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The effect of perceived surface orientation on perceived 
surface albedo in binocularly viewed scenes 
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We examined how observers discount perceived surface orientation in estimating perceived albedo (lightness).  
Observers viewed complex rendered scenes binocularly.  The orientation of a test patch was defined by depth cues of 
binocular disparity and linear perspective.  On each trial, observers first estimated the orientation of the test patch in the 
scene by means of a gradient probe and then matched its perceived albedo to a reference scale.  We found that 
observers’ perception of orientation was nearly veridical and that they substantially discounted perceived orientation in 
estimating perceived albedo. 
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 Introduction 
The amount and spectrum of light reflected from a 

surface depend on the reflectance characteristics of the 
surface and on the light sources that illuminate it.  It can 
also depend on the orientation of the surface with respect 
to light sources present in the scene.  Here we examine 
the relationship between the perceived orientation and 
the perceived albedo (lightness) of matte surfaces in 
rendered three-dimensional (3D) scenes. 

The Lambertian Model  
In Figure 1, we illustrate how light is absorbed and re-

emitted from a Lambertian (matte) surface patch in a 
simple scene illuminated by two light sources, a punctate 
source and a diffuse source.  The intensity of the punctate 
light source is denoted by and the intensity of the 
diffuse light source by .  The angle between the 
direction to the punctate source and the surface normal 
N at a point is denoted by 

 
and the angle between the 

surface normal and the direction to the viewer is denoted 
by v. 
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When the punctate source and the viewer are on the 
same side of the surface patch   , the 
luminance emitted from the surface along the direction 
to the viewer is, 

(0D ≤ θ , v < 90D)

L = (EP cosθ + ED ) α , (1) 

where  is the albedo of the surface, the fraction of 
absorbed light that is re-emitted.  Note that in 

α
Equation 

1,  and  are in units of luminance.  In the 
Lambertian model, the luminance does not depend upon 
the direction to the viewer v but only the angle  
between the surface normal N and the direction to the 
light.  When the punctate light is behind the plane of the 
surface patch (  ,   ) the surface receives 
only diffuse illumination.  
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Equation 1 becomes, 

α

π
0D

= ED . (2) 

For convenience, we define  to be the total 
light intensity and  to be the relative punctate 
intensity, the proportion of punctate light intensity in the 
total light intensity E. 

+ ED

Geometric Discounting Function  
We define the Lambertian geometric discounting 

function, 

  

Γ ) = − θ < 90D

= D.
 (3) 

We can then combine Equations 1 and 2 as  

=  . (4) 

Note that when  is 0 (the light is perfectly diffuse) or  
is    (the direction to the punctate light is orthogonal to 
the surface patch), the geometric discounting function is 
1.  When θ  is outside the range 0° to 90°, the punctate 
light is behind the surface and the geometric discounting 

θ

DOI 10:1167/3.8.2 Received March 5, 2003; published September 25, 2003 ISSN 1534-7362 © 2003 ARVO 

http://journalofvision.org/3/8/2/
http://homepages.nyu.edu/~hb331/
http://www.cns.nyu.edu/associates/Maloney.html
mailto:boyaci@cns.nyu.edu?subject=http://journalofvision.org/3/8/2/
mailto:ltm@cns.nyu.edu?subject=http://journalofvision.org/3/8/2/


Boyaci, Maloney, & Hersh 542 

function reflects only the diffuse component of the light.  
As we vary the angle θ, the right hand side reaches a 
maximum when θ 

 
is 0 and the light from the punctate 

source falls perpendicularly onto the surface.  We solve 
the equation above for α to get 

α =
L
E

Γ(θ , π ) . (5) 

Asymmetric Lightness Matching 
The geometric discounting function can be 

interpreted as follows.  Suppose that an observer views 
two surface patches in a scene illuminated by a 
combination of a diffuse and a punctate light source. The 
surface normal of one surface (the reference surface) 
points directly at the punctate light source   .  The 
angle between the surface normal of the other (the test 
surface) and the direction to the punctate light source is 

.  The luminance of the test surface is set to a fixed 
luminance .  The observer is asked to adjust the 
luminance of the reference surface until the perceived 
albedo of this patch matches the perceived albedo 

of the test surface.  This task is an example of an 
asymmetric lightness matching task. 

(θ R = 0D )

θT

αT

LT

LR

α R

If the observer correctly employs Equation 5 in 
estimating albedo, then when the albedos of the surfaces 
are judged to match, 

αR =
LR

E
Γ(θ R , π) =

LT

E
Γ(θT ,π ) = αT . (6) 

Because   , we have , the previous 
equation can be rearranged as  

θ R = 0D Γ(θ R ,π ) = 1

LR

LT = Γ(θ T ,π ) . (7) 
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Figure 1. A simple scene. A small region of a Lambertian 
surface is illuminated by a combination of a punctate light 
source and a diffuse light source.  The mean intensity of light 
re-emitted from the surface is determined by the surface 
albedo α, the intensity of the diffuse light source, ,  the 
intensity of the punctate light source, ,  and the angle  
between the surface normal N and the direction to the 
punctate source.  It does not depend on , the direction to the 
viewer (so long as the viewer can see the surface region) 
because light absorbed by a small Lambertian surface is re-
emitted uniformly in a hemisphere centered on the patch. 
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If we repeat this asymmetric lightness setting task for 
many values of , then the setting ratio of the reference 
and test luminances, , plotted against , 
traces the curve . 

