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I bet you didn’t believe me when I said that Math was a minimalist art, and
that therefore everything we would learn would fit into one tiny, tidy, little ball.
Oh though of little faith. Really all we’ve been doing has been doing has been
directed towards one objective: finding the top of the hill.

Finding the top of the hill is pathetically easy in one dimension, it’s the
combination of two insights.

1. The Ant Rule: At the top of the hill the ground is always flat (f ′ (x) = 0).

2. The slope of the hill is decreasing in every direction ( d
dx
f ′ (x) = f ′′ (x) ≤

0).

But, when you think about it, most "hills" are actually made up of a bunch
of tiny hill-ets, do you get to say you climbed Mount Everest when you get to
the first point which satisfies these conditions? Boy, you are annoying, so what?
I am a mathematician, what do I have to care about how many peaks there are?
Oh, you want to be sure you have the global maximum? I don’t care about that,
I’ve found beautiful local conditions that say that at least in the area this point
is a maximum–I’ll leave it to you silly people to find the global maximum.1

Summary 1 If f ′ (x) = 0 ≥ f ′′ (x) then f (x) is a local maximum, and x a
local maximizer.

We also care about the maximizer, to be specific consider the following
extension. We have control variable, a, how is x (a) going to change? One
method is to solve for the explicit function x (a). Yea, right, like that’s going
to happen very often. Of course it generally will for any problem we give you–
because we will search for a function where it’s true–but in reality? No. To
be precise we will be maximizing f (x, a) over x, and we will have the implicit
function:

∂f

∂x
(x∗ (a) , a) = 0

and we’ll want to know when x∗ (a) exists. The answer to this question is to
use the first fundamental theorem of calculus.

Theorem 2 (First Fundamental Theorem of Calculus) If we know f (x)
for one x, and we know f ′ (x) then:

f (y) = f (x) +

y∫

x

f ′ (z) dz

1Try making some assumptions that I will then proceed to laugh at and give counter-
examples to.
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So we use this as:

Theorem 3 (Implicit Function Theorem, 15.1) If ∂f
∂x
(x, a) is a C1 func-

tion on a ball about (x0, a0) then if ∂2f
∂x2

�= 0 there is a function such that
x (a0) = a0 and

x (a) = x (a0) +

a∫

a0

∂f/∂a

∂2f/∂x2
dz .

If we can find out that for all x, ∂
2f
∂x2

�= 0, then we know that there is a global

implicit function. OK, so we need ∂2f
∂x2

≤ 0 for x to be a maximum, and we need
∂2f
∂x2

�= 0 in order to have an implicit function... Combined that would mean

if ∂2f
∂x2

< 0 then we have a global implicit function, right?2 Isn’t it interesting
that this is equivalent to having a strictly concave function for f? Couldn’t
this be why we usually assume (strict) concavity? What is concavity and strict
concavity?

Definition 4 A function of n variables, f is

1. Concave if for all x ∈ Rn, y ∈ Rn, x �= y and 0 ≤ λ ≤ 1

f (λx+ (1− λ) y) ≥ λf (x) + (1− λ) f (y)

2. Strictly concave if for all x ∈ Rn, y ∈ Rn, x �= y and 0 < λ < 1

f (λx+ (1− λ) y) > λf (x) + (1− λ) f (y)

2You may notice a difference between what I wrote and what the book wrote. The reason
they don’t write it this was is that complicated derivative has to be evaluated at (x (a) , a),
which is very hard. I wrote it this way so you could see the equivalence to the First Funda-
mental Theorem of Calculus.
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In order to understand these definitions it’s useful to look at a graph:
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This is the function exp
(
− (x− 3)2

)
for x ∈ [0, 3.2]. It is concave when

x ≥ 2.29 and convex before that. So a line between exp
(
− (2.3− 3)2

)
and

exp
(
− (3.2− 3)2

)
is always below the function because it is concave in that

region and a line between exp
(
− (0− 3)2

)
and exp

(
− (1.5− 3)2

)
is always

above the function because it’s not concave.

Example 5 Profit maximization over one variable.
Let’s ignore the fact that profit can’t be below zero and that labor has to be

demanded in a positive amount. Then the profit function is:

π (L) = pf (L)−wL (1)

And using the ant-rule we know that:

pf ′ (L)−w = 0 (first order condition) (2)

pf ′′ (L) ≤ 0 (second order condition)

at any maximum. So, what can we find out about the input demand, L (p,w)?
For this function we have the implicit function:

pf ′ (L (p,w))−w = 0 (3)
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so we can easily use the chain rule:

∂

∂p
(pf ′ (L (p,w))−w) =

∂

∂p
(0) (4)

f ′ (L (p,w)) + pf ′′ (L (p,w))
∂L

∂p
= 0

∂L

∂p
= −

f ′ (L (p,w))

pf ′′ (L (p,w))
.

likewise for w:

∂

∂w
(pf ′ (L (p,w))−w) =

∂

∂w
(0) (5)

pf ′′ (L (p,w))
∂L

∂w
− 1 = 0

∂L

∂w
=

1

pf ′′ (L (p,w))

which tells us that as long as pf ′′ (L (p,w)) �= 0 these derivatives exist. Com-
bined with the second order condition (pf ′′ (L (p,w)) ≤ 0) we realize that as long
as f ′′ (L (p,w)) < 0 then these always exist, and we can also see that ∂L

∂p
> 0

and ∂L
∂w

< 0. Of course it’s exact value will depend on the function, but that’s
pretty exciting because it’s so general. We know that either the implicit function
doesn’t exist (f ′′ (L (p,w)) = 0) or that input demand is increasing in output
price and decreasing in input price.

1 UnconstrainedMaximization with nVariables.

It’s actually fairly simple to convert these two criteria for local maxima into
a criterion for n variables, but unfortunately both of these conditions are now
in terms of matrices. It’s fairly obvious that the ground must be flat in every
direction that we need to go, or ∂f/∂xi = 0 for i = (1, 2, 3, ..., n), equivalently
the gradient of f is equal to zero, denoted �f = 0. This brings us to one of the
three important technical definitions for this test.

