now in this case I

can�t give you any intuitive game where this is true, I can only show you an
abstract game based on matching Pennies.

Player 2
H T O

H 1;�2 �1;�1 4; 0
Player 1 T �1;�1 1;�2 4; 0

O �2;�1 �2;�1 3; 3

E6 : A Mixed Minimax Game

In this game we assume that Player 2 has a disutility from gambling of �2,
so they have a dominant strategy of O. Player 1 likes to gamble, thus O is a
dominated strategy. However you can take my word for it that the minimax
strategy is for player 2 to play H half the time and T half the time. Notice that
the best response to this strategy is for player 1 to play any mixture of H and
T , but that without loss of generality we can assume he just plays H.

6.1 A Folk Theorem for Finitely Repeated Games

There are several ways to write this Theorem. The one that comes closest to
the original statement is:

Theorem 8 In a �nitely repeated game, if the stage game has more than one
Nash equilibrium then any strategy that gives an average payo¤ higher than that
of the worst Nash equilibrium for each player can be supported as a subgame
perfect equilibrium when T is very large.

However this is not the Folk Theorem suggested by my super strategies.
In those strategies I focus only on getting cooperation in period one. This is
enough, because if T is large enough to get cooperation in period 1 then T + 1
is large enough to get cooperation in periods 1 and 2, and so on. Thus another
way of writing this down is:
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Theorem 9 In a �nitely repeated game, if the stage game has more than one
Nash equilibrium then any pure strategy outcome in period 1 can be part of a
subgame perfect equilibrium when T is very large.

I will prove this Theorem, it is easy to do. Consider the super strategy mark
2, and let ûi = maxai2Ai

ui (ai; c�i). Now �rst we need to prove that people are
in equilibrium after the �rst period, this is easy to do but important. In these
subgames what happens in the future does not depend on what happens today,
and since they are supposed to play a static Nash equilibrium we can be sure
their incentives are correct.
Then the value of the equilibrium path is:

V �i = ui (c) + (T � 1)ui (r)

the value of the optimal deviation is:

V̂i = ûi + (T � 1)ui
�
pi
�

and

V �i � V̂i

ui (c) + (T � 1)ui (r) � ûi + (T � 1)ui
�
pi
�

(T � 1)
�
ui (r)� ui

�
pi
��

� ûi � ui (c)

now we must have ûi�ui (c) <1, and by construction we have ui (r)�ui
�
pi
�
>

0, thus as T !1 this must be satis�ed. In fact, given r, we can easily �nd the
critical value for T for person i, T �i , we need:

(T � 1)
�
ui (r)� ui

�
pi
��

� max
c2A

ûi � ui (c)

T � maxc2A ûi � ui (c)
ui (r)� ui (pi)

+ 1

so T �i =
maxc2A ûi�ui(c)
ui(r)�ui(pi) +1. Thus to get everyone to cooperate we need T � T �

= maxi T
�
i = maxi

�
maxc2A ûi�ui(c)
ui(r)�ui(pi) + 1

�
= maxi

maxc2A ûi�ui(c)
ui(r)�ui(pi) + 1, and thus

the optimal r is found by �nding minr2NE maxi
maxc2A ûi�ui(c)
ui(r)�ui(pi) .

6.1.1 A Technical Aside: Games with Two Pure Strategy Nash Equi-
libria.

Now, one �nal point. What if the game has exactly two Nash equilibria? Or
more speci�cally games like E3:

L C R
U 5; 5 5; 4 1; 1212

M 3; 2 0; 0 2; 112

D 10; 01 6; 112 0; 0

25



where there are exactly two pure strategy Nash equilibria that are not Pareto
ranked. Since I used three Nash equilibria in my proof it would seem this is not
enough. However that is not correct. I said "Nash equilibria" not "Pure Strategy
Nash equilibria" and if there are two Nash equilibria there is always a third one.
For example in the game E3 there is a mixed strategy Nash equilibrium where
player 1 plays U with probability 1

9 and D with probability
8
9 , and player 2 plays

both C and R with probability 1
2 . The utilities of this equilibria are u1 = 3,

u2 =
4
3 , so this can be our r.