θT

Γ(
Λ = LR / LT

, π )
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We refer to this plot as the observer’s geometric 
discounting function. By means of the asymmetric lightness 
task just described, we can estimate the observer’s 
geometric discounting function and compare it to the 
theoretical form for a Lambertian surface in Equation 3.  
In the experiment below, though, we will not assume that 
the observer has access to the correct values of the relative 
punctate intensity π, or the angle between the test surface 
and the direction to the punctate light source, .  We 
will also not assume that observers perceive the reference 
patch as belonging to the scene and illuminated by the 
same light sources (see the discussion on local versus 
global frameworks in 

θT

Gilchrist et al., 1999).  We will 
show that we can still estimate the observer’s geometric 
discounting function up to an unknown positive scaling 
factor by measuring the setting ratio, . Λ

To summarize, our goal is to estimate the form of the 
observer’s geometric discounting function and compare it 
to Equation 3.  We will allow for the possibility that the 
observer’s perceptions of the layout of the scene, the 
location of the punctate light source, and the light source 
intensities are in error.  If the observer’s geometric 
discounting function matches the Lambertian geometric 
discounting function, then the observer is discounting 
changes in surface orientation in estimating surface 
albedo.  We next review previous research concerning this 
particular constancy in human vision. 

Previous Research 
Hochberg and Beck (1954) designed an experiment 

in which they placed a trapezoid upright on a table.  
When viewed monocularly, the trapezoid appeared to be 
lying flat on the table due to the available perspective 
cues.  When viewed binocularly, it appeared to be 
orthogonal to the table.  Several cubes were placed on the 
table to indicate the direction of the punctate light θ  and 
the relative punctate intensity π. They found that 
observers' estimates of the lightness (perceived albedo) of 
the surface differed in the two viewing conditions.  The 
difference was in the direction consistent with Equation 
5, but much smaller in magnitude than the equations 
would predict. Hochberg and Beck state that when there 
were no cubes, the effect of viewing condition 
disappeared, consistent with the claim that observers used 
information about the direction of the punctate light 
source and its relative intensity in estimating surface 
albedo. 

Flock and Freedberg (1970) also used conflicting 
perspective and stereo cues to manipulate perceived 
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surface orientation.  The test object was a trapezoid 
placed upright on a desk whose perceived orientation 
differed in monocular and binocular viewing.  Flock and 
Freedberg studied the effect of the presence or absence of 
cubes and the albedo of the achromatic table surface.  
They found the largest effect of viewing condition on 
perceived albedo when the cubes were present and the 
table surface was white.  They note that increases in the 
effect with the white surface could be due to increased 
visibility of luminance gradients.  However, even the 
largest effect corresponded to a change in perceived 
orientation of between    and    instead of the 
intended change of   .  They concluded that the effect 
was in the correct direction but it was far too small to 
support the claim that perceived orientation has any 
meaningful effect on lightness. 

1.4 D 4.8D

90D

Epstein (1961) also used the same paradigm of 
conflicting cues to study the effect of perceived 
orientation on lightness.  The stimuli consisted of a plane 
rotated 45° and a triangle attached to the plane with an 
angle of 20°.  When viewed monocularly, the triangle 
looked as if it was lying flat on the plane; when viewed 
binocularly, the author states that its actual orientation 
was perceived.  Epstein found no effect of viewing 
condition and concluded that the results support a local 
contrast explanation.  However, this was probably due to 
the design of the experiment: the light source was circular 
and centered along the line of sight of the observer, and 
was not visible to the observer.  There were no other 
objects visible in the scene to provide any cues. In a 
similar experimental design, Redding and Lester (1980) 
also found no effect of viewing condition on lightness.  
There is no indication that the authors in any of these 
studies attempted to measure the perceived orientation of 
the test surface in either the monocular or binocular 
viewing condition. 

Coplanar Ratio Hypothesis  
Gilchrist (1977,1980) performed an elegant series of 

experiments to investigate the effect of perceived 
orientation on lightness.  He sought to explain why 
previous research had failed to find the expected effect.  
He used the same method of conflicting cues as earlier 
studies.  Test patches were trapezoids whose perceived 
orientation and shape differed in monocular and 
binocular vision.  In contrast to the earlier experiments, 
Gilchrist arranged the stimuli so that in different viewing 
conditions, the trapezoid appeared to lie coplanar with 
one or the other of two background planes, which were 
perpendicular to each other.  In monocular vision, the 
test patch looked like a rectangle lying flat on a horizontal 
plane, but in binocular vision, it was perceived as 
coplanar with a vertical plane perpendicular to the 
horizontal one.  With this setup, he found the expected 
effect of perceived orientation on lightness.  When the 
experiment was repeated without the horizontal and 
vertical background planes, the effect disappeared. 

Gilchrist concluded that his results could be 
explained by what he referred to as the coplanar ratio 
hypothesis: local contrast plays a role in lightness judgment 
only if the regions of interest are coplanar and at the same 
depth.  Gilchrist credits this hypothesis to Kardos (1934).  
Therefore, he concluded, lightness must be intimately 
related to the perceived geometric layout of the scene. 

Schirillo and Shevell (1993) tested the coplanar ratio 
hypothesis using two achromatic Mondrians viewed in a 
stereoscope.  The Mondrians appeared to be at different 
depths and one appeared to be more brightly lit than the 
other.  Observers judged the lightness of a test patch 
placed at varying depths between the two Mondrians.  
They found little or no effect of the depth of the patch on 
perceived albedo (as measured by lightness judgments) 
even when the patch was coplanar with one or the other 
Mondrian. (In their abstract, Schirillo & Shevell state that 
they found an effect of depth on lightness judgments.  
However, in their  “Experiment 2: Lightness Matching 
with gray surrounding,” only observer JS, the first author 
of the paper, showed the expected behavior.  Two other 
naive subjects did not. In their "Experiment 3: Black 
surrounding,” they did find an effect but it was only 17% 
on average instead of the expected 500%.) 