Definition 6 The gradient of a function of n variables (f) is the first deriv-
atives of f with regards to each of the variables written as a vector or column
matrix, and is denoted �f .

�f =

[
∂f

∂xi

]

i=1...n

=






∂f
∂x1
∂f
∂x2
...
∂f
∂xn






But what are the second order conditions? To understand this we have to
remember the Taylor Series.
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Definition 7 The Taylor Series says that:

f (x+ v) = f (x) + vT � f (x) +
1

2
vTD2f (x) v + ε

(
||v||

3
)

where D2f is the Hessian of f , and ε
(
||v||3

)
is a function which goes to zero

much faster than the rest of the terms as ||v||3 → 0.

This brings us to the second important technical term:

Definition 8 The Hessian of a function of n variables (f) is the n×n matrix
of second derivatives, and is denoted D2f .

D2f =

[
∂2f

∂xi∂xj

]j=1...n

i=1...n

=






∂2f
∂x1∂x1

∂2f
∂x1∂x2

... ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2∂x2

... ∂2f
∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

... ∂2f
∂xn∂xn






Now if x is a local maximum we know two things. First for every v �= 0
f (x+ v) ≤ f (x), second �f (x) = 0 (it is implicit that when I write a vector
is equal to zero that the "zero" is vector of the same size–in this case both are
n.) So we know that:

f (x+ v) = f (x) +
1

2
vTD2f (x) v + ε

(
||v||3

)
≤ f (x) (6)

for every v �= 0, or:

1

2
vTD2f (x) v + ε

(
||v||3

)
≤ f (x)− f (x) (7)

and as ||v||3 → 0 this means that:

1

2
vTD2f (x) v ≤ 0 , (8)

or that D2f (x) is negative semidefinite. Oh no, what does this mean? Well the
"semi" is a problem, just like before, so let’s ignore it and focus on the negative
definite, which means 1

2v
TD2f (x) v < 0. (Just like in one dimension, we rule

out the = 0 possibility. It’s important that that’s all we know, but it is such a
headache in both cases.) From chapter 16 we learn that:

Definition 9 For an n× n symmetric matrix, A, a leading principal sub-
matrix (Ak) for k = (1, 2, 3, ..., n) is the matrix created by dropping the
last n− k rows and columns.

Definition 10 A leading principal minor is det (Ak) for k = (1, 2, 3, ..., n).
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Theorem 11 Let A be an n× n symmetric matrix:

1. A is negative definite if and only if the sign of det (Ak) is the same as

(−1)
k
and not equal to zero.

2. A is negative definite if and only if −A is positive definite. −A is positive
definite if det (−Ak) is strictly positive.

Summary 12 If f (x) is a local maximum then �f = 0 and it is sufficient that
D2f (x) is negative definite.

This means ∂f
∂xi

= 0 and det
(
−D2fi

)
> 0 for i = (1, 2, 3, ..., n)

And I promise you that you don’t really need to worry about the necessary
conditions for f to be a maximum. I might ask this for an abstract question as
a way to separate the star students from the crowd, but it’s just too complex in
general. If we assume D2f (x) is strictly negative definite then we have n first
order conditions ( ∂f

∂xi
= 0) and n second order conditions (det

(
−D2fi

)
> 0).

Unfortunately the second order conditions are now about determinants, and
that’s a hideous formula, but that’s the only way multiple variable optimization
is more complicated than one variable optimization.

1.1 The Implicit Function Theorem

So... now we need to work up to the implicit function theorem in n variable
problems. It’s not actually that hard, we have the system of equations now:

�f (x, a) = 0 (9)

and we take the total differential of this system of equations with regards to
(x, a) and get:

D2f (x, a) dx+
∂

∂a
� f (x, a) da = 0 (10)

dx

da
= −

[
D2f (x, a)

]−1 ∂

∂a
� f (x, a) (11)

Wasn’t that simple? OK, so you didn’t understand that at all. I don’t blame
you. Let’s take the complete differential of the first order condition:

∂f (x, a)

∂x1
= 0(12)

∂2f (x, a)

∂x1∂x1
dx1 +

∂2f (x, a)

∂x1∂x2
dx2 + ...+

∂2f (x, a)

∂x1∂xn
dxn +

∂2f (x, a)

∂x1∂a
da = 0

Now it should be clear that we have to do this with regards to each first order
condition, simultaneously, or we would be goofing up. The terms multiplied by

dx = [dxi]i=1...n =






dx1
dx2
...

dxn






(13)
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will then be D2f (x, a). The terms multiplied by da will be:

∂

∂a
� f (x, a) =

[
∂2f (x, a)

∂xi∂a

]

i=1...n

=






∂2f(x,a)
∂x1∂a
∂2f(x,a)
∂x2∂a
...

∂2f(x,a)
∂xn∂a





. (14)

Given these steps, as long as D2f (x, a)−1 exists (or, in short, det
(
D2f (x, a)

)
�=

0) then

dx

da
=

[
dxi
da

]

i=1...n

=






dx1
da
dx2
da
...

dxn
da






(15)

is dx
da
= −

[
D2f (x, a)

]−1 ∂
∂a
�f (x, a), as stated in Equation 11. This is Theorem

15.7 from the text.
But how do we solve for dxi

da
? To do that I recommend using Crammer’s

Rule. I’m not saying that you can’t do it by inverting the matrix if you so
fancy, I’m just saying this is the standard methodology.

Theorem 13 (Cramer’s Rule, 9.4) Let A be n×n non-singular matrix (det (A) �=
0) and Bi be the matrix A with the i’th column replaced by the n element vector
b. Then the solution to Ax = b is

xi =
det (Bi)

det (A)
.