However there is a simpler method, called correlation. For an arbitrary set
of action pro�les A = �iAi let �a be a mixture over A, �a2A�a = 1, �a � 0.
Essentially what we are imagining is that �rst the players jointly roll a dice,
and then based on the outcome of that dice roll they play some strategy. While
this might seem a little arti�cial it is not that unreasonable of an assumption.
For example it is almost equivalent to playing a cycle of strategies. (Play x
today, y tomorrow, z the day after and then repeat.) It also can be interpreted
as checking whether the day is sunny, who was �rst into the o¢ ce, etceteras,
and conditioning behavior on the outcome. But we are essentially allowing for
it because it makes our life easy, and we like having a simple life.
Obviously in this game we want �D;C = � � 0 and �U;R = 1 � �, and we

can actually precisely �nd the optimal �,

maxc2A û1 � u1 (c)
u1 (r)� u1 (p1)

=
10� 5

6�+ (1� �) 1� 1 =
1

�

maxc2A û2 � u2 (c)
u2 (r)� u2 (p2)

=
11� 0

�+ (1� �) 12� 1 =
1

(1� �)

and the minimum is achieved when the right hand sides are equal:

1

�
=

1

(1� �)

or � = 1
2 . This tells us that T

� = 1
1
2

+ 1 = 3, thus if T � 3 we are done. Of

course I would never assign such a complex problem. I just wanted to lay out
clearly how I would proceed.

6.2 The Folk Theorem in the In�nitely repeated Pris-
oner�s Dilemma.

Now we want to do the in�nitely repeated folk theorem, and I am �rst going to
do this in the Prisoner�s Dilemma because the precision of this example allows
for a clearer analysis. The next section covers the most general theorem you are
responsible for.
In order to show you the full folk theorem I am going to use correlated

strategies. We will have people play the correlated strategy �. In the strategy
� you play (C;C) with probability �1, (C;D) with probability �2, (D;C) with
probability �3, and (D;D) with probability 1 � �1 � �2 � �3. Your utility of
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this strategy?

U1 (�) = �1u1 (C;C) + �2u1 (C;D) + �3u1 (D;C) + (1� �1 � �2 � �3)u1 (D;D)
U2 (�) = �1u2 (C;C) + �2u2 (C;D) + �3u2 (D;C) + (1� �1 � �2 � �3)u2 (D;D) .

Why do we use this silly trick? Because then by varying �1; �2; and �3 we can
get any payo¤ that is a convex combination of the four payo¤s of the original
game. Looking at these payo¤s in (u1; u2) space:

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

u1

u2

we can get anything in the diamond. Now lets consider the strategy:

1. In period 1 play �.

2. In period t > 1 If you played � last period play � in this period.

3. In period t > 1 otherwise play (D;D).

When will this be an equilibrium for some � < 1?

V �1 = U1 (�) +
�

1� �U1 (�)

V̂1 = U1 (D;�) +
�

1� �U1 (D;D)

U1 (�) +
�

1� �U1 (�) � U1 (D;�) +
�

1� �U1 (D;D)

�

1� � (U1 (�)� U1 (D;D)) � U1 (D;�)� U1 (�)
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Now let us look at this equation. The right hand side is a �xed positive number.
If U1 (�)� U1 (D;D) > 0 then �

1�� (U1 (�)� U1 (D;D))!1 as � ! 1. Thus
all we need is U1 (�) > U1 (D;D) and there will be some � high enough so that
this is an equilibrium. For player 2 the key equation is obviously:

�

1� � (U2 (�)� U2 (D;D)) � U2 (D;�)� U2 (�)

and by a similar argument what we need is U1 (�) > U1 (D;D) and U2 (�) >
U2 (D;D).

Theorem 10 In the Prisoner�s Dilemma any correlated strategy � with U1 (�) >
U1 (D;D) and U2 (�) > U2 (D;D) can be an equilibrium if � is high enough.

Graphically the set of possible equilibria is anything to the upper right of
the dark line in the picture below.

0 1 2 3 4 5 6 7
0

1
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5

6

7

u1

u2

6.3 A Folk Theorem in In�nitely Repeated Games

Now we will just consider an arbitrary game and continue to use the correlated
strategy �, the strategies we will use will be the Super Strategies Mark II:

In�nitely Repeated Games Super Strategy (Mark 2) .

1. In period 1 play �.

2. In period t > 1 If you played � last period play � in this period.

3. In period t > 1 if player i < I was the �rst to deviate, play pi.
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4. In period t > 1 otherwise play pI .

Where each pi is a Nash equilibrium of the stage game. Notice that we will
allow pi = pj , in fact it won�t change our analysis at all. The folk theorem we
will prove is:

Theorem 11 If for all i, ui (�) > ui
�
pi
�
then there is a critical �� such that

if � � �� there is a subgame perfect equilibrium where players expect to play �
forever.