Related Effects of Scene Layout 
Knill and Kersten (1991) reported a striking effect of 

perceived surface curvature on lightness.  They 
investigated the Craik-O'Brien-Cornsweet effect 
(Cornsweet, 1970), which is customarily interpreted as 
evidence for contrast ratio theories.  They rendered the 
outline of the classical stimulus in such a way that it 
looked like two 3D cylinders placed side by side, instead 
of two flat rectangles.  Although there was no change in 
the local contrast ratio, as soon as the stimuli were 
perceived as 3D cylinders, the classical effect almost 
completely disappeared.  They state that the change in the 
luminance of the surface was perceived either due to 
illumination change or due to surface albedo change, 
depending on the assumed 3D shape.  When the change 
in luminance was attributed to illumination change, the 
usual effect almost disappeared.  Only when the change 
was attributed to the surface albedo was the classical 
Craik-O'Brien-Cornsweet effect present.  Pessoa, Mingolla 
and Arend (1996) showed that perception of the 3D 
shape of ellipsoids improved the correct lightness 
matching. Bloj, Kersten, and Hurlbert (1999) showed that 
the perceived color of a surface is affected by the 
perceived 3D shape through mutual illumination.  All of 
these results suggest that color  and lightness are 
influenced by  the 3D layout of the scene. 
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Figure 2.  A stereo image pair.  The stimuli were computer rendered 3D scenes presented binocularly in a Wheatstone stereoscope.  All 
scenes contained a matte, gray central cube with an attached matte test surface, “hinged” to one side of the cube.  The central cube 
was always displayed in the same orientation and with the same albedo, and roughly in the same location.  From trial to trial, either the 
orientation of the test patch, its albedo, or both could vary.  Each scene also contained several additional objects, specular, matte, or 
both, that were varied from trial to trial.  To form a stereo pair, each scene was rendered twice with different view points corresponding 
to the position of the eyes of the observer. The stereo pair is displayed for uncrossed-fusion (use the left-hand pair), once for crossed-
fusion (use the right hand pair). 

Experiment 
Introduction 

In this experiment, we estimate the form of the 
observer’s geometric discounting function (Equation 3) 
for six observers by means of an asymmetric lightness 
matching task.  We allow for the possibility that the 
observer’s estimates of scene layout and lighting are in 
error. In particular, we asked observers, on every trial, to 
estimate the orientation of a test surface as well as to 
match the perceived albedo of a reference surface to that 
of the test surface. 

Methods 
Stimuli  

The stimuli were computer rendered, 3D complex 
scenes composed of simple objects with different shapes 
(such as spheres and boxes), and with different reflectance 
properties (such as shiny, matte, and transparent).  All 
scenes were rendered with the Radiance software package 
(Larson and Shakespeare, 1996).  Each scene was 
rendered twice with slightly different viewpoints 

corresponding to the positions of the observer's eyes.  A 
stereo pair for a typical scene is shown in Figure 2. 

Each scene was rendered with a mixture of diffuse 
and punctate illumination.  Each contained a large grey 
cube whose surface properties were never varied and 
whose location remained approximately unchanged.  We 
refer to this cube as the central cube.  A test patch was 
attached to the central cube.  We varied its orientation 
and albedo from trial to trial as described below.  The 
center of the test patch was always in the same position in 
the scene.  Each scene also contained a number of small 
objects that were randomly varied from trial to trial.  
These objects could be shiny, matte, or partly shiny and 
matte. 

Coordinate System and Spatial Arrangement 
We used a spherical coordinate system  to 

specify a simulated scene (
(ψ,ϕ ,r )

Figure 3A). This coordinate 
system (Figure 3A) has its origin at the center of the test 
patch and is most easily specified if we first set up a 
Cartesian coordinate system (x, y, z) with the same origin.  
The z-axis lies along the observer’s line of sight to the 
center of the test patch. The y-axis is vertical, in the 
fronto-parallel plane.  The x-axis is horizontal, also in the 
fronto-parallel plane.  The positive half of the x-axis, y -
axis, and z -axis are to the observer’s right, upward, and 
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Figure 3.  Coordinate systems.  A. Cartesian and spherical coordinates.  The origin of the coordinate system was the center of the test 
surface.  Cartesian coordinates are specified as (x, y, z) vectors.  The z-axis lies along the line of sight from the observer to the origin.  
The y-axis is vertical, and the x-axis horizontal, both in the fronto-parallel plane containing the origin.  The positive side of the x -axis is 
to the observer’s right, of the y -axis is upward, and of the z -axis is toward the observer.  The spherical coordinate system is 
based on this Cartesian coordinate system.  The angle 

(ψ,ϕ ,r )
ψ  is the angle between the z-axis and the projection of any vector into the xz -

plane.  The angle  is the angle between a vector and the xz -plane. The radius  is measured from the origin in centimeters. N is the 
unit normal to the surface; P is a vector in the direction of the punctate source. B. Spherical coordinates and the test surface.  The 
viewpoint is from above, along the y-axis, which is shown with the symbol 

ϕ r

, pointing out of the page.  The central cube is shown in 
outline. The possible orientations of the test patch (ψT = {–50º, –40º, –30º, 0º, 30º, 40º, 50º}) are shown as well as the direction to the 
projection of the punctate light source onto the xz-plane.  The origin of the coordinate system is always in the middle of the test patch, 
the observer is always at , which is    in spherical coordinates, and the punctate light 
source is always at , which is    in spherical coordinates.  To 
maintain the center of the test patch at the origin, the central cube is displaced slightly from trial to trial depending on the orientation of 
the test patch being displayed. 

(x, y,z ) = (0,0,70 cm)
z ) = (−55 cm,40 cm,140

(ψ ,ϕ, r) = (0D , 0 0 cm
(ψ,ϕ ,r ) = 21.

D, 7
(−

)
44D(x, y, cm) , 14.89D , 155.64 cm)

toward the observer, respectively. If we represent a point 
as a vector (x, y, z), the angle ψ  is the angle between the 
positive z -axis and the projection of the point into the xz-
plane, and it ranges from –180 to 180 degrees.  The angle 

 is the angle between the point and the xz -plane, and it 
ranges between –90 and +90 degrees. Any direction away 
from the origin can be specified by coordinates . 
The positive x-axis, for example, is   , the positive z-
axis is   , the direction toward the observer. The 
third coordinate r is the radial distance from the origin to 
a point. We report radial distances and other 
measurements in centimeters, at the size that the 
simulated objects were presented to the observer. 

