ADAPTIVE POISSON DISORDER PROBLEM
ERHAN BAYRAKTAR, SAVAS DAYANIK, AND IOANNIS KARATZAS

ABSTRACT. We study the quickest detection problem of a sudden change in the arrival
rate of a Poisson process from a known value to an unknown and unobservable value at an
unknown and unobservable disorder time. Our objective is to design an alarm time which
is adapted to the history of the arrival process and detects the disorder time as soon as
possible.

In previous solvable versions of the Poisson disorder problem, the arrival rate after the
disorder has been assumed a known constant. In reality, however, we may at most have some
prior information on the likely values of the new arrival rate before the disorder actually
happens, and insufficient estimates of the new rate after the disorder happens. Consequently,
we assume in this paper that the new arrival rate after the disorder is a random variable.

The detection problem is shown to admit a finite-dimensional Markovian sufficient statis-
tic if the new rate has a discrete distribution with finitely-many atoms. Furthermore, the
detection problem is cast as a discounted optimal stopping problem with running cost for a
finite-dimensional piecewise-deterministic Markov process.

This optimal stopping problem is studied in detail in the special case where the new
arrival rate has Bernoulli distribution. This is a non-trivial optimal stopping problem for a
two-dimensional piecewise-deterministic Markov process driven by the same point process.
Using a suitable single-jump operator, we solve it explicitly, describe the analytic properties
of the value function and the stopping region, and present methods for their numerical
calculation. We provide a concrete example where the value function does not satisfy the
smooth-fit principle on a proper subset of the connected, continuously differentiable optimal

stopping boundary, whereas it does on the rest.
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1. INTRODUCTION AND SYNOPSIS

Suppose that arrivals of certain events constitute a Poisson process N = {N; : t > 0} with
a known rate g > 0. At some time 6, the arrival rate suddenly changes from p to A. Both
the disorder time 0 and the post-disorder arrival rate A of the Poisson process are unknown
and unobservable. Our problem is to find an alarm time 7 which depends only on the past
and the present observations of the process N, and detects the disorder time 6 as soon as

possible.
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More precisely, we shall assume that § and A are random variables on some probability
space (2, H,P), on which the process N is also defined; the variables #, A are independent
of each other and of the process N. An alarm time is a stopping time 7 of the history of the

process N. We shall try to choose such a stopping time so as to minimize the Bayes risk
(1.1) P{r <0} +cE(r—0)",

namely, the sum of the frequency P{r < 6} of the false alarms and the expected cost
cE(1 — )" of the detection delay.

We shall assume that the post-disorder arrival rate A has some general prior distribution
v(-). Similarly, the disorder time # will be assumed to have an exponential distribution

conditionally on that the disorder has not happened yet, i.e., for some 7 € [0,1) and A > 0
(1.2) P{#=0}=7 and P{I>t]|0>0 =e t>0.

The Poisson disorder problem with a known post-disorder rate (namely, A equals a known
constant with probability one) was studied first by Galchuk and Rozovskii (1971) and was
solved completely by Peskir and Shiryaev (2002). In the meantime, Davis (1976) noticed
that several forms of Bayes risks including (1.1) admit similar solutions. He called this class
of problems standard Poisson disorder problems, and found a partial solution. Recently,
Bayraktar and Dayanik (2003) solved the Poisson disorder problem when the detection de-
lay is penalized exponentially. Bayraktar, Dayanik and Karatzas (2004b) showed that the
exponential detection delay penalty in fact leads to another variant of standard Poisson
disorder problems if the “standards” suggested by M. Davis are restated under a suitable
reference probability measure. It was also shown that use of a suitable reference proba-
bility measure reduces the dimension of the Markovian sufficient statistic for the detection
problem, and the solution of the standard Poisson disorder problem was described fully.

We believe that unknown and unobservable post-disorder arrival rate A captures quite well
real-life applications of change-point detection theory. Before the onset of the new regime,
past experience may help us at most to fit an apriori distribution v(-) on the likely values
of the new arrival rate of N after the disorder. Even after the disorder happens, we may
not have enough observations to get a reliable statistical estimate of the post-disorder rate.
Indeed, since a good alarm is expected to sound as soon as the disorder happens, we may
have very few observations of N sampled from the new regime since the disorder.

Let us highlight our approach to the problem and our main results. We show that the

most general such detection problem is equivalent, under a reference probability measure,
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to a discounted optimal stopping problem with a running cost for an infinite-dimensional
Markovian sufficient statistic. However, the dimension becomes finite as soon as the prior
probability distribution v(+) of the post-disorder arrival rate A charges only a finite number
of atoms. This class of problems is of great interest since, in many applications, we have
typically an empirical distribution of the post-disorder arrival rate, constructed either from
finite past data or from expert opinions on the most significant likely values.

We then study in detail the case where the new arrival rate after the disorder is expected
either to increase or to decrease by the same amount. The detection problem turns in this
case into an optimal stopping problem for a two-dimensional piecewise-deterministic Markov
process, driven by the same point process. We solve this optimal stopping problem fully
by describing e-optimal and optimal stopping times and identifing explicitly the non-trivial
shape of the optimal continuation region.