Here b = − ∂
∂a
� f (x, a), A = D2f (x, a) and xi =

dxi
da

. I hope in this setting
you can understand why this is such a common tool, specifically the fact that x
is a maximum means that we know at least the sign of det

(
D2f (x, a)

)
. Please

remember that it depends on how many variables you are maximizing over, if
its 2 then this determinant is positive, if its three it’s negative, and so on. But
in essence this makes things a lot simpler. It’s also not that unusual for us to
care about some of the terms, like for example ∂L

∂w
.

Example 14 Two input profit maximization.
Again we’re going to ignore that profits, labor, and capital all need to be

positive (or zero) and just look at the simple case of maximizing profits over two
inputs, labor and capital:

π (L,K) = pf (L,K)−wL− rK (16)

the first order conditions are:

p
∂f (L,K)

∂L
−w = 0 (17)

p
∂f (L,K)

∂K
− r = 0
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Now notice that ∂f(L,K)
∂L

= w
p
> 0 and ∂f(L,K)

∂K
= r

p
> 0 in this situation, our

Hessian is:

H =

[
p ∂

2f
∂L2

p ∂2f
∂L∂K

p ∂2f
∂L∂K

p ∂
2f

∂K2

]

(18)

and our second order conditions are that p ∂
2f
∂L2

≤ 0 and det

[
p ∂

2f
∂L2

p ∂2f
∂L∂K

p ∂2f
∂L∂K

p ∂
2f

∂K2

]

≥

0 or p2
(
∂2f
∂L2

∂2f
∂K2 −

(
∂2f
∂L∂K

)2)
≥ 0. (We also have, with a little analysis, that

p ∂
2f

∂K2 ≤ 0.) Now we want to find out all the partial effects so we take the
differential of this system of equations:
[

p ∂
2f
∂L2

p ∂2f
∂L∂K

p ∂2f
∂L∂K

p ∂
2f

∂K2

][
dL
dK

]
+

[
∂f
∂L
∂f
∂K

]
dp−

[
1
0

]
dw −

[
0
1

]
dr = 0 (19)

In order to find out the partial effects we have to first have detH = p2
(
∂2f
∂L2

∂2f
∂K2 −

(
∂2f
∂L∂K

)2)
>

0 and then we can see that:

∂L

∂w
=

1

detH
det

[
1 p ∂2f

∂L∂K

0 p ∂
2f

∂K2

]

=
p ∂

2f
∂K2

p2
(
∂2f
∂L2

∂2f
∂K2 −

(
∂2f
∂L∂K

)2) ≤ 0 (20)

∂K

∂w
=

1

detH
det

[
p ∂

2f
∂L2

1

p ∂2f
∂L∂K

0

]

= −
p ∂2f
∂L∂K

p2
(
∂2f
∂L2

∂2f
∂K2 −

(
∂2f
∂L∂K

)2)

who’s sign depends on ∂2f
∂L∂K

, like it sensibly should. We can further see that:

∂K

∂r
= −

p ∂
2f
∂L2

p2
(
∂2f
∂L2

∂2f
∂K2 −

(
∂2f
∂L∂K

)2) ,
∂L

∂r
=

p ∂2f
∂K∂L

p2
(
∂2f
∂L2

∂2f
∂K2 −

(
∂2f
∂L∂K

)2) ≤ 0

(21)
by the same analysis, and finally that:

∂L

∂p
=

1

detH
det

[
− ∂f
∂L

p ∂2f
∂L∂K

− ∂f
∂K

p ∂
2f

∂K2

]

=
−p

detH

(
∂f

∂L

∂2f

∂K2
−
∂f

∂K

∂2f

∂L∂K

)
(22)

interestingly enough, this will not necessarily have a sure sign. It will be positive

if ∂2f
∂L∂K

≤ 0–or the two inputs are substitutes–but we can’t be sure if they are
compliments.

Example 15 Profit Maximization with Cobb-Douglass production function.
If f (L,K) = LαKβ = Q then our first order conditions become:

pα
Q

L
−w = 0

pβ
Q

K
− r = 0
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and we realize right away that we have to have α > 0 and β > 0 if we want
K∗ > 0 and L∗ > 0. To find the second order conditions it is best to write
∂f
∂L
= αLα−1Kβ and ∂f

∂K
= βLαKβ−1. Notice these are the same as the ones I

wrote above, it’s just easier to take the second derivatives. When we do this we
find that:

H =

[
p ∂

2f
∂L2

p ∂2f
∂L∂K

p ∂2f
∂L∂K

p ∂
2f

∂K2

]

=

[
pα (α− 1) Q

L2
pαβ Q

LK

pαβ Q
LK

pβ (β − 1) Q
K2

]

and in order for this to be negative definite we need pα (α− 1) Q
L2

< 0, or α < 1,
and

det

[
pα (α− 1) Q

L2
pαβ Q

LK

pαβ Q
LK

pβ (β − 1) Q
K2

]
=

p2Q2

K2L2
αβ (1− α− β) > 0

which means that we have to have (1− α− β) > 0. Now clearly we could figure
out the explicit function of L and K in terms of (p,w, r)—but who wants to?
It’s much more fun to find the partial derivatives using the implicit function
theorem.

∂L

∂w
=

1

detH
det

[
1 pαβ Q

LK

0 pβ (β − 1) Q
K2

]
=

pβ (β − 1) Q
K2

p2Q2

K2L2
αβ (1− α− β)

= −
L2

Qpα

1− β

1− α− β
< 0

∂K

∂w
=

1

detH
det

[
pα (α− 1) Q

L2
1

pαβ Q
LK

0

]
=

− 1
KL

Qpαβ
p2Q2

K2L2
αβ (1− α− β)

= −
LK

Qp

1

1− α− β
< 0

In this case, as you would expect, when you increase the sales price both of the
inputs increase.