First, like always, in the subgames that are not the equilibrium path players
will follow the strategy because what happens today will not a¤ect the future
and what is supposed to happen today is a static Nash equilibrium. Now we
just need to show that playing � forever is an equilibrium for high enough �.

V �i = ui (�) +
�

1� � ui (�) .

Like before, let ûi = maxai2Ai
ui (ai; ��i) then:

V̂i = ûi +
�

1� � ui
�
pi
�

V �i � V̂i

ui (�) +
�

1� � ui (�) � ûi +
�

1� � ui
�
pi
�

�

1� �
�
ui (�)� ui

�
pi
��

� ûi � ui (�)

and we notice that ui (�)�ui
�
pi
�
> 0 by assumption, and ûi�ui (�) <1, thus

there is a critical ��i such that if � � ��i then is true. To be precise ��i =
ûi�ui(�)
ûi�ui(pi) ,

and �� = maxi �
�
i = maxi

ûi�ui(�)
ûi�ui(pi) .

7 Some Interesting Strategies in In�nitely Re-
peated Games

From this point on this is actually just supplementary reading. I may cover
something from what follows in class (in which case it is required) but generally
you aren�t responsible for this material. In this section I want to discuss some
interesting strategies in In�nitely Repeated Games.

7.1 What�s wrong with Tit-for-Tat

There are generally thought to be two paradigmatic strategies in in�nitely re-
peated games. The Grimm strategies and Tit-for-Tat. In the Tit-for-Tat strat-
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egy you do today what your opponent did yesterday. Let us consider this strat-
egy in a di¤erent Prisoner�s Dilemma.

Player 2
C D

Player 1 C 6; 6 1; 7
D 7; 1 3; 3

E1b : Prisoner�s Dilemma with High u (C;C) .

The only di¤erence is that I have increased the payo¤ of (C;C) by one for each
person.
Now �rst of all I want you to really think about what will happen after

player 1 deviates once. Don�t just assume it is like you think it�s supposed to be
(you tatted me so I�m going to play D forever) think about what the strategy
actually says. In the �rst period player 2 is going to play D because that�s what
player 1 did last time, if player 1 follows the strategy he�s supposed to play
C. Next period it will reverse. Wild, hunh? Not at all what you intended to
write down, hunh? I guess you should be more careful next time. So... let�s get
precise about these payo¤s. Let V �1 j1 dev., odd be the continuation payo¤ player
1 should expect in odd periods when he has deviated, and V �1 j1 dev., even be the
continuation payo¤ player 1 should expect in even periods. I will use the value
function to calculate these values, using the cute trick that after two periods we
return to the same continuation value:

V �1 j1 dev., odd = u1 (C;D) + �u1 (D;C) + �
2V �1 j1 dev., odd�

1� �2
�
V �1 j1 dev., odd = u1 (C;D) + �u1 (D;C)

V �1 j1 dev., odd =
u1 (C;D) + �u1 (D;C)

1� �2

V �1 j1 dev., odd =
1 + 7�

1� �2
,

and

V �1 j1 dev., even = u1 (D;C) + �u1 (C;D) + �
2V �1 j1 dev., even

V �1 j1 dev., even =
7 + �

1� �2
.

Now, consider that player 1 is supposed to play D today, then what happens
if he deviates by playing C? Afterwords both players will start playing (C;C)
forever. Gosh, that sounds pretty good. So maybe it will be better than the
strategies prescribed path.

V̂1j1 dev., even =
1

1� � u1 (C;C) =
1

1� � 6
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V �1 j1 dev., even � V̂1j1 dev., even
7 + �

1� �2
� 1

1� � 6

7 + � � 1� �2

1� � 6

7 + � � 6 + 6�

� � 1

5

Uhh ohh, this is only going to work if � is small, not a good sign. OK, but
we can proceed, we now know this won�t work if people are too patient, but
perhaps its still an optimal strategy with "strangers" like the Grimm strategy.
What about the other case, where player 1 is supposed to play C today? Again
with one more deviation he can switch to (D;D) forever strategy:

V̂1j1 dev., odd =
1

1� � u1 (D;D) =
1

1� � 3

V �1 j1 dev., odd � V̂1j1 dev., odd
1 + 7�

1� �2
� 1

1� � 3

1 + 7� � 1� �2

1� � 3

1 + 7� � 3 + 3�

� � 1

2
.