The common approach to an optimal stopping problem for a continuous-time Markov
process is to reformulate it as a free-boundary problem in terms of the infinitesimal gener-
ator of the Markov process. The free-boundary problems sometimes turn out to be quite
hard, even in one dimension; see, for example, Galchuk and Rozovskii (1971), Peskir and
Shiryaev (2002), Bayraktar and Dayanik (2003). Here the infinitesimal operator gets com-
plicated further and becomes a singular partial differential-delay operator. Moreover, it is
a non-trivial task, even in two dimensions, to guess the location, shape, and smoothness of
the free-boundary separating the continuation and stopping regions, as well as the behavior
of the value function along the boundary.

Instead, we follow a direct approach and work with integral operators rather than dif-
ferential operators. As in Gugerli (1986) and Davis (1993), we use a suitable single-jump
operator to strip the jumps off the original two-dimensional piecewise-deterministic Markov
process and turn the original optimal stopping problem into a sequence of optimal stopping
problems for a deterministic process with continuous paths. Using direct arguments, we are
able to infer from the properties of the single-jump operator the location and shape of the
optimal continuation region, as well as the smoothness of the switching boundary and the
value function.

The single-jump operator also provides a straightforward numerical method for calculating
the value function and the continuation region. The deterministic process obtained after
removing the jumps from the original Markov process has two fundamentally different types
of behavior. We tailor the naive numerical method to each case, by exploiting the behavior
of the paths.
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We also raise the question when the value function should be a classical solution of the
relevant free-boundary problem. For a large range of configurations of parameters, both the
value function and the boundary of the continuation region turn out to be continuously dif-
ferentiable, and one may also choose to use finite-difference methods for differential-difference
equations to solve the problem numerically. For a few other cases, we cannot qualify com-
pletely the degree of the smoothness of the value function. Viscosity approaches or some
other techniques of non-smooth analysis are very likely to fill the gap, but we do not pursue
this direction here. We report one concrete example on “partial” failure of the smooth-fit
principle: in certain cases, the value function is continuously differentiable everywhere on
the state space except on a proper subset of the connected and continuously differentiable

optimal stopping boundary.

SYNOPSIS. In Section 2, we present the model and the precise statement of the problem. A
Poisson process N with arrival rate g and two independent random variables ¢ and A with
given prior probability distributions are introduced on a suitable probability space (2, H, Py).
Under a new probability measure P obtained from Py by an absolutely continuous change
of measure, (i) the process N becomes a Poisson process whose arrival rate changes from
constant p to the random A at time 6, and (ii) the random variables A and 6 are independent
and have the same distributions as those under Py.

Working under the reference probability measure Py turns out to be convenient. In Sec-

tion 3.1, the generalized Bayes theorem gives the new form
T A
(3.2) Rm)=1—m+c(l—m)E U e M (q>§°> - —> dt} , TES,
0 c

for the Bayes risk in (1.1), this time expressed under Py in terms of a suitable process ®©)
adapted to the history of N. Unfortunately, this process is not Markovian in general. In
fact, the dynamics of a family { Q)(k)} kN of adapted processes including ®© are nested as

1mn
1

(3.8)  doP = (m<k> + <1>§k>) dt + = o"HV(AN, — pdt), t >0, % = T p®),
1

Hence the Poisson disorder problem is equivalent to the minimization of the Bayes risk in (3.2)
over all stopping times 7 of the infinite-dimensional Markovian sufficient statistic {q)(k) } keNo"
However, Corollary 3.3 shows that only finitely many of the ®*)’s (as many as the number
of atoms of the distribution v(-)) contain all relevant information if the distribution v(-) is

concentrated on a finite number of atoms.
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In Section 4, we specialize to the detection problem where the post-disorder arrival rate
A is expected either to increase by one unit or to decrease by one unit; namely, © > 1 and
v({w—1,1+1}) = 1. The sufficient statistic for the detection problem becomes the process
{®© &M with the dynamics

1
(4.2) avl” =\ (1+0) dt+ - &N, — i), o) =
1 -7
1
(4.3) dof =\ <m + <I>§”> dt +— &0 (AN, — pt),  f = T,
U -

where m £ Eg[A — u] = v({u+1}) —v({p — 1}). If we rotate the coordinate system by 45°

clockwise, then the dynamics of the sufficient statistic in the new coordinates P L {ZIVD(O), EIv>(1)}

~ ~ A1 —m) R ~ (0 (1 —m)m
dcb“”:{AH <I>(O)+—1dt——<b(_)dN, o =
(4.6) ! ( ) V2 u ! ! 0 \/5(1—7r)
' - ~ A1 +m) 1 ~q (1 (1+m)r
dcb(l):[)\—l <I>(1)+—}dt+—¢>(_)d]\7, o =
! ( ) V2 e ! ! 0 \/§(I—W)

are autonomous. Between consecutive jumps of the Poisson process N, the sample paths of
the process ® = {®© &M} follow the integral curves t — (z(t, ¢o), y(t, 1)), t € R, of the

differential equations

d +)\(1—m)

" %x(ta%) = (A +1)x(t, ¢o) T, (0, ¢o) = ¢o,
%y(t, o1) = (A — Dy(t,¢n) + m—j{”) y(0, 1) = 1.