∂L

∂p
=

1

detH
det

[
−αQ

L
pαβ Q

LK

−β Q
K

pβ (β − 1) Q
K2

]
=

1
K2L

Q2pαβ
p2Q2

K2L2
αβ (1− α− β)

=
L

p

1

(1− α− β)
> 0

∂K

∂w
=

1

detH
det

[
pα (α− 1) Q

L2
−αQ

L

pαβ Q
LK

−β Q
K

]
=

1
KL2

Q2pαβ
p2Q2

K2L2
αβ (1− α− β)

=
K

p

1

(1− α− β)
> 0

OK, not only has this helped you see how these things might work in practice
but you’ve realized the constraints we usually place on α and β are necessary.
In order to have the results we want we must have α ∈ (0, 1), β ∈ (0, 1) and
α+ β < 1. It’s a pain in the neck, but we need them all.

2 Constrained Maximization with n Variables.

Wouldn’t be nice if we could stop now? But you notice that every time I did
profit analysis I said we should ignore some constraints. Specifically these are
π (L∗,K∗) ≥ 0, L∗ ≥ 0, and K∗ ≥ 0. Constrained maximization is by far the
more common, and unfortunately life gets a bit more complicated. I will only
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talk about the case where we have k constraints of the form gj (x) ≤ bj and
xi ≥ 0 (j = (1, 2, 3, ..., k), i = (1, 2, 3, ..., n)). In this case we have the function:

KT (λ, x) = f (x)−
k∑

j=1

λj (gj (x)− bj) . (23)

The book shows that λj ≥ 0.3 This means that we are maximizing this over
the case λj ≥ 0 and xi ≥ 0. This gives rise to the complimentary slackness
conditions:

∂KT

∂xi
≤ 0, xi ≥ 0, xi

∂KT

∂xi
= 0 (24)

∂KT

∂λj
≥ 0, λj ≥ 0, λj

∂KT

∂λj
= 0 (25)

The first order conditions for the constraints (equations 25) are fairly obvious.
∂KT
∂λj

= − (gj (x)− bj), we must always have gj (x) − bj ≤ 0, so ∂KT
∂λj

≥ 0.

Furthermore:

1. If gj (x) < bj then the constraint is not binding and λj = 0, so
∂KT
∂λj

> 0,

λj
∂KT
∂λj

= 0.

2. If gj (x) = bj then λj > 0 but ∂KT
∂λj

= 0, so again we have λj
∂KT
∂λj

= 0.

3To see this you have to refer to Theorem 14.2, consider maximizing: hj (t) = gj (x+ tv)
over v, then the v that maximizes this expression is �gj (x). This means that �gj (x) is
pointing out of the set in which gj (x) ≤ bj . If �f does not point in the same direction as
�gj (x) then it is pointing into the area where gj (x) < bj , and λj = 0. If it is pointing in the
same direction then λj > 0.

10



It is essentially the same with regards to the xi’s consider a one dimensional

problem with xi ≥ b. To be concrete look at exp
(
− (x− 3)2

)
again.
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This function has the first derivative: f ′ (x) = −e−(x−3)
2

(2x− 6), and while
it is not concave it does have a unique maximum when f ′ (x) = 0 or x = 3.
If b = 1 (the left hand line) it’s obvious that the maximum is achieved at the
unconstrained maximum, x = 3. so in this case we have x∗ > b and f ′ (x∗) = 0.
On the other hand if b = 4 (the right hand line) then we have x∗ = 4 and

f ′ (4) = −e−(4−3)
2

(2 (4)− 6) = −2e−1 = −0.735 76 < 0. So in both cases we
have (x∗ − b) f ′ (x∗) = 0, f ′ (x∗) ≤ 0, x∗ − b ≥ 0. In Section 18.6 they explain
it based on the Lagrangian when xi ≥ 0 is included as an additional constraint.

So, that’s not that much more difficult, but what about the second order
conditions? Well first of all we drop variables where either ∂KT

∂xi
< 0 or ∂KT

∂λj
> 0.

These are variables where a small change in the objective is not going to change
the fact that xi = 0 or λj = 0. Now we face an additional constraint, which is
that we have to make sure our constraints are satisfied. To do this we need to
make sure that (for the binding constraints, let this be 1....k0) the Jacobian:

Dg =






∂g1
∂x1

∂g1
∂x2

... ∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

... ∂g2
∂xn

...
...

. . .
...

∂gk0
∂x1

∂gk0
∂x2

...
∂gk0
∂xn






(26)

is such that:
Dgv = 0 (27)
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The reason for this goes back to the Taylor series again. Notice that we can
also write the Taylor series as:

f (x+ v) = f (x) + vT � f (x) + ε
(
||v||2

)
(28)

and again, for small ||v|| the second term is trivial. Thus when we change v
by a small amount we want to make sure that it doesn’t change the value of
[gj ]j=1...n.

But what is the Jacobian? This is the third important technical definition.

Definition 16 The Jacobian of a function g is the transpose of the gradient,
or the matrix of first derivatives written as a row matrix:

Dg =

[
∂g

∂xi

]i=1...n
=
[

∂g
∂x1

∂g
∂x2

... ∂g
∂xn

]
. (29)

It is understand that the difference between a row matrix and a column matrix
(vector) is that the former is a constraint, while the latter is a vector of variables.
For a sequence of functions, (gj)j=1...k0 the Jacobian is the matrix in equation
26.

We now have our result, which is:

Theorem 17 (19.6) Assume all constraints are binding and that all variables
are strictly greater than zero. If (λ∗, x∗) is critical point of KT (λ, x) then it is
a maximum if for all v �= 0 such that Dgv = 0, then vTD2

xKTv < 0. Where

D2
xKT =

[
∂2KT
∂xi∂xj

]j=1...n

i=1...n
or that the last n− 2m leading principal minors of:

D2KT =

[
0 Dg

DgT D2
xKT

]
(30)

have the correct sign. These signs can be found in Theorem 16.4.
If only k0 constraints are binding then there must be at least n0 ≥ k0 variables

with binding first order conditions, and the results of the theorem hold if n0 > k0.
If n0 = k0 then there is only one possible solution, and it must be the maximum.