ϕ

(ψ,ϕ )
(90D ,0D )

(0D ,0D )

Test Patch 
The test patch was 4.8 cm by 3.6 cm. The test patch 

could appear at any one of seven orientations, specified 
by the normal to the surface patch :  could 
take on any of the values {–50º, –40º, –30º, 0º, 30º, 40º, 
50º} while was always   .  When   , the test 
patch was orthogonal to the face of the central cube to 
which it was attached.  

(ψT ,ϕT )

ψ T = −

ψ T

30DϕT 0D

Figure 3B shows a schematic of 
the scene, seen from above, with the seven possible 

orientations of the test patch marked.  For reference, the 
large cube in the center of the scene is shown.  The test 
patch was rendered with one of two slightly different 
albedos, DARK and LIGHT.  The DARK patch had 
albedo ; the LIGHT patch had albedo .  
We included two different albedos to encourage observers 
to make fine lightness discriminations in the lightness 
task described below. 

α = 0.45

(ψ

(ψ

α = 0.55

.64 cm)

Light Sources 
The scene was illuminated by a diffuse light source 

and a punctate light source.  The punctate light source 
was placed at   .  
In Cartesian coordinates, the punctate light source was 70 
cm behind, 55 cm to the left, and 40 cm above the 
observer's viewpoint.  The punctate source was sufficiently 
far from the scene so that we could treat the punctate 
light source as collimated across the extent of the test 
patch.  The direction to the punctate source is specified 
by the angles,   .  It was never 
varied.  The  diffuse-punctate balance was always 

. 

P ,ϕ P ,r P ) = (−21.44 D , 14.89D, 155

P ,ϕ P ) = (−21.44 D, 14.89D )

π = 0.62
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The angle  between the normal to  the test  patch 
 and the direction to the light source  is, 

θ
(ψT ,ϕT ) ( ψ P ,ϕ 

P )

θ(ψ p,ϕ p;ψ T ,ϕT ) = cos-1( cosϕT cosϕ P cosψ T cosψ P

+ sinϕ T sinϕ P + cosϕT cosϕ P sinψT sinψ p ) .
 (8) 

Because  over the course of the experiment, we can 
simplify the above to 

ϕT = 0

θ(ψ p,ϕ p;ψ T ,ϕT ) = cos-1(cos ϕ P cos(ψT −ψ P ))  (9) 

or, 

cosθ = cosϕ P cos(ψ T −ψ P ) . (10) 

Apparatus 
The left and right images were presented to the 

corresponding eye of the observer on two 21'' Sony 
Trinitron Multiscan GDM-F500 monitors placed to the 
observer’s left and right (Figure 4).  The screens on these 
monitors are close to physically flat, with less than 1 mm 
of deviation across the surface of each monitor.  Two 
small mirrors were placed directly in front of the 
observer's eyes.  These mirrors reflected the images 
displayed on the left and right monitors upon the 
corresponding eye of the observer.  Look-up tables were 
used to correct the nonlinearities in the gun responses 
and to equalize the display values on the two monitors.  
The tables were prepared after direct measurements of the 
luminance values on each monitor with a Pritchard PR-

650 spectrometer.  The maximum luminance achievable 
on either screen was 114 cd/m2.  The stereoscope was 
contained in a box 124 cm on a side.  The front face of 
the box was missing and that is where the observer sat in 
a chin/head rest.  The interior of the box was coated with 
black flocked paper (Edmund Scientific, Tonawanda, NY) 
to absorb stray light.  Only the stimuli on the screens of 
the monitors were visible to the observer.  The casings of 
the monitors and any other features of the room were 
hidden behind the nonreflective walls of the enclosing 
box. 

Rendered scene and

CPU

CRT
Right

70 cm

mouse
ControlBaffles

Observer

Mirrors
Left
CRT

probe

 

Figure 4.  The experimental apparatus.  Stimuli were displayed 
in a computer-controlled Wheatstone stereoscope.  The left 
and right images of a stereo pair were displayed on the left and 
right monitors of the stereoscope.  The observer viewed them 
by means of small mirrors placed in front of his or her eyes. In 
the fused image, the test surface appeared approximately 70 
cm in front of the observer.  This distance was also the optical 
distance to the screens of the two computer monitors, 
minimizing any mismatch between accommodation cues and 
other depth cues. 

Additional light baffles were placed near the 
observer’s face to prevent light from the screens reaching 
the observer’s eyes directly.  The optical distance from 
each of the observer’s eyes to the corresponding computer 
screen was 70 cm.  To minimize any conflict between 
binocular disparity and accommodation depth cues, the 
test patches were rendered to be exactly 70 cm in front of 
the observer.  The monocular fields of view were 55 deg 

 55 deg of visual angle each.  The observer’s eyes were 
approximately at the same height as the center of the 
scene being viewed, which was also the height of the 
center of the test patch. 

×

Tasks 
The observer had two tasks to perform on each trial.  

He or she first estimated the orientation of the test patch 
by adjusting a monocular stick-and-circle gradient probe 
superimposed on the middle of the test patch (Figure 5A).  
The orientation of the probe was controlled by moving a 
computer mouse.  Note that the gradient probe was 
presented monocularly and the observer had only one 
degree of freedom in setting, the azimuth ψ .  The 
elevation was always set to the correct value,  .  
Observers reported no difficulty with setting the probe 
and were unaware that it was visible in only the right eye. 

φ = 0D

When the observer was satisfied with the gradient 
settings, he pressed a mouse button to go on to the 
second task in the trial.  The setting probe disappeared 
and an array of lightness reference chips appeared on 
the right hand side of the scene (Figure 5B).  The array 
of chips was presented monocularly, to the right eye.  
The observer’s second task was to match the lightness of 
the test patch by choosing one of the reference chips.  
The order of the chips was randomly permuted for each 
successive trial.  The observer chose the chip that he or 
she thought matched the test patch in lightness.  The 
key variable here is the measured luminance of the 
reference patch that the observer chose as matching the 
test patch. 