More precisely, if 0o = 0 and o, n € N is the nth jump time of the Poisson process N, then

(see also Figures 1 and 2 on page 19)

(4.10) @0) =x <t — Op, &)‘(7(33) and @1) =y (t — Oy, 5&3) , On <t <o,41, n €Ny,
HO) _ 1\ z0 (1) 1\ ~q)
O/ =|1—— |0, and . =[(14+—)D, _, n € Np.

Moreover, the detection problem reduces to the discounted optimal stopping problem

V(0,01) £ inf B [/ g (8, 3(") dt}
(4.12) re ;

with  glgn,6) 2 g0+ 61— VD (60,01) € R

for the two-dimensional piecewise-deterministic Markov process ® = {®© &M} in (4.6) or
(4.10).
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To solve (4.12), we introduce in Section 5 the family of optimal stopping problems

TAOR, . -
(5.1)  Vi(do, 1) 2 inf Efo1 UO e Mg (q>§0>,c1>§”) dt] . (fo, 1) €RZ, neN.

We show that the sequence {V,,(-, ) }nen converges to the value function V' (-, -) uniformly on

R . More precisely,

V2 "

52 2 (H) 2 o) Vo) 20, neN. (o) e
c A+

Following Gugerli (1986) and Davis (1993), we define the single-jump operator J on bounded

Borel functions w : R% — R by

tAo1 . _ B

(5:3)  Jw(t, g0, 61) = EF [ /0 e g (B0, 3(0) du+1{t2m}e—mw(cpg?,@gﬁ)ﬂ,
t

(5.7) =/ e (g pow o S) (z(u, do), y(u, ¢1))du, ¢ € [0, 00,
0

where S(x,y) = ((1 — ) w1+ ) y) € R? for every (z,y) € R%, and

(54) th(¢0a ¢1) = uelﬁflf(‘)o] JU)(U, (¢07 ¢1))7 le [07 OO]

The value functions V,,,n € N in (5.1) coincide with the functions v, n € N defined sequen-
tially by

(5.6) Up 2 Joun_r Vn €N, and vy =0,

and V() = v(-,-) £ lim, v,(-,-) on R%. Moreover, the form of the single-jump operator
Jw(-,-,+) in (5.7) allows us to prove that the functions v,(-,-) € N and v(-,-) are increasing
in each argument, uniformly bounded, and concave. This information becomes crucial later
in Section 9 as we study the shape of the continuation regions and the smoothness of the
optimal stopping boundaries.

For every n € Ny, the value function V,,;4(+,-) in (5.1) is attained by the stopping time
Spa1 defined sequentially by

T, 1) = inf{t > 0 : v,y1(x(t, d0),y(t, é1)) =0}, n €Ny, (do, d1) € Ri,
S, & 7‘0(&)0) Aoy, and S, = " ((1)0)7 o= Tn(c,IjO) , neN,
o1+ Sy 00, if o9 <r, (<I>0)

where 6, is the shift-operator on €2: N;060; = N,.4; see Proposition 5.5 and Corollary 5.8. In

other words, the best action before the (n + 1)st Poisson arrival is to stop if the continuous
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parametric curve ¢ — (z(t, @éo)(w)),y(t, @él)(w))), t € Ry in (4.7) enters the (n + 1)st
“stopping region” {(x,y) € R% : v,41(x,y) = 0} before the arrival of the first Poisson event.
o : : 0 1

Otherwise, it is better to wait, and stop if the curve ¢ — (z(t, Cbz(n)(w) (W), y(t, @gl)(w) (W))),
t € Ry enters the nth “stopping region” {(z,y) € R2 : v,(z,y) = 0} before the arrival of
the next Poisson event, and so on; see also Figure 4(b) on page 39, Section 9.

The explicit optimal stopping rules S, for V,(-,-), n € N and the uniform convergence in
(5.2) give an e-optimal stopping time for V(+,-) in (4.12). For every ¢ > 0,
V2 1

n Sn -
e (m) <e = 0< E§0’¢1 {/0 e_Atg((I)t)dt} — Vo, #1) <€, (¢, 1) € Ri'

In Proposition 5.12 of Section 5, we also prove that the problem with the value function
V(-,+) in (4.12) admits an optimal stopping time, and the classical stopping times U, =
inf{t > 0: V(EI;t) > —¢} are e-optimal for every € > 0.

In Section 6, we show that the optimal continuation region {(¢o, ¢1) € R2 : V(¢o, ¢1) < 0}
for the problem V'(-,-) in (4.12) is a bounded subset of R%. The boundedness of this region
and the concavity of the value function V(-,-) will help us describe explicitly the structure
of the continuation region in Section 9.