But, folks, this is ridiculous, because I promise you that you will only have
to check second order conditions for functions of two variables with one binding
first order condition. In that case:

Theorem 18 Assume (µ∗, x∗, y∗) are a critical point of:

L (µ, x, y) = f (x, y)− µ (h (x, y)− c) (31)

then it is a maximum if

det






0 −∂h
∂x

−∂h
∂y

−∂h
∂x

∂2f
∂x2

− µ∂
2h
∂x2

∂2f
∂x∂y

− µ ∂2h
∂x∂y

−∂h
∂y

∂2f
∂x∂y

− µ ∂2h
∂x∂y

∂2f
∂x2

− µ∂
2h
∂y2




 > 0 (32)

if the determinant is strictly negative then it is a minimum.
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Example 19 Cost minimization:
Consider the classic problem of minimizing cost (wL+ rK) such that output

is above some given level (f (L,K) ≥ Q). Then the objective function we want
to minimize is:

KT (λ,L,K) = wL+ rK − λ (f (L,K)−Q) (33)

where we have the usual constraints λ ≥ 0, L ≥ 0, K ≥ 0. The first order
conditions are:

∂KT

∂λ
= − (f (L,K)−Q) ≥ 0, λ ≥ 0, λ

∂KT

∂λ
= 0 (34)

∂KT

∂L
= w − λ

∂f

∂L
≤ 0, L ≥ 0, L

∂KT

∂L
= 0

∂KT

∂K
= r − λ

∂f

∂K
≤ 0, K ≥ 0, K

∂KT

∂K
= 0

assuming that λ > 0, L > 0 and K > 0 we have:

det
(
D2KT

)
= det






0 − ∂f
∂L

− ∂f
∂K

− ∂f
∂L

−λ ∂
2f
∂L2

−λ ∂2f
∂L∂K

− ∂f
∂K

−λ ∂2f
∂L∂K

−λ ∂2f
∂K2




 < 0 (35)

which is actually:

det
(
D2KT

)
= λ

((
∂f

∂L

)2
∂2f

∂K2
− 2

∂2f

∂L∂K

∂f

∂L

∂f

∂K
+

(
∂f

∂K

)2
∂2f

∂L2

)

< 0 (36)

I don’t expect you to understand that, but later on I’ll want to refer back to it.
Now let’s find the implicit functions. We now have three variables, one of

which we don’t care at all about (λ) but we still have to keep track of it. The
total differential of our first order conditions is:





0 − ∂f
∂L

− ∂f
∂K

− ∂f
∂L

−λ ∂
2f
∂L2

−λ ∂2f
∂L∂K

− ∂f
∂K

−λ ∂2f
∂L∂K

−λ ∂2f
∂K2









dλ
dL
dK



+




1
0
0



dQ+




0
1
0



dw +




0
0
1



 dr

(37)
And using Crammer’s Rule we see that:

∂L

∂w
=

1

det (D2KT )
det






0 0 − ∂f
∂K

− ∂f
∂L

−1 −λ ∂2f
∂L∂K

− ∂f
∂K

0 −λ ∂2f
∂K2




 =

1

det (D2KT )

(
−
∂f

∂K

)
det

[
− ∂f
∂L

−1

− ∂f
∂K

0

]
(38)

= −
1

−det (D2KT )

(
∂f

∂K

)2
< 0

∂K

∂w
=

1

det (D2KT )
det






0 − ∂f
∂L

0

− ∂f
∂L

−λ ∂
2f
∂L2

−1

− ∂f
∂K

−λ ∂2f
∂L∂K

0




 =

1

det (D2KT )

(
∂f

∂L

)
det

[
− ∂f
∂L

−1

− ∂f
∂K

0

]

=
1

−det (D2KT )

(
∂f

∂L

)(
∂f

∂K

)
> 0
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and I’m not going to bother finding ∂L
∂r

and ∂K
∂r

, it should be fairly obvious.

∂L

∂Q
=

1

det (D2KT )
det






0 −1 − ∂f
∂K

− ∂f
∂L

0 −λ ∂2f
∂L∂K

− ∂f
∂K

0 −λ ∂2f
∂K2




 (39)

=
1

det (D2KT )

(

det

[
− ∂f
∂L

−λ ∂2f
∂L∂K

− ∂f
∂K

−λ ∂2f
∂K2

]

−
∂f

∂K
det

[
− ∂f
∂L

0

− ∂f
∂K

0

])

=
1

det (D2KT )
λ

(
∂f

∂L

∂2f

∂K2
−
∂f

∂K

∂2f

∂L∂K

)

notice the similarity to ∂L
∂p

in equation 22, again it is not sure, if you increase
output you may not increase your demand for labor though you will increase
either the demand for labor or capital.

Example 20 Cost Minimization with Cobb-Douglass. Then the first order con-
ditions become:

∂KT

∂λ
= −

(
LαKβ −Q

)
≥ 0, λ ≥ 0, λ

∂KT

∂λ
= 0 (40)

∂KT

∂L
= w − λα

Q

L
≤ 0, L ≥ 0, L

∂KT

∂L
= 0

∂KT

∂K
= r − λβ

Q

K
≤ 0, K ≥ 0, K

∂KT

∂K
= 0

and first of all it’s obvious that λ = 0 can not be a solution, because then
∂KT
∂L

= w > 0. So if λ > 0 and Q > 0 can either L or K equaling zero? This
is going to get a little technical, because I haven’t assumed that α > 0. First,
if α < 0 then ∂KT

∂L
= w − λαQ

L
> 0, so we must have α > 0. Likewise we

must have β > 0. Given this if either L = 0 or K = 0 then LαKβ = 0 and
LαKβ < Q. Therefore we conclude that λ > 0, L > 0, K > 0. Our first order
conditions are:

−
(
LαKβ −Q

)
= 0 (41)

w − λα
Q

L
= 0

r − λβ
Q

K
= 0

Now what are our second order conditions? To find them it is better to write
αQ
L
= αLα−1Kβ and β Q

K
= βLαKβ−1. Then our second order conditions are:

D2KT =




0 −αQ

L
−β Q

K

−αQ
L

−λα (α− 1) Q
L2

−λαβ Q
LK

−β Q
K

−λαβ Q
LK

−λβ (β − 1) Q
K2



 (42)
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And

det




0 −αQ

L
−β Q

K

−αQ
L

−λα (α− 1) Q
L2

−λαβ Q
LK

−β Q
K

−λαβ Q
LK

−λβ (β − 1) Q
K2



 = −
Q3λ

K2L2
αβ (α+ β) < 0

(43)
this will always be true as long as α > 0 and β > 0, so we never have to worry
about it. Now we could solve directly for L (w, r,Q) and K (w, r,Q) but what
would be the fun in that? I would rather figure out the derivatives using the
implicit function theorem:

∂L

∂w
=

1

detD2KT
det




0 0 −β Q

K

−αQ
L

−1 −λαβ Q
LK

−β Q
K

0 −λβ (β − 1) Q
K2



 =
1
K2Q

2β2

− Q3λ
K2L2

αβ (α+ β)
= −

L2

Qλ

β

α (α+ β)
(44)

∂K

∂w
=

1

detD2KT
det




0 −αQ

L
0

−αQ
L

−λα (α− 1) Q
L2

−1

−β Q
K

−λαβ Q
LK

0



 =
− 1
KL

Q2αβ

− Q3λ
K2L2

αβ (α+ β)
=
LK

Qλ

1

(α+ β)
.

Wasn’t that fun? And in this case both inputs increase when the output does:

∂L

∂Q
=

1

detD2KT
det




0 −1 −β Q

K

−αQ
L

0 −λαβ Q
LK

−β Q
K

0 −λβ (β − 1) Q
K2



 =
− 1
K2L

Q2αβλ

− Q3λ
K2L2

αβ (α+ β)
=
L

Q

1

(α+ β)
(45)

∂K

∂Q
=

1

detD2KT
det




0 −αQ

L
−1

−αQ
L

−λα (α− 1) Q
L2

0

−β Q
K

−λαβ Q
LK

0



 =
− 1
KL2

Q2αβλ

− Q3λ
K2L2

αβ (α+ β)
=
K

Q

1

(α+ β)
.

Notice that, in contrast to profit maximization, with cost minimization our only
constraints are that α > 0 and β > 0.

Example 21 Utility Maximization, both in general and for the Cobb-Douglass.
Why do I hate consumer theory? I can explain it to you by doing classic

utility maximization problem:

KT (λ, x, y) = u (x, y)− λ (px+ qy − I) (46)

assume an interior solution and a binding constraint.

∂KT

∂λ
= − (px+ qy − I) ≥ 0, λ ≥ 0, λ

∂KT

∂λ
= 0 (47)

∂KT

∂x
=

∂u

∂x
− λp ≤ 0, x ≥ 0, x

∂KT

∂x
= 0

∂KT

∂y
=

∂u

∂y
− λq ≤ 0, y ≥ 0, y

∂KT

∂y
= 0

And my Hessian is:

D2KT =






0 −p −q

−p ∂2u
∂x2

∂2u
∂x∂y

−q ∂2u
∂x∂y

∂2u
∂y2




 (48)
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Now this is pretty mysterious, since it includes prices. It is better to analyze it
by recognizing that from the first order conditions p = 1

λ
∂u
∂x

and q = 1
λ
∂u
∂y

. Then

D2KT =






0 − 1
λ
∂u
∂x

− 1
λ
∂u
∂y

− 1
λ
∂u
∂x

∂2u
∂x2

∂2u
∂x∂y

− 1
λ
∂u
∂y

∂2u
∂x∂y

∂2u
∂y2




 (49)

This should look pretty familiar, except that

[
∂2u
∂x2

∂2u
∂x∂y

∂2u
∂x∂y

∂2u
∂y2

]

is not multiplied

by −1 it’s pretty much the same matrix as for cost minimization. Indeed the
condition for a maximum is the same:

detD2KT = −
1

λ2

[(
∂u

∂y

)2
∂2u

∂x2
− 2

∂u

∂x

∂u

∂y

∂2u

∂x∂y
+

(
∂u

∂x

)2
∂2u

∂y2

]

> 0 (50)

(
∂u

∂y

)2
∂2u

∂x2
− 2

∂u

∂x

∂u

∂y

∂2u

∂x∂y
+

(
∂u

∂x

)2
∂2u

∂y2
< 0

now let’s do the same comparative statics exercise. Let’s look at the impact of
p on the demand for x:

D2KT




dµ
dx
dy



 =




x
λ
0



 dp (51)

∂x

∂p
=

1

detD2KT
det






0 x − 1
λ
∂u
∂y

− 1
λ
∂u
∂x

λ ∂2u
∂x∂y

− 1
λ
∂u
∂y

0 ∂2u
∂y2




 (52)

det






0 x − 1
λ
∂u
∂y

− 1
λ
∂u
∂x

λ ∂2u
∂x∂y

− 1
λ
∂u
∂y

0 ∂2u
∂y2




 = 0det

[
λ ∂2u

∂x∂y

0 ∂2u
∂y2

]

− xdet

[
− 1
λ
∂u
∂x

∂2u
∂x∂y

− 1
λ
∂u
∂y

∂2u
∂y2

]

−
1

λ

∂u

∂y
det

[
− 1
λ
∂u
∂x

λ
− 1
λ
∂u
∂y

0

]
(53)

= −x

(
−
1

λ

∂u

∂x

∂2u

∂y2
+
1

λ

∂u

∂y

∂2u

∂x∂y

)
−
1

λ

∂u

∂y

(
∂u

∂y

)

=
1

λ

[

−

(
∂u

∂y

)2
+

(
∂u

∂x

∂2u

∂y2
−
∂u

∂y

∂2u

∂x∂y

)
x

]

and you might be surprised to find out that we can’t determine this sign. The

reason is because of the income effect,
(
∂u
∂x

∂2u
∂y2

− ∂u
∂y

∂2u
∂x∂y

)
x but that’s a topic

for ECON 203. And why I hate utility maximization.
Now let’s look at things when we have the beautiful Cobb-Douglass function,
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u = xαyβ. Our first order conditions are:

− (px+ qy − I) = 0 (54)

α
u

x
− λp = 0

β
u

y
− λq = 0

and while it’s a little harder to prove we still need α > 0 and β > 0, our Hessian
is:

D2KT =




0 − 1

λ
αu
x

− 1
λ
β u
y

− 1
λ
αu
x

α (α− 1) u
x2

αβ u
xy

− 1
λ
β u
y

αβ u
xy

β (β − 1) u
y2



 (55)

detD2KT = det




0 − 1

λ
αu
x

− 1
λ
β u
y

− 1
λ
αu
x

α (α− 1) u
x2

αβ u
xy

− 1
λ
β u
y

αβ u
xy

β (β − 1) u
y2



 =
u3

x2y2
α
β

λ2
(α+ β) > 0

and just like for cost minimization, all we need is that α > 0 and β > 0. What
about the partial derivatives?

∂x

∂p
=

1

detD2KT
det




0 x − 1

λ
β u
y

− 1
λ
αu
x

λ αβ u
xy

− 1
λ
β u
y

0 β (β − 1) u
y2



 =
−u2

y2
β
λ
(α+ β)

u3

x2y2
α β

λ2
(α+ β)

= −
x2λ

u

1

α
< 0(56)

∂y

∂p
=

1

detD2KT
det




0 − 1

λ
αu
x

x
− 1
λ
αu
x

α (α− 1) u
x2

λ
− 1
λ
β u
y

αβ u
xy

0



 =
0

u3

x2y2
α β

λ2
(α+ β)

= 0

Wow, isn’t that weird? Of course if I had solved for the explicit demands:
x = α

α+β
I
p
, y = β

α+β
I
q
, it would have been a little easier to derive this, but my

method is more fun. (And will work when you can’t find those functions—an
important plus.) Just for the fun of it:

∂x

∂I
=

1

detD2KT
det




0 −1 − 1

λ
β u
y

− 1
λ
αu
x

0 αβ u
xy

− 1
λ
β u
y

0 β (β − 1) u
y2



 =
u2

xy2
αβ
λ

u3

x2y2
α β

λ2
(α+ β)

=
xλ

u

1

α+ β
> 0(57)

∂y

∂I
=

1

detD2KT
det




0 − 1

λ
αu
x

−1
− 1
λ
αu
x

α (α− 1) u
x2

0
− 1
λ
β u
y

αβ u
xy

0



 =
u2

x2y
αβ
λ

u3

x2y2
α β

λ2
(α+ β)

=
λy

u

1

α+ β
> 0

Example 22 How to deal with multiple inequality constraints: Barter with a
Transaction Cost.

It is very common to have multiple inequality constraints. I’ve given you a
question like this on a quiz and very well might on the final. And the methodology
is not that difficult, though I haven’t covered it yet in class.
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Consider a model of trading with a transaction cost. It should be obvious
that there is a cost for bring goods to and from the market, let us call this τ and
assume that it is per-unit.

Now a barter model has you start with an initial endowment (x0, y0) and then
your income is just the market prices times this endowment: I = p̃x0 + q̃y0.

But now let’s combine the two, what happens? Now whether you are buying
or selling the good affects the price you face.

Say that you are selling ys > 0 units of good y to buy some good x.
You are going to get q in the market for each unit of ys, but you are going to

have to pay the transportation cost of getting it to the market, so your income
at the market will be (q − τ) ys.

You will use this to buy extra units of x, let’s call this xb, and for each of
these units you will first pay a price p then pay τ to get it home.

Thus for xb ≥ 0 and ys ≥ 0 your budget constraint is:

(p+ τ)xb ≤ (q − τ) ys (58)

Now
ys = y0 − y∗ (59)

where y∗ is the desired final consumption of y.

xb = x∗ − x0 (60)

so we can rewrite this budget constraint as:

(p+ τ) (x∗ − x0) ≤ (q − τ) (y0 − y∗) (61)

(p+ τ)x∗ + (q − τ) y∗ ≤ (p+ τ)x0 + (q − τ) y0

Which is a much more natural form, and allows us to write

Ix = (p+ τ)x0 + (q − τ) y0 (62)

where the x is to make sure that we remember that we are buying x and selling
y.

Reversing the logic, consider a case where we sell x and buy y then:

(q + τ) yb ≤ (p− τ)xs (63)

(q + τ) (y∗ − y0) ≤ (p− τ) (x0 − x∗)

(p− τ)x∗ + (q + τ) y∗ ≤ (p− τ)x0 + (q + τ) y0

so Iy = (p− τ)x0 + (q + τ) y0. Thus our Kuhn-Tucker function is:

KT (λx, λy, x, y) = U (x, y)−λx ((p+ τ)x+ (q − τ) y − Ix)−λy ((p− τ)x+ (q + τ) y − Iy)
(64)

Now let’s consider a specific example, and think about what the solution could
be. Say that (x0, y0) = (40, 40), and (p, q, τ) = (3, 3, 1) then the two constraints
are:

4x+ 2y ≤ 240 (65)

2x+ 4y ≤ 240
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Let’s graph these constraints and consider what we might find.

0 10 20 30 40 50 60 70 80 90 100 110 120
0
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The light lines are the two constraints, the boundary of the true feasible points is
the heavy dark line. Now, assuming utility is strictly monotonic/more is better,
obviously we are going to be on one of the budget constraints. But which one?
Well one way we could approach it is to solve the problem as if we had only one
of the budget constraints. If we found the solution was like one of the circles,
then that would be fine. On the other hand if we found it was like one of the
crosses it would not work out. For example, at the lower cross we are buying x
and selling y, but the prices we are considering assume we will sell x and buy
y. So that doesn’t work. So, how would we know that we have actually found
the optimal point? It would be something like the following:

1. Assume your budget constraint is (p− τ)x∗ + (q + τ) y∗ ≤ (p− τ)x0 +
(q + τ) y0, let (x

∗, y∗) be the optimum. If (p+ τ)x∗+(q − τ) y∗ ≤ (p+ τ)x0+
(q − τ) y0 then you were right, and this is the optimum. If (p+ τ)x∗ +
(q − τ) y∗ > (p+ τ)x0 + (q − τ) y0 continue.

