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Abstract. Rigidity and reflectance are key object properties, impor-
tant in their own rights, and they are key properties that stratify mo-
tion reconstruction algorithms. However, the inference of rigidity and re-
flectance are both difficult without additional information about the ob-
ject’s shape, the environment, or lighting. For humans, relative motions
of object and observer provides rich information about object shape,
rigidity, and reflectivity. We show that it is possible to detect rigid ob-
ject motion for both specular and diffuse reflective surfaces using only
optic flow, and that flow can distinguish specular and diffuse motion for
rigid objects. Unlike nonrigid objects, optic flow fields for rigid moving
surfaces are constrained by a global transformation, which can be de-
tected using an optic flow matching procedure across time. In addition,
using a Procrustes analysis of structure from motion reconstructed 3D
points, we show how to classify specular from diffuse surfaces.

Key words: Optic flow, rigidity detection, specular motion, reflectance
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1 Introduction

For some computer vision applications like shape analysis from motion, it is
typically required to know the material and rigidity of the objects. For instance,
there would exist some difficulties to track highly reflective objects like cars
without knowing if the object appearance remains constant across frames. Hence,
most algorithms usually have strong assumptions about both the reflectivity and
rigidity. For example, structure from motion algorithms assume rigidity and it
is difficult to extract the point motion information needed without diffusely
reflective and patterned objects [1]. Although there are methods to handle both
nonrigid structure from motion and shape from specular flow, these methods are
derived under the assumption that the rigidity and reflective properties of the
object are known [2–5].
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Detecting that an object is shiny and rigid would allow a tracking system to
rely more on appropriate measurements and improve performance. Methods for
rapidly classifying the reflectivity and rigidity of an object would provide the
basis for automated recovery. Further, to be most useful, such methods should
have minimal information demands. Ideally, we would like an assumption free,
fast, image-based method for material and rigidity classification. In this paper
we show how optic flow information from a single camera can be used to classify
both rigidity of moving objects, and the reflectivity of rigid objects.

Previous methods for classifying material have largely relied on the ability to
control the lighting in the scene, using multiple lights, structured lights, color,
stereo, or combinations of these. For examples, see [6–11]. Oren and Nayar [12]
develop a classification strategy to distinguish image points whose motions af-
fected by specular reflectance from points behaving like diffuse reflectors based
on caustic curves. To our knowledge, we are the first to suggest that rigidity can
be classified for both diffuse and specular surfaces from optic flow information
alone.

In this paper we develop an approach to classify the rigidity and reflectiv-
ity of a moving body using only optic flow information. Our approach consists
of two parts. We show that rigidity produces characteristic transformations in
optic flow that holds for objects with both diffuse and specular reflectance. We
exploit this information to develop an optic flow matching algorithm for rigidity
classification. We also show how an analysis of the consistency of structure from
motion reconstruction can be used to identify diffuse rigid objects.

2 Rigidity from Optic Flow

To detect the rigidity of a specular or diffusely reflecting object from optic flow,
we show a simple relationship exists between the optic flow fields at two time
points for far-field environmental illumination and orthographic (or paraperspec-
tive) viewing. In particular, the flow fields generated by a rigid body motion that
differ by a global transformation is derived below.

In order to derive a relationship between optic flow and rigid object motion,
we assume that both the viewer and the environment are far from the object,
approximated by orthographic viewing and illumination parameterized by direc-
tion on a sphere. These assumptions are not overly restrictive as [2] has shown
that paraperspective is an exceedingly good approximation for most scenes. As
shown in Fig. 1, the object surface F (x, y) = (x, y, f(x, y)) is represented as a
function of image coordinates x, y, n(x, y) = S(θ, φ) indicates the surface normal
at the surface point F (x, y) with direction (θ, φ), S represents the mapping be-
tween spherical and cartesian coordinates, u(x, y) is the optic flow results from
the rigid body transformation T . Because the viewing direction is v = (0, 0, 1),
the mirror direction r = S(θ, 2φ) produces the image point at (x, y).