Software 
The experimental software was written by us in the C 

language.  We used the X Window System, Version 11R6 
(Scheifler & Gettys, 1996) running under Red Hat Linux 
6.1 for graphical display.  The computer was a Dell 410  
Workstation with a Matrox G450 dual head graphics card 
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A.    

B.    

Figure 5.  Orientation and lightness matching tasks. A. Orientation task. The observer was asked to adjust a monocular circle-and-stick 
gradient probe until the circle fell within the plane of the test surface and the stick was orthogonal to the test surface. The gradient 
probe was presented monocularly, to the right eye.  B. Lightness matching. The observer was asked to select the reference surface on 
a lightness scale that matched the test surface in “surface material.” The order of reference surfaces on the lightness scale was re-
randomized on every trial. The lightness scale was presented monocularly, to the right eye. 

and a special purpose graphics driver from Xi Graphics 
that permitted a single computer to control both 
monitors.  The monitors were synchronized by a common 
signal from the Matrox board.  We used the open source 
physics-based rendering package Radiance (Larson & 
Shakespeare, 1996) to render the left and right images 
that comprised the stereo pair for a given virtual scene.  
The output of the rendering described above was a stereo 
image pair with floating point RGB triplets for each pixel.  
These triplets were interpreted as the relative luminance 
values that would arrive at points in the retinas if the 
observer’s eyes were at the viewpoints selected in the 
virtual scene.  We translated the output relative 
luminance values to 24-bit graphics codes, correcting for 
nonlinearities in the monitors’ responses by means of 
measured look-up tables for each monitor.   

Procedure 
The observer repeated each of the 14 conditions of 

the experiment (7 test patch orientations, 2 test patch 
albedos) 20 times, for a total of 280 trials.  The order of 
presentation was randomized.  The observer was allowed 

to perform a few practice trials before the actual 
experiment started, until he or she was completely 
comfortable with both tasks.  The experiment was paced 
by the observer.  The observer was encouraged to take a 
short break after 140 trials.  The entire experiment took 
each observer less than an hour. 

Observers 
Six observers completed the experiment. All were 

experienced psychophysical observers who were unaware 
of the purpose of the experiment. 

Instructions to the Observer 
For the orientation task, observers were simply 

instructed to move the probe until the probe circles were 
in the plane of the test surface.  For the lightness task, we 
asked observers to choose the reference patch on the 
lightness scale that appeared to be made of the same 
material as the test surface (Arend & Reeves, 1986). 
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Figure 6.  Results: Orientation settings. Results for six observers are shown.  Each observer’s mean orientation settings  are plotted 
against the corresponding true orientations , using filled squares for DARK tests and empty squares for LIGHT ones.  The blue solid 
lline has unit slope.  The settings of a veridical observer would fall on that line.  The red dashed lines show the linear regression fit to 
the observer’s settings.  The slope of the fit for  each observer is given in the plots.  All slopes are significantly different from 1 (with an 
overall Type I error rate of 0.05 and a Bonferroni correction for six multiple tests). 

ˆ ψ T

ψT

Analysis and Results 
The key dependent variables are the observer’s 

estimates of the orientation of the test patch on each 
trial and the setting ratio of the luminance of 
the reference surface to the luminance of the test surface 
that was matched to it. In particular, if the setting ratio is 
unaffected by perceived orientation, then the observer is 
not discounting perceived orientation from estimates of 
perceived albedo.  We will also look for an effect of true 
orientation (as opposed to perceived orientation) on 
perceived albedo, but, as we will see in a moment, there is 
little difference between perceived and true orientations 
in these scenes.  We first report the orientation estimates 

 and then the effect of this perceived orientation on 
setting ratios . 

ˆ ψ T

Λ = LR / LT

ˆ ψ T

Λ

Orientation Settings 
Observers' mean settings of surface orientation in 

each condition are plotted against the true values in 
Figure 6.  We have also plotted the best-fitting regression 
line to the results for each observer.  There was no 
significant difference in regression coefficients for the test 

patches with LIGHT albedo and with DARK albedo for 
any of the six observers.  Separate two-way ANOVAs for 
each observer indicated no significant interaction 
between albedo and orientation: the p values for observers 
JJG, CBC, EPB, LR, MM, and NB were 

 respectively.  
There was no significant main effect of albedo (the 
smallest p value was  for observer MM, for 
observers CBC, EPB, JJG, LR, and NB the p values are 

).  The main effect of 
orientation was significant for all observers ( ).  
For all observers, the slopes were significantly less than 1 
( ).  However, the deviations from veridical were 
modest: all slopes but one were between 0.84 and 0.96, 
the exception being 0.63 for observer NB. 

p = 0.095, 0.260, 0.975, 0.520, 0.596, 0.779

p = 0.021

p = 0.996, 0.783,0.430, 0.105,0.137

p < 0.05

p < 0.001

Lightness Estimates 
We showed above (Equation 7) that for a Lambertian 

observer who based his or her albedo matches on 
Equation 5, the luminance setting ratio   
would equal the Lambertian geometric discounting 
function Γ .  In deriving this identity, we assumed 

Λ = LR / LT

(θ ,π)
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Figure 7.  Geometric discounting function.  We plot   for different values of   (the direction of projection of the 
punctate light source on the xz-plane) and  (the relative punctate intensity).  In both A and B, blue solid lines show the theoretical 
curves obtained from 

Γ(ψ T −ψ P;π ) ψ P

π
Equation 3 for the correct values in the experiment reported.  In contrast, if  (the light is diffuse only), then 

the geometric discounting function is a constant, 1, shown by the black dashed line in B.  Intuitively, the lightness constant observer 
should assign a higher albedo for the same luminance as a surface is rotated away from the punctate light source.  The function  

specifies how much greater the assigned albedo should be. Misestimation of the punctate light direction, , moves the 
curve left or right, as shown by the red lines in A.  Misestimation of the relative punctate intensity, , changes the curvature of the 
function, as shown by red dashed lines in B. 