As a by-product of the results in Section 6, we obtain some simple bounds on the alarm
time. When these are tight, they may serve as good approximate detection rules. The
optimal stopping time Uy £ inf{t > 0 : V(ZI;EO), EISS)) = 0} is bounded by

~ ~ A ~ ~
(6.2) 7¢, 2 inf {t >0: 0" + oM > E‘@} <Up<tp2inf{t >0:3"” + M > ¢*}

for a suitable constant &*. If A > ’\ic“(l — A), then £* = ’\ic“\/ﬁ, otherwise, it is the explicit
solution of (6.10), i.e.,

A—1
A1

. Al +m) ) Atp
el D) I

A1+ m) N2+ 1)
V20— 1)] [H% )

where

qb*é(AvLu)(l—)\)—Ac A+ )1+ X) + Ae
0 = 2 o3 )

For small values of the ratio p/c of the pre-disorder arrival rate and the detection delay cost

and ¢ 2

per unit time, the thresholds of the lower and upper bounds in (6.2) on the optimal stopping

time Uy are close. Then the upper bound 75 may serve as a simple approximate alarm time.
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Section 8 starts with the description of the general sequential /numerical solution method.
Each function V,,(-,-) in (5.1) vanishes outside the region D = {(z,y) € R% : x +y < £},
where £* is defined as above. On the bounded set D, we can find the functions V,,(-,-) =
vn(+, +) by repeatedly applying the operator Jy in (5.4). In practice, the uniform convergence
in (5.2) lets us control the number of iterations needed to achieve any given level of accuracy.
The exponential rate of convergence also suggests that this sequential algorithm should be
computationally feasible and accurate.

We tailor the general method mainly to two distinct cases (see below) of the detection
problem. In the meantime, we also shed light on the structure of the solutions of the optimal

stopping problems in (4.12) and (5.1). We show that the stopping regions

r, = {(¢0, 1) € Ri t Un (o, ¢1) = 0} = {(¢o, ¢1) € Ri “nl(P0) < 1}, n €N,
T £ {(¢o,d1) € RZ : v(o, 1) = 0} = {(¢0, $1) € RY : v(¢ho) < ¢4}

are convex epigraphs of some “boundary functions” 7, : Ry — R and v : R, +— R, re-
spectively. These boundary functions are strictly decreasing, continuous, and convex on
their compact supports. The sequence {v,(-)}nen is increasing and converges to v(-); see

Figure 4(a) on page 39.

Case I: A “large” disorder arrival rate A > (1 +m)(c/2). After some preparations in

Sections 9 and 10, we prove in Section 11 that
{(x, y) € RZ :v(x,y) = vn(x,y)} increases to R%, and
{z € Ry :v(z) =y,(x)} increases to R,.

Namely, every iteration v,(-, ) of the successive approximations in (5.6) gives the exact value
function v(-,) on a subset of the state space Ri which increases to the whole space as the
iterations progress. Based on this fact, Methods B and C on pages 50 and 52, respectively,
gradually calculate the value function v(-,-) on R? and the optimal stopping boundary ~y(-)
on R, ; see also Figure 6.

In Section 12.2, we prove that the value functions v,(-,-), n € N and v(-, ) are continu-
ously differentiable everywhere, and that the boundary functions 7, (), n € N and ~(-) are
continuously differentiable on their respective supports. The value function v(-, -)—obtained
as the limit of the successive approximations in (5.6)—satisfies the variational inequalities in
(12.1)-(12.4) associated with the optimal stopping problem (4.12) and is the unique solution
(together with the boundary T £ {(z,7v(z)) : € supp(7)}) of the corresponding free-

boundary problem. Finally, the smooth-fit principle also holds for the function v(-,-) across
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the boundary OT'. These results ensure that the value function v(-,-) can be calculated by

using finite-difference methods for partial differential-difference equations.

Case II: A “small” disorder arrival rate 0 < A\ < (1 + m)(¢/2). In this case we have
to pay more attention to the structure of the boundaries 0T',1 = {(z,741(2)) @ = €
supp(yn+1)} of the stopping regions I',, 11, n € Ny. For every n € Ny, the boundary 0T, 4 is

divided into the entrance and exit boundaries

ol 4 = {(x(”’n(%y¢1)7¢0)77n+1(3/(7’n(¢0>¢1)7¢1))= for some (¢, ¢1) € Cn—l-l}a

or, ., = {(¢07¢1) € Tpyr: (x(t, d0),y(t, ¢1)) € Cpya, t € (0,0] for some § > 0}7

respectively (in Case I, we always have OI',,1 = O, for every n € Ny). We show that

(10.10)

the value function v,41(,-) and the exit boundary JT'; | are completely determined by the
entrance boundary OI';, ,; (see Lemma 10.7), and the value function v, (-, -) from the previous
iteration determines the entrance boundary OI', ;. Since vy = 0 is already available, the
general solution method outlined above can be enhanced as in Method D on page 62.

For certain configurations of parameters, we are able to prove that the value functions
Unt1(+, ), n € Ny are continuously differentiable everywhere on RI\OI' _, and are not dif-
ferentiable on the exit boundary OI';,,, n € Ny, see Proposition 12.17 and Section 12.3.
In Section 12.3, we give a concrete example for a case where the value function v(-,-) of
the optimal stopping problem in (4.12) is continuously differentiable everywhere on R? \oI'”
and is not differentiable on the exit boundary OI'" of the optimal stopping region I'. The
interesting feature of this example is that the smooth-fit principle fails on some proper subset
(namely, the exit boundary OI'") of the connected and continuously differentiable optimal
stopping boundary 0T, while this principle holds on the rest; see Figure 9(d).