OK, now we know that this strategy is never an equilibrium. I should point
out that these results depend critically on the payo¤s. You can show that if
u (C;C) = (5; 5) it will work only when � = 1

2 , and if u (C;C) = (4; 4) then it
will work if � � 1

2 . Thus these strategies work in some games, but not all. Not
very interesting in my opinion. Basically when people think of the tit-for-tat
strategy what they really mean is: "If you treat me well today then I will treat
you well tomorrow, otherwise I won�t trust you." This is the Grimm strategy,
not the standard way of writing tit-for-tat.

7.2 Allowing for Reputation Rebuilding in the Quality
Game.

In the quality game we have a one-sided incentive problem, the customer is
always best responding given his beliefs about the restaurant. Thus it is only
natural to think that a one-sided incentive system should be enough to keep
the restaurant in line. This is actually not true, because like in the tit-for-tat
strategy patient restaurants will want to rebuild their reputation.
So formally a strategy like this for the customer is: B if the restaurant chose

H last time or t = 1, N else. The game we will consider is:
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Customer (P2)
B N

Restaurant (P1) H �; 2 �1; 0
L 3;�1 0; 0

E2a : Quality Game with Di¤erent Pro�ts

The only di¤erence between this and the previous game is now the pro�ts of
the restaurant if they produce high quality is some 3 > � > 0. Now analyz-
ing this strategy is a little harder than previously, because we aren�t specify
the restaurants optimal strategy� we just let it best respond to the customer�s
strategy. However we want them to choose H forever, so a benchmark is what
these payo¤s are:

V �1 =
1

1� � � .

Now if they choose L given they are expected to choose H there payo¤s must
be written as:

V̂1 = u1 (L;B) + �V1 (A2;t+1 = N)

because we can�t be sure what they will do when A2;t+1 = N . They have two
choices, �rst they can just produce low quality�and if they choose to do it once
they will always choose to do it� second they can rebuild their reputation by
producing high quality. If they do this the customer will trust them again and
they can conceivably get V �1 from the second period on, thus:

V1 (A2;t+1 = N) 2
�
u1 (H;N) + �V

�
1 = �1 + �

1���
1
1��0

and it will be equal to whichever one is higher (we will assume H if they are
indi¤erent). Thus we need to know when:

�1 + �

1� � � � 0

� � 1� �
� (1 + �) � 1

� � 1

� + 1

Thus if � � 1
�+1

V̂1 = 3 �
1

1� � � = V
�
1

1� � � �

3

1� �
3

� �
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So this will work when 1� �
3 � � �

1
�+1 , which requires that � � 2. If � �

1
1+�

it is useful to write:

V �1 = � + �� + �2V �1

V̂1 = 3� � + �2V �1

V �1 � V̂1

� + �� + �2V �1 � 3� � + �2V �1
� + �� � 3� �

� (� + 1) � 3� �

� � 3� �
� + 1

since we need � < 1 this requires that � > 1. Notice that if � > 3
2 one can

establish that a one period punishment will work:

V̂1 = 3 + �0 + �2V �1

V �1 = � + �� + �V �1

V �1 � V̂1

� � 3� �
�

< 1

� >
3

2

Thus this strategy is stronger than a one period punishment, but not strong
enough to always work. Now since these are the actual strategies that we use in
the real world it is worthwhile to think about them a little bit more carefully.
First of all, are the restaurants payo¤s reasonable? Yes, from my experience

working at a restaurant trust me it does cost you to prepare for customers that
don�t show up, and of course these costs are higher in the quality of the food you
produce. Of course you could just shut down, but then essentially the restaurant
is choosing to follow a trigger strategy. That�s very nice if it�s the only pro�table
strategy, but in reality restaurants do not do this. Thus they do prepare for
customers that don�t show up, even when they are being punished. (Not being
able to serve customers will generally unleash even harsher punishments.)
Secondly, do restaurants usually switch to lower quality when their business

drops? (In this strategy that means they�re being punished.) I would say not,
in fact I think most restaurateurs would tell you that they work even harder to
maintain quality standards when business is low. Why? Well they�ll tell you
its because they need to work to establish a good reputation (just like in our
strategy). Think about how many new restaurants you�ve gone to and then
when you�ve gone back in a year or so you�ve thought you got lower quality
food or service. Most restaurants do this, and those that do not are truly the
stars of the restaurant world.
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Finally, how do customers observe the restaurant is producing high quality
when the customer does not buy? Well obviously it is from word of mouth�
their friends still go to the restaurant. And this is the key to why restaurants are
disciplined even though they may not change the quality of good they provide.
We don�t trust word of mouth as much as we do our own experience, and we
should not. People have di¤erent standards, and in the case of food poisoning
observing low quality is random anyway. So while we all follow strategies like
this, it takes many "observations" of H for us to start using the B strategy
again. More formally, let � be our belief about the probability the restaurant is
producing high quality. Then B is optimal if �2 + (1� �) (�1) � 0 or � � 1