Rigid body transformation T can be applied to the surface F as T [F (x, y)] =
R [F (x, y)] + t, with R and t refer to the rotation matrix and the translation
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Fig. 1. Assumptions for our treatment of the rigidity from optic flow problem, adapted
from [4]. A surface f(x, y), reflecting a far-field illumination environment viewed or-
thographically to produce an image I(x, y), undergoes a rigid body transformation
T .

vector. This induces a motion field in spatial coordinates:
(

dx
dt
dy
dt

)

= I
(

−RṘTF (x, y) + t

)

, (1)

where I =

(

1 0 0
0 1 0

)

is the orthographic projection matrix, and ṘT is the trans-

pose of the cross product matrix Ṙ formed from the rotation axis ω, where Ṙ
takes the following form:

Ṙ = [ω×] =





0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0



 . (2)

For a fixed rotation axis, ṘTF (x, y) is a constant flow. Thus, the optic flow
pattern generated by a rigid-body transformation is an added translation and
a global transformation that is the projection of the rotation onto the carte-
sian plane −IR: the flow is being rotated across time. This means that a global
transformation of the motion field across time provides critical information about
rigidity. For textured diffusely reflective objects, this motion field result trans-
lates directly into optic flow. After removing a global translation, we expect a
rigid body motion to produce optic flow patterns that are projected rotations of
an initial flow pattern.

We next show a similar result for specular surfaces, which reveals that the
global transformations of optic flow patterns is a key piece of information about
object rigidity. Because translations simply translate the flow under the viewing
and illumination assumptions, we focus on rotations. For a specular surface, if
the surface normals are rotated by a rotation R around an axis ω, then the trans-
formation as a function of time is given by R(t) [ω×]. In cartesian coordinates,
dn

dt
= R(t) [ω×] n. This transformation of the normal field induces a specular

flow field. Adapting the results in [5] to the case of object motion (rather than
environment motion), an explicit relationship between the reflection direction
and the first order derivatives of the surface can be used to relate differential
changes in surface normals to optic flow, when the surface normals are expressed
in spherical coordinates:
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(

dφ
dt
dθ
dt

)

=

(

1
2|∇f |(1+|∇f |2)

0

0 1
2|∇f |2

)

(

fx fy

−fy fx

)(

fxx fxy

fxy fyy

)(

dx
dt
dy
dt

)

. (3)

To convert the normal flow between spherical coordinates and cartesian coor-
dinates, we use the jacobian J of the cartesian to spherical coordinates mapping:
(

dφ
dt
, dθ

dt

)T

= J
dn

dt
. Chaining these relationships, the difference between a flow

at an initial time t = 0 and a later time t is a rotation of the flow. This shows
that specular flow patterns will differ by global transformations for rigid body
motions.

Consequently, by matching optic flow patterns for motion sequences across
time, classification can be made based on the measure of average angular error
(AAE) [13]. The magnitude of AAE can be used to classify surface points as
rigid, with small AAE indicating rigid and large AAE indicating nonrigid.

3 Distinguishing Specular and Diffuse Rigid Bodies

To distinguish rigid motions from diffusely reflective and specular objects, we
use structure from motion [14] to reconstruct a candidate shape, and then assess
the variation of the shape across time using Procrustes analysis [15]. For diffuse
reflective and rigid objects, we would expect the variation in the reconstructed
shape to be low and much higher for specular and nonrigid surfaces. Structure
from motion is applied to a set of points that are tracked using normalized corre-
lation [16]. To assess shape variation, we used a Procrustes analysis that removed
the means of the set of tracked points within each time frame and aligned the
points by finding a global rotation that minimized the least-squares difference be-
tween corresponding points. But unlike the normal Procrustes analysis, the scale
is not removed. The average of the Euclidean distances between corresponding
aligned points provides a measure of shape change that can be computed across
time lags. Large values of this average shape change (ASC) measure indicate
the surface is not both rigid and diffuse reflective. Combined with the optic flow
matching measure, these optic flow based measures can distinguish rigid from
nonrigid objects, and diffuse rigid from specular rigid motions.

4 Optic Flow Computation

We use a combined global local differential method (CLG) for optic flow com-
putation based on Bruhn et al. [17]. CLG yields accurate, dense flow fields that
are robust against noise. The method estimates the flow field by minimizing an
energy function:

E(u) =

∫

Ω

(ψ1(u
TJρ(∇3f)u) + αψ2(1 − |∇u|2))dxdy , (4)
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where Ω denotes the image domain, α serves as regularization parameter, u =
[u, v, 1]T is the flow field, ∇ refers to the spatial gradient, and ∇3 is the spatio-
temporal gradient. The function Jρ takes the form Jρ(∇3f) = Kρ ∗ (∇3f∇3f

T ),
whereKρ means a Gaussian kernel with standard deviation ρ. Two nonquadratic
penalisers ψ1(·) and ψ2(·) are computed as

ψi(z) = 2β2
i

√

1 +
z

β2
i

i ∈ {1, 2} , (5)

with β1 and β2 as scaling parameters to handle outliers. For all the parameters,
we take suggested values from [17].