π = 0

π
Γ(ψ T −ψ P;π ) ψ P

that the observer made use of accurate estimates of the 
parameters that describe the orientation and albedo of 
the test surface and the orientation and lighting of the 
references surfaces.  What happens to Equation 7 if the 
observer’s estimates of these parameters are in error?  Let 
ˆ θ , , etc. denote the estimates of  , , etc. that an 

observer substitutes into 

ˆ E 

ˆ 

θ

ˆ θ R

ˆ T
ˆ α R

E

ˆ E 

= ˆ α 
ˆ E R

Equation 5 in order to estimate 
the albedo of the test surface.  Let , , etc. denote 
the corresponding estimates for the references surfaces.  
We assume that these estimates, although unknown, do 
not change over the course of the experiment.  Let L  
denote the observer’s estimate of the luminance of the 
test patch on a trial, , the observer’s estimate of the 
luminance of the reference patch.  Then we can represent 
the luminance of the test patch as L  and 
that of the reference patch as .  
Once the observer has chosen a reference surface whose 
apparent albedo matches the apparent albedo of the test 
surface, we have .  Then the equation for  
becomes 

R

ˆ E 
/

ˆ T

R)

ˆ L R

ˆ α R

/ Γ( ˆ θ , ˆ π )
= Γ( ˆ θ R , ˆ π 

Λ

ˆ L R

ˆ α =

R Γ
Γ(

( ˆ θ ,
ˆ θ R ,

= m Γ ( ˆ θ , ˆ π )Λ =
ˆ L R
ˆ L T

=
ˆ E 
ˆ E 

ˆ π )
ˆ π R )

, (11) 

where  is a multiplicative constant. m
The net effect of these assumptions is that the 

luminance ratio of the Lambertian observer is 
proportional to the Lambertian geometric discounting 
function Γ  but with whatever estimates of the 
orientation and lighting conditions the observer has 
substituted for the correct values.  We will use this fact to 
obtain estimates of some of these parameters from each 
observer’s data.  In our analysis, we do not assume that we 

know how the observer interprets the lighting conditions 
of the reference patch. 

( ˆ θ , ˆ π )

Note first of all that we cannot determine all of the 
observer’s estimates of parameters in Equation 5 and in 
the other equations.  We cannot, for example, obtain an 
estimate of , the total light intensity, from asymmetric 
lightness matches because scaling the overall light 
intensity by the same factor for the test scene and for the 
reference surface would likely lead to the same matching 
behavior.  We insert 

E

Equation 10 into Equation 1 to 
obtain, 

LT = EP cosϕ P cos(ψ T −ψ P ) α + EDα . (12) 

Because  never changes throughout the experiment, 
 is confounded with .  Changing the elevation 
 of the punctate source is equivalent to scaling its 

intensity.  We replace  by , the equivalent 
punctate light intensity, and obtain 

.  Further, we define 
, the equivalent relative punctate source 

intensity.  The geometric discounting function of the 
Lambertian observer can then be written as 

. Given an estimate of the luminance that 
arrives at the eye, L , a visual system that has available 
estimates of , , and  (denoted  , 

ϕP

cos(
eq
P / (

ψ P;

EP

ϕP

LT

π eq
P

Γ(ψ

cosϕ P

P cosϕP

+ EDα

θ

E

) α

Eeq
P

ˆ E

= Eeq
P ψ T −ψ P

= E Eeq
P + ED )

T − π eq )
ˆ 

E π ˆ π , and ˆ θ , 
respectively) can compute an estimate of the albedo of the 
surface by substituting these estimates into Equation 5, 

ˆ α =
ˆ L 
ˆ E 

Γ( ˆ θ , ˆ π ) . (13) 

An observer’s estimate ˆ θ  depends on his or her estimates 
of the orientation of the test, denoted , and his 
or her estimates of the direction to the punctate light 

( ˆ ψ T , ˆ ϕ T )
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Figure 8.  Results. The observer’s geometric discounting functions  versus perceived test surface orientation, .  Results for six 
observers are shown.  If the observer does not correct for the perceived orientation of the surface, then the resulting points should lie 
on a horizontal line.  A black horizontal line marks the mean of each observer’s geometric discounting function.  The red curve is the 
result of a maximum likelihood fit of the Lambertian geometric discounting function  to the observer’s performance, 
allowing for the possibility that observer’s estimates of the equivalent relative punctate intensity, 

Γ ˆ ψ T

Γ( ˆ ψ T − ˆ ψ P; ˆ π )
ˆ π , or direction to the illuminant, , 

are not correct.  The blue curve is a plot of the geometric discounting function  with the correct value of for the 
experimental conditions but with the observers’ estimates of  and .  Small blue upward arrows mark the correct light direction, 

, and downward red arrows mark the observers’ estimates, . 

ˆ ψ P

Γ( ˆ ψ T − ˆ ψ P; ˆ π ) π
ˆ ψ T ˆ ψ P

ψ P ˆ ψ P

source, denoted , through ( ˆ ψ p , ˆ ϕ p )

E

Equation 8.  The 
observer might also misestimate the overall intensity of 
the light, . Misestimation of E  would simply lead to an 
overall scaling of perceived albedo but, as explained 
above, our estimates of perceived albedo are only 
determined up to an unknown scaling factor. 
Misestimation of  would simply alter this unknown 
value. We explicitly estimated  in  by asking 
the observer to perform the orientation task. 

E

ˆ ψ 

πeq

T

Γ

( ˆ ψ T , ˆ ϕ T )

ψ P

− ψ P; π eq
πeq

Now suppose that we hold the lighting conditions 
constant, in particular the parameters  and , and 
we vary the orientation of the surface by varying , as 
we do in the experiment.  We plot examples of the 
geometric discounting function  as a 
function of  for different values of  and  in 

πeq
ψ T

)
ψ P

ψ P

(ψ T

= 0

ψ T

Figure 7.  Notice that changes to the parameter  move 
the curve to the left and right (Figure 7A), whereas 
changes to the parameter  increase or decrease 
curvature (

πeq
Figure 7B).  When , there is no 

punctate component to the illumination, and the 
geometric discounting function is a horizontal line.  