2 .
So the strategy we actually use is: Given a history h if � (h) � 1

2 we take the
action B, otherwise we take the action N . To make this an equilibrium we
have to have: if A1;t�1 = L then � (h) < 1

2 , and we have to have at least T
observations of H after an observation of L to have � (h) � 1

2 . Then this
results in a T period punishment strategy where the restaurant must maintain
high quality to rebuild it�s reputation.

7.3 Forgiveness using Stochastic Punishments

A mathematically more elegant way to analyze forgiving strategies is: p with
probability � if last period c did not occur, c otherwise. Where p is the punish-
ment action pro�le in Super Strategy Mark I, and c is the cooperative strategy.
These strategies are Markov because they depend only on the state of the world
in the last period (the strategy pro�le played). It should be obvious that if � = 1
then these are the Grimm strategies, and for strategy that punishes for only T
periods there is an equivalent � such that the expected payo¤s are equivalent.
Let �c be the state where something other than c occurred last period, then

with these strategies:

V �i = ui (c) + �V
�
i

V1 (�c) = �ui (p) + (1� �)V �i
V̂1 = ûi + �V1 (�c)

= ûi + ��ui (p) + � (1� �)V �i

V �i � V̂1 = ui (c)� ûi � ��ui (p) + ��V �i � 0

�� (V �i � ui (p)) � ûi � ui (c)

��

�
1

1� � ui (c)� ui (p)
�

� ûi � ui (c)

This will obviously work for any � > 0 as long as � is high enough, and indeed
we can solve for ��i if we normalize payo¤s so that ui (p) = 0. (This can be done
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without loss of generality). Then:

�

1� � � ûi � ui (c)
�ui (c)

� � ûi � ui (c)
ûi � (1� �)ui (c)

and ��i =
ûi�ui(c)

ûi�(1��)ui(c) . Much more convenient than analyzing a T period �nite
punishment, no?
It is also more reasonable. Consider for example the quality game. We

all might intend to not go to a restaurant for the next ten periods, but then
we might be in a situation where we have to eat at the restaurant despite our
intentions. Alternatively we might just end up not eating there for twenty
periods because, again, we just weren�t in a situation where eating at that
restaurant was optimal. We use stochastic punishments, though they don�t
usually have this sort of elegant mathematical formula, and its nice to see that
we can use them to analyze forgiveness.

7.4 Several Strategies in the Repeated Bertrand Oligopoly

The Bertrand Oligopoly... well you know I don�t like it. The idea that my
demand shrinks to zero if I charge one kurus more than you is just... ridiculous.
But as I�ve said before we often use it because it is mathematically simple, and
in a repeated game it is extremely mathematically simple. Indeed, we will be
able to prove a folk theorem for this game without any sweat, and surprisingly
enough for reasonable levels of the market price the critical � will not depend
on the price, but rather only the number of �rms in the industry.
So, the basic game is each �rm has a marginal cost of c, and chooses a price

pi � 0. Let p be the vector of prices, and J be the set of �rms in the industry
then:

di (p) =

8<:
0 if pi > minj 6=i pj


i
�j2M
j

D (pi) if pi = minj 6=i pj and M = fj 2 J jpj = pig
D (pi) if pi < minj 6=i pj

where 
i > 0 and �j2J
j = 1. We will of course analyze the case whereM = J ,
or the entire industry charges the same price, in this case 
i

�j2M
j
= 
i. It is

simple to show that in the Nash equilibrium pi = c for all i.
The �rst issue that we will need to resolve is what will be the pro�t if all

�rms j have pj = p � c and i charges p� "? These pro�ts for a �xed " are:

D (p� ") (p� "� c) = D (p� ") (p� c)� "D (p� ")
= D (p) (p� c)�D (p) (p� c) +D (p� ") (p� c)� "D (p� ")
= D (p) (p� c) + (D (p� ")�D (p)) (p� c)� "D (p� ")

Writing � = D (p) (p� c), then these pro�ts are:

D (p� ") (p� "� c) = � � �
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where � = (D (p� ")�D (p)) (p� c)� "D (p� "), notice that �! 0 as "! 0,
and one can establish that if p is less than the monopoly price then @�

@" < 0.
Thus we want to analyze this for very small ", and in this case:

lim
"!0

D (p� ") (p� "� c) = �

so we will assume that in this case the �rm will get �. Now we need to consider
what will happen if p is strictly higher than the monopoly price. Then what the
deviating �rm will do in this case is just charge the monopoly price, which we
will denote by the pro�ts �m.