2. Assume your budget constraint is (p+ τ)x∗ + (q − τ) y∗ ≤ (p+ τ)x0 +
(q − τ) y0, let (x

∗, y∗) be the optimum. If (p− τ)x∗+(q + τ) y∗ ≤ (p− τ)x0+
(q + τ) y0 then you were right, and this is the optimum. If (p− τ)x∗ +
(q + τ) y∗ > (p− τ)x0 + (q + τ) y0 continue.

3. Your optimum is (x0, y0)

And this is general advice for how to proceed on any such problem. First
consider case A, check to see if you are satisfy the other (or all of the other)
constraint(s). Then consider case B, and so on. Only consider multiple con-
straints once every check of one constraint at a time has failed.

19



Let me work through this specific example when u (x, y) = x3y. I will want to
consider different levels for τ , so let me just treat it as a variable. First notice
that (3− τ) 40 + (3 + τ) 40 = 240 for any level of τ , so my initial income will
always be 240. The Kuhn-Tucker function is:

KT (λ1, λ2, x, y) = x3y−λx ((3 + τ)x+ (3− τ) y − 240)−λy ((3− τ)x+ (3 + τ) y − 240)
(66)

with associated first order conditions:

∂KT

∂x
= 3x2y − λx (3 + τ)− λy (3− τ) ≤ 0, x ≥ 0, x

∂KT

∂x
= 0 (67)

∂KT

∂y
= x3 − λx (3− τ)− λy (3 + τ) ≤ 0, y ≥ 0, y

∂KT

∂y
= 0

∂KT

∂λx
= − ((3 + τ)x+ (3− τ) y − 240) ≥ 0, λx ≥ 0, λx

∂KT

∂λx
= 0

∂KT

∂λy
= − ((3− τ)x+ (3 + τ) y − 240) ≥ 0, λy ≥ 0, λy

∂KT

∂λy
= 0

First of all, if λ1 = λ2 = 0 then this would imply x = y = 0 and f (x, y) = 0, but
this obviously can’t be true because (for example) if I contain my endowment my

utility is u = (40)3 40 = 2, 560, 000, so I know that either λ1 > 0 or λ2 > 0 or
both. But considering the numbers involved I don’t want to "compare maxima,"
so I will use the insight above. So if λx > 0 = λy then:

∂KT

∂x
= 3x2y − λx (3 + τ) = 0 (68)

λx =
3x2y

(3 + τ)

λx =
x3

(3− τ)

(3 + τ)x = 3 (3− τ) y

[3 (3− τ) y] + (3− τ) y = 240

y =
1

4

240

(3− τ)
=

60

3− τ

x =
3

4

240

(3 + τ)
=

180

τ + 3

Now does it satisfy the other constraint? Do we have:

(3− τ)x+ (3 + τ) y ≤ 240 (69)

(3− τ)

(
180

τ + 3

)
+ (3 + τ)

(
60

3− τ

)
≤ 240

If τ = 1

(3− τ)

(
180

τ + 3

)
+(3 + τ)

(
60

3− τ

)
= (3− (1))

(
180

(1) + 3

)
+(3 + (1))

(
60

3− (1)

)
= 210

(70)
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so yes, it works. If τ = 2 then:

(3− τ)

(
180

τ + 3

)
+(3 + τ)

(
60

3− τ

)
= (3− (2))

(
180

(2) + 3

)
+(3 + (2))

(
60

3− (2)

)
= 336 > 240

(71)
So I only have to do the other case when τ = 2. I worked it out for general τ ,
so I’m not going to bother setting τ = 2 until I check it.

So in this case λy > 0 = λx and our first order conditions become:

λy =
3x2y

(3− τ)
(72)

λy =
x3

(3 + τ)

3 (3 + τ) y = (3− τ)x

y =
1

4

240

3 + τ
=

60

τ + 3
(73)

x =
3

4

240

3− τ
=

180

3− τ

Does it satisfy the other budget constraint?

(3 + τ)

(
180

3− τ

)
+ (3− τ)

(
60

τ + 3

)
≤ 240 (74)

If τ = 2 then:

(3 + τ)

(
180

3− τ

)
+(3− τ)

(
60

τ + 3

)
= (3 + (2))

(
180

3− (2)

)
+(3− (2))

(
60

(2) + 3

)
= 912

(75)
Whoa. What about when τ = 1?

(3 + τ)

(
180

3− τ

)
+(3− τ)

(
60

τ + 3

)
= (3 + (1))

(
180

3− (1)

)
+(3− (1))

(
60

(1) + 3

)
= 390

(76)
OK, so it fails both time. When τ = 1 I have now confirmed and doubly con-
firmed that the optimum is (x∗, y∗) = (45, 30). When τ = 2 neither the opti-
mization assuming I would sell x or sell y worked, so (x∗, y∗) = (40, 40).

Notice my choosing the case where you buy x was not really by random
chance. I looked at the utility function and said "man, this guy really likes
x," so I went with that option first. Let me point out that since both of my
constraints are linear I could have just considered the problem:

maxx3y − λ (px+ qy − I) (77)
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3x2y − λp = 0 (78)

x3 − λq = 0
1

q
x3 =

3

p
x2y

y =
1

3

p

q
x

px+ q

(
1

3

p

q
x

)
= I (79)

x =
3

4

I

p

y =
1

4

I

q

then plugged in our values of (p, q, I) with the different constraints. It would have
taken less calculation, though I would have had to work with abstract variables.
This should work any time your constraints are from the same family. (Both
quadratic, both linear, things like that.)
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