This work is divided naturally in two parts. In Part 1, we describe the problem, formu-
late a convenient model, and develop an important approximation. In Part 2, we use the
approximation of Part 1 to develop the solution and study its properties. Both parts are

accompanied by independent appendices which are the homes for long proofs.
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Part 1. ANALYSIS: PROBLEM DESCRIPTION, MODEL, AND
APPROXIMATION

2. PROBLEM DESCRIPTION

Let N = {N;;t > 0} be a homogeneous Poisson process with some rate p > 0 on a fixed
probability space (€2, H,Py), which also supports two random variables § and A independent
of each other and of the process N. We shall denote by v(-) the distribution of the random

variable A, assume that

(2.1) m®) & /(v — ) v(dv), ke N are well-defined and finite,
R

and that

(2.2) Po{0 =0} =7 and Py{d>t}=(1—-n)e ™ t>0

hold for some constants A > 0 and 7 € [0, 1).
Let us denote by F = {F; };>0 the right-continuous enlargement with Py-null sets of the
natural filtration o(Ng;0 < s < t) of N. We also define a larger filtration G = {G;}+>¢ by
A

setting G, = F; V o{0,A}, t > 0. The G-adapted, right-continuous (hence, G-progressively

measurable) process
(2.3) h(t) £ plycgy + Algsey, t>0

induces the (Py, G)-martingale (see Brémaud (1981, pp. 165-168))

(2.4) 7, 5 exp {/Ot log (h(i_>> dN, — /Ot(h(s) - ,u)ds} >0

This martingale defines a new probability measure P on every (2, G;) by

dP
dPy

(2.5) =7, t>0.

Gt

Since P and Py coincide on Gy = o{6, A}, the random variables § and A are independent and
have the same distributions under both P and P,.

Under the new probability measure P the counting process N has G-progressively mea-
surable intensity given by h(-) of (2.3), namely N; — fot h(s)ds, t > 0is a (P, G)-martingale.
In other words, the G-adapted process N is a Poisson process whose rate changes at time 6
from p to A.

In the Poisson disorder problem, only the process N is observable, and our objective is

to detect the disorder time 6 as quickly as possible. More precisely, we want to find an
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F-stopping time 7 that minimizes the Bayes risk
(2.6) R (m) 2 P{r <0} + cE(r — )",

where ¢ > 0 is a constant, and the expectation E is taken under the probability measure P.
Hence, we are interested in an alarm time 7 which is adapted to the history of the process IV,
and minimizes the tradeoff between the frequency of false alarms P{7 < 0} and the expected
time of delay E(7 — #)" between the alarm time and the unobservable disorder time.

In the next section, we shall formulate the quickest detection problem as a problem of

optimal stopping for a suitable Markov process.

3. SUFFICIENT STATISTICS FOR THE ADAPTIVE POISSON DISORDER PROBLEM

Let S be the collection of all F-stopping times, and introduce the F-adapted processes
E[(A — 1) Lo<y | 7]
1-1I, ’
Since A has the same distribution v(-) under P and Py, each ®*), k € Ny is well-defined by
(2.1). The process II = {II;,t > 0} tracks the likelihood that a change in the intensity of

N has already occurred, given past and present observations of the process. Each ®®*) =

(3.1) I, 2P{0 < t|7,}, and oM 2

k€N, t>0.

{Cbgk),t > 0}, k € N may be regarded as a (weighted) odds-ratio process.

Our first lemma below shows that the minimum Bayes risk can be found by solving a
discounted optimal stopping problem, with discount rate A and running cost function f(z) =
x — A/c for the F-adapted process ®®. The calculations are considerably easier when the
process ®© has the Markov property. Unfortunately, this is not true in general. However,
the explicit dynamics of ®© in Lemma 3.2 reveal that the infinite-dimensional sequence
{®(®)}, oy, of the processes in (3.1) is always a sufficient Markovian statistic for the quickest
detection problem. The same result also suggests sufficient conditions for the existence of a

finite-dimensional sufficient Markovian statistic, a case amenable to concrete analysis.

3.1. Lemma. The Bayes risk in (2.6) equals

T A
(3.2) RJ@zl—w+d1—ﬂE4]1K”(@m——)ﬁy res,
0 c
where the expectation By is taken under the (reference) probability measure Py.

For several proofs below, the following observations will be useful. Every Z; in (2.4) can

be written as

L
(3.3) Zy = lp<oy + L—;l{tze}



ADAPTIVE POISSON DISORDER PROBLEM 13

in terms of the likelithood ratio process

AN
(3.4) Lté(—) e At >0,
i

Then the generalized Bayes theorem (see, e.g., Liptser and Shiryaev (2001, Section 7.9)) and
(3.3) imply
EQ[Zt1{9>t}’Ft] _ ]P)(){e > t|ﬂ} _ (1 — 7T)67)‘t
Eo[Z:|F] Eo[Z:|F] Eo[Z:|F]
since € is independent of the process N under Py and has the distribution (2.2).

