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The envelope theorem is an extremely simple result. Basically the essence
of the result is that the answer is simple. Let me give you the problem, say
that the price of one good you buy (CDs) increases by a small amount. How
much more money should you ask from your parents so that you won�t su¤er
from this price increase?
Now before I give you the incredibly simple answer let me dwell on why this

seems like a di¢ cult question. The �rst thing to realize is that you are now
going to buy fewer CDs, obviously the price of the good goes up the demand goes
down. Secondly, notice that increasing one good�s price lowers the relative price
of every other good, or from the introductory lecture "everything�s relative."
What this means is that since the relative price of other goods (like DVDs) has
gone down you are going to buy more of them instead of buying CDs. You
might also put o¤ buying that new CD player you�ve been considering, because
now you are going to buy fewer CDs, and etceteras. Basically this one change is
going to set o¤ a long chain of reactions on your part, and so how do we compare
your happiness after all of these reactions to your happiness beforehand?
So, if the price of one good you buy increases by a small amount how much

should your income increase to exactly balance it out?

Enough so that you can still buy the goods you used to buy.

No, surely that�s wrong, I must have cheated somewhere. Heh. I didn�t.
It�s that easy. Let me restate this result using some more technical terminology.
When taking the derivative of an optimized function, it will be the same as

the derivative of the unoptimized function.
When taking the derivative of an optimized function all indirect e¤ects will

disappear, leaving only the direct e¤ect.
When taking the derivative of an optimized function the cost and bene�t

of all other endogenous variables will already be balanced out, leaving only the
direct e¤ect of the variable on the function.
To understand this more clearly let me illustrate it (and prove it) for an

expenditure function. Let us simplify your purchasing decision by assuming
that you only buy CDs (denoted C), DVDs (D), food (F ), and gasoline for
your car (G). Let the price of good x be px (x is either C;D;F; or G). Then
the expenditure minimization problem your parents solve to determine your
allowance is:

I (pc; pd; pf ; pg; �u) = max
�

min
C;D;F;G

pcC+pdD+pfF+pgG�� (U (C;D;F;G)� �u)
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Now let us look at the derivative with respect to pc:
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Anytime one is faced with a very complicated expression like this one should
always collect terms. For example, we have @C

@pc
twice in the above expression.

First it is multiplied by pc, second it is multiplied by ��@U@C . So let�s collect
terms like this:
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Now these expressions should look familiar. Look at the last one, for example,
� @�
@pc

(U (C;D;F;G)� �u). The value �u represents how happy your parents
have decided you should be, after due consideration about their budget and
your siblings and etcetera. If U (C;D;F;G) > �u that means they have goofed
up and ended up making you happier than they have already decided you should
be. If U (C;D;F;G) < �u then they have failed at their goal. So we know that
in any optimal solution U (C;D;F;G)� �u = 0 and there is no impact from @�

@pc
.

In general loook at the �rst order conditions of your parent�s optimization
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problem. �
pc � �

@U

@C

�
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�
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so this means that the derivative in question is:

@I

@pc
= C + (0)

@C

@pc
+ (0)

@D

@pc
+ (0)
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which is only the direct e¤ect. The absolute amount I have to change I in order
to keep you happy is then @I = @pcC, which is exactly what I said it would be
above. Increase the income so that you can still a¤ord to by the same number
of CDs.
That is a formal proof, or if you phrased it more precisely it would be. But I

want to give a slightly more general proof so you can understand how general the
result is. To produce this more general proof I will need an arbitrary function�
F (p; q; r; w;X; Y; Z)� and I will need an optimized version of this function:

H (p; q; r; w) = max
X;Y;Z

F (p; q; r; w;X; Y; Z)

or:
L (p; q; r; w) = min

X;Y;Z
F (p; q; r; w;X; Y; Z)

or a mixture of the two like:

M (p; q; r; w) = max
X
min
Y;Z

F (p; q; r; w;X; Y; Z)

The the envelope theorem states:

Theorem 1 (The Envelope Theorem) If a function like H (p; q; r; w), L (p; q; r; w),
orM (p; q; r; w) is an optimized version of another function like F (p; q; r; w;X; Y; Z)
then the impact of fp; q; r; wg on the function H (�) ; L (�) ; or M (�) is the direct
e¤ect only. I.e. the indirect impact on X;Y and Z can be ignored. Formally
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@L
@r =

@M
@r = @F

@r , and
@H
@w =
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The proof of this is quite simple. Let�s optimize F (p; q; r; w;X; Y; Z) over
X, Y , and Z. The �rst order conditions are:
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= 0
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= 0

whether you are minimizing or maximizing over X, Y , and Z. So we can then
explicitly calculate (for example ) @H@p :
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but since we optimized F (�) we know that @F
@X = @F

@Y = @F
@Z = 0 and this

simpli�es to @H
@p =

@F
@p . And that was a formal proof. That wasn�t so painful

was it?
We use this many di¤erent times in economics. One thing that you won�t

use but is used sometimes in more advanced classes is:

V (pf ; pc) = min
�
max
F;C

U (F;C)� � (pfF + pcC � I)

@V

@pf
= F

the function on the left hand side is the indirect utility function.
Another way you can use it is to calculate "shadow prices." Say that you

want to know the value of an irrigation project to some farmers. In order to
do this you need to �gure out the price they would put on an extra unit of
water, or the marginal bene�t of a unit of water. To precisely model this let
us explicitly let the production function be a¤ected by water, W , so we have
Q � f (L;K;W ). Then the �rm�s cost minimization problem is:

C (w; r;Q;W ) = max
�
min
L;K

wL+ rK � � (f (L;K;W )�Q)

and from the envelope theorem we know that @C
@W = �� @f

@W . We further know
that @C

@Q = � so the marginal bene�t of increasing water is: @C
@W = �@C

@Q
@f
@W .

This can be easily measured and tells us how much the farmers would pay for
an irrigation system.
But how will we use this? Well one way is the producers version of expen-

diture minimization:

C (w; r;Q) = max
�
min
L;K

wL+ rK � � (f (L;K)�Q)

we can use this in several di¤erent ways. First of all, @C@w = L, or the marginal
cost of a rise in the wage is proportional to the number of laborers. Another
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use is @C@Q = � =
w
MPl

, this is marginal cost, a very important concept. Another
use is in comparing the short run and long run cost function. In the short run
the amount of capital you have is �xed:

CSR (w; r;K;Q) = max
�
min
L
wL+ rK � � (f (L;K)�Q)

now let�s �gure out what the marginal cost of capital is:

@CSR

@K
= r � � @f

@K

notice I just used the envelope theorem. Now a fundamental problem is that
we do not observe long run cost functions, we only observe the short run variety
in general. So how do we construct the long run cost function? Well, think
about it. There has got to be some K� such that:

@CSR (w; r;K�; Q)

@K� = r � � @f
@K

= 0

and lo and behold this is the same �rst order condition as we have in the long
run cost function. Using this we can �nd the optimal amount of K for any Q
and fw; rg.
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