Indeed, the second derivative of the function 
 with respect to surface orientation  

evaluated at its minimum, , is, 
Γ(ψ T − ψ P; π eq )

∂2Γ
∂(ψ T )2

ψ T

ψ T =ψ P

ψ
T

=

ˆ θ P

Γ(
P

ψ
P

= π eq . (14) 

It is evident that, given the curve , we can 
estimate the parameters  (where the function takes on 
its minimum) and (the curvature at the minimum).  
For a Lambertian observer with possibly erroneous 
estimates of  and , then, we can recover estimates 
of both of these parameters from measurements of the 
luminance setting ratio, (so long as ). 

ˆ ψ T − ˆ ψ P; ˆ π eq )

πeq > 0

ˆ ψ 

Λ

ˆ π eq

ˆ π eq

Figure 8 shows the empirical geometric discounting 
functions for all six observers, normalized so the minima 
fall at 1 on the vertical axis.  As mentioned above, if an 
observer were perfectly lightness constant, then his or her 
data would (after scaling by a multiplicative constant) fall 
on the curve of the geometric discounting function 

.  This curve is plotted in blue in each plot.  If, on Γ(θ , π )
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the other hand, the observer bases his or her lightness 
estimate solely on luminance of the test patch without 
taking the orientation into account, then the ratio would 
always be constant (the horizontal black line). 

Because we explicitly estimated  by asking the 
observer to perform the orientation task, we are left with 
possible errors in estimating  and the direction of the 
light  as  explanations for patterns observed in the 
data.  We used a maximum likelihood fitting procedure 
to estimate values of these parameters that best accounted 
for each observer’s data separately.  These estimates are 
shown in 

ψ T

eq =

πeq

λ0

ψ P

Table 1. First note that all observers apparently 
underestimate the equivalent relative punctate intensity 
of the light (whose actual value is ).  We tested 
the hypothesis that the observer’s estimate  is equal to 
the true value by means of a nested hypothesis test 
(

π 0.62
ˆ π eq

Mood, Graybill, & Boes, 1974, pp. 440).  We nested the 
hypothesis that  within a model in which  
was free to vary.  We fit both models to the data by the 
method of maximum likelihood with other parameters 
allowed to vary freely.  The log likelihood of the 
constrained model (denoted ) must be less than or 
equal to that of the unconstrained model  (denoted ).  

Under the null hypothesis, twice the difference in log 
likelihoods is asymptotically distributed as a -variable 

ˆ π eq = 0.62 ˆ π eq

λ1

χ1
2

62

P

Table 1.  Experiment 1. Estimates for each Observer 
 
Observer Slope ˆ π eq  ˆ ψ P  Discounting 

index 
Veridical 
values 

1 0.62 -21.44 1 

CBC 0.85* 0.20*  
p < .0001 

-29.51  
p = .457 

0.48 

EPB 0.89* 0.15*  
p < .0001 

-57.86*  
p = .002 

0.38 

JJG 0.84* 0.32*  
p < .001 

-30.16  
p = .191 

0.68 

LR 0.84* 0.30*  
p < .0001 

-31.46  
p = .155 

0.65 

MM 0.96* 0.15*  
p < .0001 

-41.97  
p = .038 

0.38 

NB 0.63* 0.29  
p = .015 

-28.65  
p = .509 

0.64 

 We report the regression coefficients for the perceived 
orientation of the test patch  in the second column.  In 
columns 3 and 4, maximum likelihood estimations of the 
punctate to total light ratio, 

ˆ ψ 

ˆ π

T

 , and punctate light direction, 
, are reported.  For each observer, we tested the 

hypothesis that  and report exact p-values for this 
test when the values are larger than 0.001. With a Bonferroni 
correction for six tests, the significant level corresponding to an 
overall Type I error rate of 0.05 is 0.0083. Values whose 
corresponding p-values fall below this cutoff are marked with 
an asterisk.  The last column reports the discounting index DI 
(

ˆ ψ P

ˆ π eq = 0.62

Equation 16). 

2(λ0 − λ1) = χ1
2 , (15) 

and we use this result to test whether the observers’ 
estimates   were significantly different from the true 
value.  We separately tested whether  (consistent 
with luminance matching) by a second application of the 
nested hypothesis test.  We tested for each observer 
separately with the overall Type I error set to 0.05 and a 
Bonferroni correction for each series of six tests. 

ˆ π eq
ˆ π eq = 0

We rejected the hypothesis that  for all 
observers but observer NB (the p values of the tests are 
reported in 

ˆ π eq = 0.

Table 1). We rejected the hypothesis that 
 for all observers (p < .001 in all cases).  The latter 

result implies that observers are not simply matching the 
luminance values of the reference patch to that of the test 
patch.  The former indicates that (with the exception of 
one observer) the observers’ estimates of the equivalent 
relative punctate intensity are in error. 

ˆ π eq = 0

We next examined whether observers were accurately 
estimating the direction to the punctate light source, also 
by nested hypothesis tests.  We nested the hypothesis that 

 (the true value) within a model in which  
was free to vary.  With the exception of observer EPB, the 
observers’  estimates were not significantly different 
from the true value.  All of these results are tabulated in 

  ̂  ψ P = −21.4D

ˆ ψ 

ˆ ψ P

P

Table 1. We have plotted the estimates of  for all 
observers in 

ˆ ψ 
Figure 9.  While all but one of the estimates 

fall near the true angle,   , they are all on one 
side of the true value, suggesting that observers share a 
common bias in estimating the light direction. 