(3.5) 110, =

Proof of Lemma 3.1. By (3.1), the generalized Bayes theorem and (3.5), we have

30 _ Ellp<n|Fi] _ EolZilo<pl ] Eo[Zilio<ny|Fi]
t 1—1I, (1 — IL)Eo[Z:|F (1 —m)e X

t>0,

which gives

(3.6) E[(r—0)"]=E [/ 1{e<t<f}dt] =/ Eo[Zi1 {751y lo<i]dt
0 0

= / Eo |:1{T>t}EO[Zt]‘{9§t}’ft]:| dt=(1—-m)-Eo [/ e)‘tq’go)dt] , TES.
0 0

Suppose that 7 € S takes countably many distinct values {t,,n € N} for some ¢, €
R4 U{+o0}. Then

(37) P{r <0} => P{t,<0,7=t,} = ZEO[Ztnl{tn<9}1{T:tn}]

= ZEO[1{0>tn}]—{T:tn}] - Z(l - 7T) Eo[l{r tn}]

n

(1—7)-Eg Z [(1 — / Ae—”dt) 1{T:tn}} =(1—7)—(1—7m)\-E UOT e—”dt] .

An arbitrary stopping time 7 € S is the almost-sure limit of a decreasing sequence {7, },>1 C
S of stopping times which take countably many values. For every 7,, n € N, (3.7) holds.
Since t +— lycpy and ¢ — fg e *ds are right-continuous and bounded, passage to limit as
n — oo and the bounded convergence theorem verifies (3.7) for every 7 € S. The sum of

(3.6) and (3.7) gives (3.2). O
3.2. Lemma. Let m®) k € Ny be defined as in (2.1) Then every ®® k € Ny in (3.1)

satisfies the equation

1
(38) do® _)\< )+ B )dt+ OV (AN — pdt), £ >0, @ = = m®).
— T
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Proof. For every k € Ny, let us introduce the function
(3.9) F®(t x) 2 / (2) (v — p)ke =Mty (dv), teR,,zeR.
1
The generalized Bayes theorem, (3.5), and the independence of the random variables 6, A

and the process N under Py imply

ot _ o (A — ) Z1 o<y 7] Eo [(A — )" (Lt1{9=0} + é—;l{wgt}) ‘E:|
(3.10) b -IE[ZIR] (1 —m)e N

At t
= T FW(E N, + A / M= FE (¢t — s N, — N,)ds = UP + VP

_]__7T 0

for every k € Ny and ¢t € R, where
k) o T (k) o '
(3.11) A 1—F(k)(t,Nt) and VW & )\/ AR (¢ — s N, — N,)ds.
Every F®)(t,2), k € Ny in (3.9) is continuously differentiable, and
0

(3.12) aFU“)(t,g;) = —FED (¢ ), t>0,z€eR, keN,.
The change of variable formula for jump processes gives
F® (N, = F®(0,0) +/ (s,NS)der/ (s, Ny_)dN;
o Ot o Ox
OF®)
(k) _ (k) _
(3.13) + > [F (5, Vo) = F® (s, Noo) = —— (S,NS)ANS]

0<s<t
t
=m® —/ F*D (5 N,)ds + Z [F®) (s, N;) — F® (s, N,-)]
0 0<s<t
where AN, & N, — N,_ € {0,1} for every s > 0, and the last equality follows from (3.12),

ox

Al
(s, Noo)dN, = > %(S,Ns_)ANS.

0<s<t

F®0,0) =m®, ke Ny, and /
0

However, F*)(s, N,) — F®)(s, N,_) is equal to

/ @Ns% (v — e (dv) - / (;)N (v — e (dv)
JG) [ e

AN, Ne— 1
/ (2) (v — p) e My (dv) = = F*U(s N, ) AN,
0 I 1




ADAPTIVE POISSON DISORDER PROBLEM 15

since [(v/p)?Ns — 1] = (AN,/u)(v — p). The last displayed equation and (3.13) imply

t
1
F®(, N,) =m® — / F* (s, Nyds + Y = F* (s, N,_) AN,
(3.14) 0 o<s<t P

t

1

—m® +/ : FO+D(s N, )(dN, — uds),  t Ry, k € N,
0

This identity will help us derive the dynamics of U*) and V*) in (3.11). Note that

1 _
d ( T Uf’“’) = d (MFO(,N,)) = MFE (8, N)AdE + MdFP (t, N,)

e
L—7 e (k+1)
— A" Mgt + S FEED @ N, (AN, — pdt).
7r o

Therefore,

1
(3.15) AU = AU 4 - U DN, = pdt), t>0, U = < T n®,

1 -7

The derivation of the dynamics of V(¥ is trickier. For every fixed s € [0,1), let us define
N 2 Nsio — Ng, 0 <u <t —s. This is also a Poisson process under Py. As in (3.14),

t—s 1
F®) (t — s, Nfi) = mk) +/ — pl+D) (u, ngs_)) (sz(f) — udu) .
o M

Changing the variable of integration and substituting N = Ngie — N into this equality
gives
1

t
- / F*(y — 5, N,_ — Ny)(dN, — pdv).
s

Let us plug this identity into I/;(k) in (3.11), multiply both sides by e~*, and change the

order of integration. Then

t 1 i
e—AtV;(k) _ / Ae s <m(k) + _/ F(k+1)(v — 8, N,_ — N,)(dN, — Mdv)) ds
0 K Jo

t /\ t v
_ ® / Ne—Neds 4 2 / ( / e My 5 N, - Ns)d8> (dN, — udv)
0 0 0

I

F®(t — 5, N, — N,) =m® +

t 1 t
= m®) / e Mds + — / e VED (AN, — pdv).
0 K Jo

Differentiating both sides and rearranging terms, we obtain
1
(3.16) dv® = x (me) + Vf’“)) dt + ; VED AN, — pdt), t>0, VP =o.

