The effect of an illumination direction cue based on cast shadows on lightness perception in three dimensional scenes

Huseyin Boyaci and Laurence T. Maloney

Department of Psychology Center for Neural Science New York University

$$
\begin{gathered}
\text { boyaci@cns.nyu.edu } \\
\text { http://www.cns.nyu.edu/~boyaci }
\end{gathered}
$$

Orientation and Color

Boyaci, H., Doerschner, K. \& Maloney, L. T. (2004), Perceived surface color in binocularly-viewed scenes with two light sources differing in chromaticity. Journal of Vision, in press.

Inter-reflection

Doerschner, K., Boyaci, H. \& Maloney, L. T. (2004), Human observers compensate for secondary illumination originating in nearby chromatic surfaces, Journal of Vision, 4, 92-105.

Orientation and lightness

Boyaci, H., Maloney, L. T. \& Hersh, S. (2003), The effect of perceived surface orientation on perceived surface albedo in three-dimensional scenes, Journal of Vision, 3, 541-553

Observers are sensitive to:

- direction to
the punctate light source,
- punctate-total ratio

Equivalent illuminant model: Brainard, D.H. (1998). Color constancy in the nearly natural image. 2. Achromatic loci. Journal of the Optical Society of America A, 15, 307-325.

Lambertian Model

$$
\pi=\frac{E_{P}}{E_{P}+E_{D}} \quad \begin{gathered}
\text { Punctate-total } \\
\text { ratio }
\end{gathered}
$$

Lambertian Model

This is going to be the story of

π

punctate-total ratio

$$
\pi=\frac{E_{P}}{E_{P}+E_{D}}
$$

Only shading

Right
Left
Uncrossed

Only cast shadows

Only specular highlights

Right
Right

Coordinates: Azimuth and elevation

Task
Scale of matching chips.

"Choose the matching chip which looks like cut out of the same piece of grey paper as the test patch"

Dependent variable

What would the lightness constant observer do?

$$
\hat{\Lambda}=\frac{\operatorname{Lum}_{S}}{\operatorname{Lum}_{T}}
$$

What would the lightness constant observer do?

What would the lightness constant observer do?

What would the lightness constant observer do?

$$
\hat{\Lambda}=\frac{L u m_{S}}{L u m_{T}}=1.010
$$

What would the lightness constant observer do?

What would the lightness constant observer do?

What would the lightness constant observer do?

$$
\hat{\Lambda}=\frac{L u m_{S}}{L u m_{T}}=1.584
$$

What would the lightness constant observer do?

$$
\hat{\Lambda}=\frac{\operatorname{Lum}_{S}}{\operatorname{Lum}_{T}}=1.059
$$

What would the lightness constant observer do?

$$
\hat{\Lambda}=\frac{\operatorname{Lum}_{S}}{L u m_{T}}=m \frac{1}{\pi \cos \left(\psi_{T}-\psi_{P}\right) \cos \varphi_{P}+1-\pi}
$$

Effect of π (punctate-total ratio)

Effect of π (punctate-total ratio)

$\pi=0.67$

$$
\text { Curvature }\left.\quad \frac{\partial^{2} \hat{\Lambda}}{\partial \psi_{T}^{2}}\right|_{\psi_{T} \neq \psi_{P}} \propto \pi
$$

Effect of π (punctate-total ratio)

$\pi=0.18$

$$
\text { Curvature }\left.\quad \frac{\partial^{2} \hat{\Lambda}}{\partial \psi_{T}^{2}}\right|_{\psi_{T}=\psi_{P}} \propto \pi
$$

Procedure

-4 Cue conditions:
-Only cast shadows

- Only shading
- Only specular highlights -All 3 cues

In separate sessions
-5 Orientations: $\psi_{T}=\{-60,-45,0,45,60\}$
-4 Luminances
-10 repetitions of each conditions: $10 \times 5 \times 4 \times 4=800$ trials per observer

- 5 Observers (one author HB)

Results: Observer KN

> Only cast shadows

Results: Observer KN

Only cast shadows
Only shading
Only highlights

$$
\|\|\|-1 J
$$

n

Results: Observer KN

Results: All observers

Results: All observers

Model 0: Optimal Cue Combination

Given independent unbiased Gaussian estimates from multiples cues,

$$
\hat{\pi}_{i} \sim \Phi\left(\pi, \sigma_{i}^{2}\right), \quad i=1,2, \cdots, N
$$

the minimum variance unbiased estimate of π is the weighted convex combination

$$
\hat{\pi} \quad=\sum_{j=1}^{N} w_{j} \hat{\pi}_{j} \quad w_{j} \quad=\sigma_{j}^{-2} / \sum_{i=1}^{N} \sigma_{i}^{-2}
$$

Oruc, I, et.al, (2003) Weighted linear cue combination with possibly correlated error, Vision Research 43, 2451-2468

We cannot explain these results by Model 0

Bayesian Approach

Suppose that there is a prior towards a more diffuse illumination.