ψ P = −21.44D

Geometric Discounting Indexes 
 In scenes containing a punctate light source, the 

observer may err in estimating the direction to the 
punctate light source.  He or she may also err in 
estimating .  If, for example, the observer estimates 

to be 0, then  is always 1 and the 
observer does not discount orientation at all.  We define 
a geometric discounting index, 

πeq
ˆ π eq Γ( ˆ ψ T − ˆ ψ P; ˆ π eq )

DI = 1−
| πeq − ˆ π eq |
π eq + ˆ π eq

, (16) 

that measures the match between the true value and 
the observer’s estimate  .  This index ranges from 0 
(no discounting of orientation) to 1 (perfect discounting).  
The values for all six observers are reported  in 

πeq
ˆ π eq

=

DI Table 
1.  This index ignores any errors in the observer’s estimate 
of the punctate light direction and, together with the 
error in  direction , these two indices 
provide a measure of how accurately the observer is 
discounting orientation in forming lightness judgments. 

∆ψ P ˆ ψ P −ψ P
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Previous experiments typically had only two distinct 
orientation conditions (typically horizontal and vertical), 
and it is therefore difficult to draw any conclusions about 
the agreement of their performance with the predictions 
of Equation 5 developed above (the Lambertian observer).  
We were able to estimate the effect of seven different 
orientations on the apparent albedo of two test patches 
with different albedos (DARK and LIGHT).  We found 
good agreement between observers’ data and the family of 
functions  that describe the Lambertian 
observer. 

Γ(ψ T − ψ P, π )

We also note that these researchers did not separately 
measure perceived orientation.  While it is plausible that 
observers perceived large changes in orientation in 
different conditions of their experiments, we note reports 
by Flock and Freedberg (1970) that some observers did 
not see the intended changes in orientation with shifts 
from monocular to binocular viewing.  In our 
experiment, observers' orientation estimations were close 
to veridical, and they exhibited moderate lightness 
constancy in response to changes in the orientation of the 
test patch. 

We derived estimates from the observers’ data of one 
component of the light direction,  , and the ˆ ψ P

ˆ 

 

true light sourceJJG CBC

NB

LR

EPB

MM

 

 Estimates of perceived light directions, . Each 
 estimated perceived punctate light direction is 

he angle between each red solid line and the z-axis 
  for each observer. Only for observer MM is the
 punctate light direction statistically significantly 

ˆ ψ P

ˆ ψ P
ˆ ψ P
ssion 
ave shown how perceived orientation affects 
 albedo in a quantitative way.  To do so, we 

servers to estimate both the orientation and 
 of gray test patches placed in a complex, 3D 
e found that observers partially discount 
 surface orientation  in estimating surface 
ur results are consistent with the hypothesis 

rvers are correctly discounting perceived 
on, but that, in this experiment, they made use of 
s estimates of the direction to the punctate light 
d the relative intensity of punctate and diffuse 
ion. 
evious studies, conflicting cues were used to 
anges in perception of the orientation of a 

s an observer shifted from monocular to 
r viewing.  The typical conclusion drawn is that 
 orientation has little or no effect on perceived 
pstein, 1961; Flock & Freedberg, 1970; 

g & Beck, 1954; Redding & Lester, 1980).  In 
eriments, changes in orientation are confounded 
onocular versus binocular viewing, (b) the kind 

cues used in estimating orientation, and (c) the 
 or absence of cue conflict.  Any of these factors 
esponsible for the observed lack of effect of 

n.  We find, in contrast, that observers 
ally discount orientation in forming estimates of 

rom the true value. equivalent relative punctate intensity and tested 
whether these estimates deviated from the true values.  
We found that, for five out of six observers, there was no 
significant difference between and the true value, .  
In contrast, we found that  was significantly smaller 
than the true value  by a factor of two or more for five 
observers, and smaller (but not significantly so) for the 
remaining observer.  This result indicates that observers 
systematically underestimated the contribution of the 
punctate source to the light re-emitted by the test surface. 

π eq

ˆ ψ P ψ P

ˆ π eq
ˆ π eq

We have repeated our analysis assuming that the 
observers’ internal model of reflection of light from matte 
surfaces could be other than Lambertian.  We fitted the 
empirical data to a different form of the observer’s 
geometrical discounting function assuming the observers’ 
internal model of reflection from matte surfaces was the 
Oren-Nayar model (Nayar & Oren, 1995; Oren & Nayar, 
1995).  The Oren-Nayar model includes the Lambertian 
as a special case.  We performed nested hypothesis tests 
for each observer with the null hypothesis corresponding 
to the Lambertian model and the alternative hypothesis 
corresponding to any non-Lambertian form of the Oren-
Nayar model.  We could not reject the Lambertian model 
for any observer. 

All of our stimuli were viewed binocularly.  If viewed 
monocularly, then the stimuli would consist of a 
quadrilateral test surface against the constant gray 
background of the central cube.  The quadrilateral would 
change shape from trial to trial, but it would remain 
embedded in the surround of one side of the central 
cube.  Theories of lightness constancy that are framed in 
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terms of local operations on single retinal images  (lateral 
inhibition, edge contrast) cannot explain our results. 

We also found that we could derive an estimate of 
the punctate light source direction  from observers’ 
data that was within    of the correct direction for five 
out of six observers.  This result suggests that the visual 
system is effectively estimating information about the 
spatial organization of the illuminant and using it to 
arrive at estimates of surface albedo (see 

ψ P

22D

Maloney, 2002). 
For all but one observer, we could reject the 

hypothesis that .  Recall that 
 and an error in 

estimating  could be the result of misestimating  or 
 or both.  Because the estimates of the other angle 

component  of the punctate light direction were not 
very different than the correct value (for five out of six of 
the observers), we can conjecture that  is close to the 
correct value, and that  is not very different than 

ˆ π eq = πeq
/ ( ˆ E P cos

ˆ π eq

ˆ π eq = ˆ E P cos ˆ ϕ P ˆ ϕ P + ˆ E D )
ˆ π eq

cosϕ P

ˆ ψ P

EP

ˆ π
ˆ ϕ P

 , 
implying that observers perceive the lighting in the scene 
to have a larger component of diffuse light than it does.  
It would be of great interest to determine what cues in the 
scene influence the estimates of illuminant properties 
such as punctate source direction and relative punctate 
intensity. 
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