Adding (3.15) and (3.16) as in (3.10) gives the dynamics (3.8) of the process ®*). O
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Lemma 3.2 shows that the process ®© does not have the Markov property in general.
This is because, as (3.8) shows, ®© depends on ®1), then ®1) depends on ®®), and so
on ad infinitum. However, a finite-dimensional sufﬁment Markovian statistic emerges if the
system of stochastic differential equations in (3.8) is closeable, namely, if the process ®*) can
be expressed in terms of the processes ®© . . ®* =1 for some k € Ny. Our next corollary

shows that this is true if A takes finitely many distinct values.

3.3. Corollary. Suppose that v({\1, -+, \}) = 1 for some positive numbers Ay, ..., Ag.

Consider the polynomial

k k—1
P(U)éH(U—)\i+M)Evk+ ¢ v, veR
i=1 1=0
for suitable real numbers cq, ..., cx_1. Then {®@ dW ... dF=DY s q k-dimensional suffi-

cient Markov statistic, with ®*) = — Zf:_ol c; @),

Proof. Under the hypothesis, the random variable p(A — 1) = (A — p)* + 270 ci(A — p) is

equal to zero almost surely. Therefore, (3.1) implies

[p(A — )l |F]
+ Z ¢ ®,’ = 1, =0,

P-a.s., for every t > 0.

The process on the lefthand side has right-continuous sample paths, by (3.8). Therefore,
k) + Zl o i Py’ =0 for all t € Ry almost surely, i.e., the process ®*) is a linear combi-

nation of the processes ®©@ ... ®* -1 outside a null set. [l

In applications, one may construct an a prior distribution for the random variable A
by using empirical distributions obtained from past data, if available, and/or from expert
opinions in the field. Therefore, it is reasonable to expect that a prior distribution for A will
typically be discrete with finite support. In such a case, we can set up the detection problem
in the form of an optimal stopping problem for a finite-dimensional Markov process, thanks
to Corollary 3.3. In the remainder of the paper, we shall study the case where the arrival

rate of the observations after the disorder has a Bernoulli prior distribution.

4. POISSON DISORDER PROBLEM WITH A BERNOULLI POST-DISORDER ARRIVAL RATE

We shall assume henceforth > 1 and that the random variable A has Bernoulli distribu-

tion

(4.1) v({p—1,p+1}) =1
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Namely, the rate of the Poisson process NV is expected to increase or decrease by one unit after
the disorder. Corollary 3.3 implies that ®®) = ®© and the sufficient statistic (®© &) is

a Markov process. According to Lemma 3.2, the pair satisfies

(4.2) a0 =2 (1+ ) dt + % VAN, — pdt), B =
(4.3) Ao = )\ <m + <I>§1>> dt + % O (AN, — pdt), ) = . - —m,
where, as in (2.1), we set

(4.4) m=mM =Fg[A —p] =P{A=p+1} —P{A=p—1}.

The dynamics of the processes ®© and &) in (4.2) and (4.3) are interdependent. However,

if we define a new process

_ (507, 1 [o® — oo
(4.5) b=|. | £ — :
MW /2 |90 W
then each of the new processes ®© and &1 is autonomous:
~ ~ A(l—m) 1~0 ~(0 (1—m)7r
dé(o):{Ale <1>(0)+—}dt——(1>(_)dN, oW — = TR
(4 6) t ( ) t \/§ M t t 0 \/5(1 . 7]')
' ~ ~ A1 +m) 1 ~a ~(1 (1+m)m
dcb(l)—{)\—l <I>(1)+—1dt+—<b(_)dN, oV = TR
t ( ) t \/5 1 t t 0 \/5(1 _7_‘_)

The new coordinates ®© and @1 are in fact the conditional odds-ratio processes as in

~ P{A=p—1,0 <t|F} ~ P{A =p+1,0 <t|lF}
o0 = /2. : a oM =v2. :
D=V R an N (B

Therefore, both ®© and &M are nonnegative processes.
Note that m € [—1,1] in (4.4). The cases m = =+1 degenerate to Poisson disorder
problems with known post-disorder rates, and were studied by Bayraktar, Dayanik, and

Karatzas (2004b). Therefore, we will assume that m € (—1,1) in the remainder.

4.1. Remark. For every ¢y € R and ¢; € R, let us denote by z(t,¢g), t € R and y(¢, ¢1),
t € R the solutions of the differential equations

d B Al —m) _
%37(@ $o) = (A + 1)x(t, do) + VR (0, ¢0) = o,

A1 +m)

N

(4.7)

%y(t, ¢1) = (A — Dy(t, 1) + y(0,61) = o1,
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respectively. These solutions are given by

. o A1 —m) SOt A1 —m)
(t, ¢0) = —\/5(H1)+ {¢o+—\/§()\+1)], teR,
A1 +m) _ A1+ m)
(4.8) — Mg | A £
y(t, ¢1) = \/51(1;1) { V20— 1)] . teR
b1 + Wt A=1

Both z(-, ¢9) and y(+, ¢1) have the semi-group property, i.e., for every t € R and s € R
(4.9) w(t +s,¢0) = x(s,x(t,¢0)) and  y(t +5,¢1) = y(s,y(t, ¢1)).