A prior is effectively an additional cue that always signals a fixed value.

$$
\begin{gathered}
\hat{\pi}_{p} \sim \Phi\left(\pi_{0}, \sigma_{p}^{2}\right) \\
\pi_{0} \sim 0
\end{gathered}
$$

Model 1: Optimal Cue Combination with a prior

$$
\begin{gathered}
\hat{\pi}_{p} \sim \Phi\left(\pi_{0}, \sigma_{p}^{2}\right) \\
\hat{\pi}_{i} \sim \Phi\left(\pi, \sigma_{i}^{2}\right) \\
E\left(\hat{\pi}_{i, p}\right)=w_{i} E\left(\hat{\pi}_{i}\right)+w_{p} E\left(\hat{\pi}_{p}\right)
\end{gathered}
$$

Model 1: Optimal Cue Combination with a prior

$$
\begin{gathered}
\hat{\pi}_{p} \sim \Phi\left(\pi_{0}, \sigma_{p}^{2}\right) \\
\hat{\pi}_{i} \sim \Phi\left(\pi, \sigma_{i}^{2}\right) \\
E\left(\hat{\pi}_{i, p}\right)=w_{i} \pi+w_{p} \pi_{0}
\end{gathered}
$$

Note that $E\left(\hat{\pi}_{i, p}\right)<\pi \quad$ when $\quad \pi_{0}=0$

Model 1: Optimal Cue Combination with a prior

$$
\begin{gathered}
\hat{\pi}_{p} \sim \Phi\left(\pi_{0}, \sigma_{p}^{2}\right) \\
\hat{\pi}_{i} \sim \Phi\left(\pi, \sigma_{i}^{2}\right) \\
E\left(\hat{\pi}_{i, p}\right)=w_{i} \pi+w_{p} \pi_{0}
\end{gathered}
$$

Model 1: Optimal Cue Combination with a prior

$$
\begin{gathered}
\qquad \hat{\pi}_{p} \sim \Phi\left(\pi_{0}, \sigma_{p}^{2}\right) \\
\hat{\pi}_{i} \sim \Phi\left(\pi, \sigma_{i}^{2}\right) \\
E\left(\hat{\pi}_{i, p}\right)=w_{i} \pi+w_{p} \pi_{0} \\
\text { Note that } E\left(\hat{\pi}_{i, p}\right)<\pi \quad \text { when } \pi_{0}=0
\end{gathered}
$$

Contraction toward 0

Model 1: Optimal Cue Combination with a prior

$$
\begin{gathered}
\hat{\pi}_{p} \sim \Phi\left(\pi_{0}, \sigma_{p}^{2}\right) \\
\hat{\pi}_{i} \sim \Phi\left(\pi, \sigma_{i}^{2}\right) \\
E\left(\hat{\pi}_{i, p}\right)=w_{i} \pi+w_{p} \pi_{0} \\
w_{i}=\frac{E\left(\hat{\pi}_{i, p}\right)-\pi_{0}}{\pi-\pi_{0}}
\end{gathered}
$$

Model 1: Optimal Cue Combination with a prior

Single Cues

$$
E\left(\hat{\pi}_{i, p}\right)=w_{i} \pi+\left(1-w_{i}\right) \pi_{0} \quad i=1,2,3
$$

Three Cues

$$
\begin{aligned}
& E\left(\hat{\pi}_{\text {all }}\right)=W \pi+(1-W) \pi_{0} \\
& W=\frac{w_{1}+w_{2}+w_{3}}{\left[w_{1}+w_{2}+w_{3}+1\right]}
\end{aligned}
$$

Model 1: Optimal Cue Combination with a prior

Single Cues

$$
E\left(\hat{\pi}_{i, p}\right)=w_{i} \pi+\left(1-w_{i}\right) \pi_{0} \quad i=1,2,3
$$

Three Cues

$$
E\left(\hat{\pi}_{\text {all }}\right)=W \pi+(1-W) \pi_{0}
$$

Conclusions

-All three illuminant cues seem to be used
-Single and multiple cue estimates of the punctate-total ratio π are biased.
-The weighted convex cue combination rule is not consistent with these results.
-The data is consistent with a model that assumes a prior towards more diffuse illumination ($\pi \sim 0$)