7.5 Equilibria with the Super Strategy (Mark I)

So the obvious strategy to follow in this game is: if t = 1 or p was charged by
everyone last period then set pi = p, otherwise pi = c. Notice that the pro�ts
�rm i will get will be 
iD (p) (p� c) = 
i�, and �rst assume that p � pm� the
monopoly price. In this case:

V �i =
1

1� � 
i�

V̂i = � +
�

1� � 0

V �i � V̂i
1

1� � 
i� � �


i � 1� �
� � 1� 
i

thus ��i = 1 � 
i. Now notice that the 
i�s can be a subject of negotiation,
�rms can argue about how to split demand since customers don�t care, and that
mini 
i � 1

jJj because otherwise we would have �i
i � jJ jmini 
i > jJ j
1
jJj = 1

if that is true. Thus cooperation is easiest to achieve when 
i =
1
jJj for all �rms,

thus the equilibrium exists if � � �� = 1� 1
jJj . Now let us consider the perverse

case where the industry is charging more than the monopoly price, in this case:

V̂i = �
m +

�

1� � 0

V �i � V̂i
1

1� � 
i� � �m


i
�

�m
� 1� �

� � 1� 
i
�

�m
.

Thus the result is:
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Proposition 12 If p � pm then there is a subgame perfect equilibrium where
all �rms charge p on the equilibrium path if � � 1� 1

jJj . This is independent of
p. If p > pm then a subgame perfect equilibrium where all �rms charge p on the
equilibrium path if � � 1� 1

jJj
�(p)
�m .

Wild, hunh? For the prices we think they may want to consider cooperation
is completely independent of the level of pro�ts. Only if price gets ridiculously
high does the critical �� increase in the price (because � (p) will decrease in the
price.) What a wild result, I don�t know any other game like it. Essentially the
full folk theorem independent of the payo¤s.
From now on we will always assume that 
i =

1
jJj and p � p

m because we
have other things to talk about.

7.5.1 Delayed Punishments

In most industries �rms can not change prices over night. Among other things
they sell to middle men, who then sell their goods at a retail level, so it takes
time for a price change to percolate down. So how does this a¤ect analysis?
Well this means that they can change price at most K periods after they realize
someone is undercutting them. In this case:

V̂i = � + �� + �
2� + :::�K�1� =

KX
t=1

�t�1� =
1� �K

1� � �

In equilibrium we must have:

V �i � V̂i

1

1� �
1

jJ j� � 1� �K

1� � �

�K � 1� 1

jJ j

� �
�
1� 1

jJ j

� 1
K

.

Thus it will be harder to support cooperation, but still it just requires that �
is high enough� and again it is independent of the pro�ts. However we need to
point out that one usual way of getting cooperation will not work. Usually we
can just say "well, interaction is very frequent so � is nearly one." However if
interaction is more frequent logically K has to be larger, after all if we accept it
takes �rms a meaningful amount of calendar time to react to other �rms cheating
then if they "interact" every day as opposed to every month obviously K should
be 30 times as large. This is a general limit of the Folk Theorem, if reaction
takes a real amount of time (which it always does) then having interaction be
more and more frequent will just result in larger and larger payo¤s to cheating,
counteracting the usual result.
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7.5.2 Stochastic Rewards (and Stochastic Punishments).

One very common fact about repeated games is that sometimes people make
mistakes, and more often other people think that someone did something wrong
when actually it was just some freak of nature. This was actually a topic of
close study in repeated oligopoly, more speci�cally Porter, 1983. "A Study of
Cartel Stability: The Joint Executive Committee, 1880-1886" Bell Journal of
Economics pp 301-314. Since it is such a real issue of concern for us in general
we will analyze it in this environment.
In that paper Porter studied an interesting moment in Economic History.