5 Experimental Results

Test set. Our test set was comprised of novel 3D objects, generated by sinu-
soidally modulated spheres, which were organized into 4 categories according to
their reflectivity (specular vs. diffuse) and rigidity (rigid vs. nonrigid). Nonrigid
deformations were achieved by animating a phase shift of one sinusoidal modu-
lator, in addition to scaling the object either in width (specular) or width and
height (diffuse). For each measure (ASC, AAE) we generated 4 (1 per object
category) 100-frame test sequences, some example frames are shown in Fig. 2.
For ASC experiments, objects underwent a 90◦ rotation around the viewing di-
rection and an xy-translation, whereas for AAE experiments, objects underwent
a 90◦ rotation only.

Average shape change (ASC). We track object features across the duration
of a sequence (see Fig. 3), and compute the ASC by comparing shape changes
between the first and second 50-frame block. As shown in Fig. 4A, the ASC
measure stabilizes when more than 100 feature points are tracked. Small ASC
values reliably indicate the diffusely reflective, rigid object.

Average Angular Error (AAE). Fig. 5 shows sample optic flow fields for each
object category. As expected, the flow fields generated by the specular rigid
object are very similar between frames - up to a rotation (this is also true for
the diffuse, rigid object - but not shown here). However, flow fields for nonrigid
objects of either reflectance can vary in non-systematic ways. The AAE was
computed by comparing the initial flow field (computed between frames 1 and
2) and the inverse rotated subsequent two-frame flow fields, incrementing frame
counts by 10. As results in Fig. 4B illustrate, the AAEs for specular rigid and
diffuse rigid objects are relatively stable and small compared to nonrigid objects
of either reflectance. Thus it provides a reliable measure of the rigidity of an
object.

Table 1 summarizes qualitatively results of each step (1.ASC, 2. AAE) in our
approach.

6 Conclusions

We have shown that it is possible to distinguish the rigidity and reflectance
of moving objects on the basis of the optic flow fields they generate. Rigidity



6 Zang et. al

Fig. 2. Example frames (left to right: 1, 34, 67, 100) from our test for each of the 4
objects categories (top to bottom): specular nonrigid, diffuse nonrigid object, specular
rigid and diffuse rigid. See text for details.

Fig. 3. Selected feature points tracked through 100 frames shown for all 4 object cat-
egories (left to right): specular nonrigid, diffuse nonrigid, specular rigid, and diffuse
rigid.
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Fig. 4. A. ASC for all 4 object categories as a function of number of tracked feature
points. B. Average angular errors between an initial flow field based on frames 1-2 and
subsequent fields as a function of frame number. AAEs become larger with increasing
lag, and are reliably small and stable for rigid objects of either reflectance.

Table 1. Our method allows for a sequential classification approach: In step 1 dif-
fuse rigid objects are successfully classified. In step 2, the AAE reliably distinguishes
between rigid and non-rigid objects.

Step in Analysis Object Class

specular diffuse

rigid nonrigid rigid nonrigid

1. ASC large large small large

2. AAE small, stable large, > diffuse small, stable large, <specular

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

5 10 15 20 25 30
5

10

15

20

25

30

5 10 15 20 25 30

5

10

15

20

25

30

Fig. 5. The top row shows initial flow fields (see text) for specular nonrigid, diffuse
nonrigid and specular rigid objects, respectively (see Fig 2 Column 1 for corresponding
sequence frames).The bottom row shows optic flow fields between frames 51 and 52.
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for both specular and diffuse surfaces constrains the optic flow to follow a pro-
jected transformation across time. Using a structure from motion reconstruction
criterion, it is possible to distinguish specular from diffuse reflectance of rigid
motions. In future work it will be possible to formulate a statistical optic-flow
based rigidity and reflectivity classifier and quantify the error rates.
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