Prior to anti-trust laws in the United States Chicago Railroad �rms entered into
an explicit cartel agreement. However the demand for these �rms was random,
their primary market was shipping goods east and their primary competition
was barges on the Great Lakes. If the Great Lakes thawed unexpectedly then
their demand and pro�ts would drop sharply. These low pro�ts would trigger
periods of price wars between the �rms. Formally we assume that �rms do not
observe the prices of competitors, rather only their own pro�ts. If �it = 0, then
they have to assume someone cheated and start punishing. Notice that since
now punishment periods will occur even if everyone follows the rule you want to
use forgiving strategies� the harsher the punishments are the lower your pro�ts.
This model was originally written and estimated assuming Cournot compe-

tition, however when Rob Porter taught us this model at Northwestern he said
he wished he had explained the model using Bertrand competition and �nite
punishments. This was before the realization of how convenient stochastic pun-
ishment strategies are in analysis, and thus I will use stochastic punishments.
Thus the strategy �rms will use is: pit = c with probability � if �i;t�1 = 0,
pit = p otherwise. The demand curve will now be given by:

di (p) =

8<:
1
jM jD (pi) with probability q if pi = minj 6=i pj and M = fj 2 J jpj = pig
D (pi) with probability q if pi < minj 6=i pj
0 otherwise

Now we can immediately start calculating the value functions:

V � (�) = q

�
1

jJ j� + �V
� (�)

�
+ (1� q) (0 + �V � (0)) .

V � (0) = � ((0 + �V � (0))) + (1� �)V � (�)
V̂ = � + �V � (0)

Notice we now have two equations in two unknowns (V � (�) and V � (0)), and
we have to solve for the value functions simultaneously.

V � (�) =
q

(1� �q)
1

jJ j� +
(1� q) �
(1� �q) V

� (0)

V � (0) =
(1� �)
(1� ��)V

� (�)
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Notice this rather nice relationship between V � (0) and V � (�).

V � (�) =
q

(1� �q)
1

jJ j� +
(1� q) �
(1� �q)

(1� �)
(1� ��)V

� (�)

V � (�) =

q
(1��q)

1� (1�q)�
(1��q)

(1��)
(1���)

1

jJ j�

at this point we have to say "gulp" and hit the simplify key in Scienti�c Work-
place.

V � (�) =
q

1� �
1� ��
1� q��

1

jJ j�

V � (0) =
q

1� �
1� �
1� q��

1

jJ j�

Relatively speaking, these are actually rather simple functions. Given these
values:

V̂ = � + �
q

1� �
1� �
1� q��

1

jJ j�

V � (�) � V̂

(1� ��) q 1jJ j � (1� �) (1� q��) + � (1� �) a 1jJ j

q (1� �) 1jJ j � (1� �) (1� q��)

�� � 1

q
� 1

jJ j

While the math was rather complicated the result is elegant. It should not be
surprising at all that it will now be harder to get cooperation for low q, and
this is exactly what we �nd. We must have 1

q �
1
jJj < 1, or q > jJj

jJj+1 , and

then the condition must hold when � = 1, so we must have � � �� = 1
q �

1
jJj .

One interesting exercise in this analysis is that we can now optimize our pro�ts
over �, assuming the conditions on q and � are met. One can easily show that
@V �(�)
@� < 0 so the optimal � is the minimal one that will make cooperation

optimal, this is � = 1
�

�
1
q �

1
jJj

�
.

8 Towards the Full Folk Theorem in Two Player
Games.

In two player games we can de�ne the mutual minimax strategies as m =�
m2
1;m

1
2

�
, in these strategies player 1 is holding player 2 down to his lowest
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possible value, and player 2 is holding player 1 down to his lowest possible
value. Considering the Punishment game:

Child
O B

Parent N 5; 3 0; 6
P 0;�3 �5; 0

E5 : The Punishment Game

then this strategy is (P;B). Notice that while u1 = maxa12(N;P ) u1 (a1; B) = 0
that u1 (m) = u1 (P;B) = �5. Thus when using the mutual minimax strategies
players may be getting strictly less than their minimax payo¤s. This means
that we have to have forgiveness built into the strategies.
Throughout this section I will make the simplifying normalization that ui =

0. This can be done without loss of generality and makes presentation simpler.
I will prove the folk theorem assuming m 2 A� or that both players are playing
pure strategies� and then brie�y discuss what you have to do if players use
mixed strategies.

8.1 The Full Pure Strategies Folk Theorem.

The strategy we will use is the stochastic punishments super strategy: m with
probability � if last period c did not occur, c otherwise.

V �i (c) =
1

1� � ui (c)

V �i (�c) = � (ui (m) + �V
�
i (�c)) + (1� �)V �i (c)

V �i (�c) =
�

1� ��ui (m) +
1� �
1� ��

1

1� � ui (c)

Now, however, we need to check for subgame perfection in both subgames (�c
and c). Thus we have a V̂ (c) and a V̂ (�c).

V̂ (c) = ûi + �V
�
i (�c)

V̂ (�c) = 0 + �V �i (�c)

Notice that if you are playing m your optimal deviation is to mi
i, and this will

give you a payo¤ of zero.

V �i (c) � V̂ (c)�
1� 1� �

1� ��

�
1

1� � ui (c) � ûi +
��

1� ��ui (m)

�

1� ��ui (c) � ûi +
��

1� ��ui (m)

�

1� �� (ui (c)� �ui (m)) � ûi (8)
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Now to analyze this condition we can drive � ! 1 and see that we have:

�

1� � (ui (c)� ui (m)) � ûi

thus if ui (c) � ui (m) > 0 and � is high enough this will be satis�ed. To �nd
the condition on � we need to look at the subgame �c.

V �i (�c) � V̂ (�c)
V �i (�c) � �V �i (�c)

(1� �)V �i (�c) � 0

ad V �i (�c) � 0:
�ui (m) +

1� �
1� � ui (c) � 0

1� �
1� � ui (c) � � (�ui (m))

1� �
�

� (1� �) (�ui (m))
ui (c)

remembering that ui (m) � 0 or that �ui (m) � 0 this requires that:

ui (c)

(1� �) (�ui (m)) + ui (c)
� � (9)

Thus we can see that as � ! 1 � can go to one, and both conditions can be
vacuously satis�ed. To �nd the critical ��i we will let � = �� =

ui(c)
(1��)(�ui(m))+ui(c) ,

and substitute this into equation 8.

ui(c)
(1��)(�ui(m))+ui(c)

1� �
�

ui(c)
(1��)(�ui(m))+ui(c)

� (ui (c)� �ui (m)) � ûi

ui (c)

(1� �) (�ui (m)) + ui (c)� �ui (c)
(ui (c)� �ui (m)) � ûi

ui (c)

(1� �) (ui (c)� ui (m))
(ui (c)� �ui (m)) � ûi

1

(1� �)ui (c)
ui (c)� �ui (m)
ui (c)� ui (m)

� ûi

and this gives us an implicit solution for ��. Thus if � � �� and � � �� (�) there
is an equilibrium where players play c.

8.2 Now we�re Really Going too Far: What if the Mutual
Minimax is in Mixed Strategies?

At this point we really need to get into the nitty gritty of how you play a mixed
strategy. Is it:
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1. You decide on the probabilities you are going to play an action, and then
let someone else do the randomization and choose your action.

2. You do the randomization then based on the outcome of the randomization
you choose your action.

Formally we have always assumed that it is the �rst one, because otherwise
it is hard to conceptualize what we mean by an expected utility. But the joy of
it is that in a Mixed Strategy Nash equilibrium either method will work. This
has stopped us from worrying about this too much. However in a repeated game
strategy players may be using a mixed strategy which is not a Nash equilibrium.
For example consider the game:

Player 2
H T O

H 1;�2 �1;�1 4; 0
Player 1 T �1;�1 1;�2 4; 0

O �2;�1 �2;�1 3; 3

E6 : A Mixed Minimax Game

In this game if player 2 has to minimax player 1 they should play H half the
time and T half the time. Now if player 1 is always playing H player 2 could
just play T all the time and observationally speaking we couldn�t tell if he was
using the mixed strategy or just playing T . Thus this would be an undetectable
deviation. What is a theorist to do? Well he could pay player 2 back every
time he plays H. He obviously can�t do it in the current period, so he has to
do it in the future. And the payment has to be precisely right, or otherwise
player 2 will play H all the time. This solution was �rst presented in Fudenberg
and Maskin (1986, "The Folk Theorem in Repeated Games with Discounting or
with Incomplete Information." Econometrica, pp. 533�554) and has not been
improved on since. That is the �rst general folk theorem for repeated games and
a seminal paper. They had to address this point, but I�m not very comfortable
with the only feasible solution.
The main reason I am not comfortable is because it is obviously not generic�

or it will not work if we are slightly wrong about either a player�s discount
factor or their payo¤s in the stage game.5 In general all of the equilibria I
have discussed are very strong. If players are patient enough these equilibria
will withstand any re�nement in the literature, and they certainly are generic.
These equilibria don�t even withstand that minimal test.

5Normal mixed strategy Nash equilibria do, this has been carefully proven.
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