Note from (4.6) and (4.7) that

(4.10) (TDEO) =x (t — O, &DS(B) and 5%1) =y (t — Op, 5&?) , op <t <oui1, n € Np.

4.1. An optimal stopping problem for the quickest detection of the Poisson dis-
order. In terms of the new sufficient statistics @ and ®© in (4.5, 4.6), the Bayes risk of

(2.6, 3.2) can be rewritten as

RT(w):l—nJrc(l—\/_;)-JEOUOTe* <&>“+<I><1> ) } €.

Therefore, the minimum Bayes risk U(n) £ inf.cs R, (), 7 € [0, 1) is given by

o ol —m) (I—-m)r (1+m)7m -
(4.11) Ulr) =1 -7+ = V(\/ﬁ(l—w)’\/ﬁu—w))’ € [0,1),

where m is as in (4.4), the function V'(-,-) is the value function of the optimal stopping

problem

<¢07¢1) mf ]E% é1 |:/ ef)\tg (&)g())’ &)gl)) dt:| 7
0

9(0, 1) £ do + ¢1 — E\/E’ (¢0, 1) € R,

(4.12)

and E§°’¢1 is the conditional Py-expectation given that 5((]0) = ¢y and &3(()1) = ¢1. Moreover,
an optimal stopping time for (4.12) is a minimum Bayes alarm time.
It is clear from (4.12) that it is never optimal to stop before the process ® leaves the

region

(4.13) C, £ {(¢07¢1) eRY: ¢o+ ¢ < %\/5} :
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k k k

t t t ~

-

— — —
0 ®d o 0 o) 0 o)
(2) @V with0 < A < 1 (1) dD with A > 1 (©) @ with A > 0

FIGURE 1. The sample-paths of the processes ®W and d©.

In the next subsection we shall discuss the pathwise behavior of the process :1;; this will give

insight into the solution of the optimal stopping problem in (4.12).

4.2. The sample-paths of the sufficient-statistic process ® = (&, d1)). The process
®© jumps downwards and increases between jumps; see (4.6) and Figure 1(c). On the other
hand, the process oW jumps upwards, and its behavior between jumps depends on the sign
of 1 — A. If A > 1, then the process ®1 increases between jumps; see Figure 1(b). If
0 < A < 1, then ®D reverts to the (positive) “mean-level”
(4.14) by 2 Al +m)
(1- V2

between jumps; it never visits ¢4 unless it starts there; and in this latter case, it stays at ¢q4
until the first jump and never comes back to ¢, later (i.e., ¢4 > 0 is an entrance boundary
for 5(1)); see Figure 1(a). Finally, note that ¢4 and 1 — XA # 0 have the same signs.

As for the solution of the optimal stopping problem in (4.12), it is worth waiting if the
process ® is in the region Cy of (4.13), or is likely to return to Cy shortly. The sample-paths

of the process ® are deterministic between jumps, and tend towards, or away from, the region



20 ERHAN BAYRAKTAR, SAVAS DAYANIK, AND IOANNIS KARATZAS

q;(l)‘ @(1)‘
EIV)t (w) \\ EIv)t ()

Aﬂ\ a

V2 _ Co

)

=90°

"o
o |

et

= :::: | R -
0 2V2 30 g V2 $(0)

(@) Case: A > 1or0 < (\/c)V2 < g (b) Case I: 0 < ¢ < (\/c)V/2

FiGURE 2. The sample-paths of o

Cy. These two cases are described separately below. In both cases, however, the process
R jumps in the same direction relative to its position before the jump. A jump at (¢, ¢1)
is an instantaneous displacement (1/p)[—¢, &;]T in ®. Therefore, the jump direction is
away from (respectively, towards) the region Cy if ¢pg < ¢; (respectively, ¢o > ¢1). Along
a quarter of a circle in Figure 2(a), the directions of jumps at an equal distance from the
origin are illustrated by the arrows. Note also that, along any fixed half-ray in R?, the jump
direction (namely, the angle « in Figure 2(a)) does not change, but the size of the jump

does.

4.3. Case I: A “large” disorder arrival rate. Suppose that A > 1 or 0 < (A/c)V2 < ¢,.
Equivalently, A > [1 — (1+m)(¢/2)]" is “large”. Between jumps, the process ® gets farther
away from the region Cy. It may return to Cy by jumps only, and only if the jump originates
in the region L = {(¢o, 1) : ¢o > ¢1}; see Figure 2(a). But, if ®W reaches at or above
(A\/c)V2, then ® will never return to Cy.

4.4. Case II: A “small” disorder arrival rate. Now suppose that 0 < ¢g < (A/c)V/2.
Equivalently, 0 < A < 1—(14+m)(c/2) is “small”. If the process ® finds itself in a very close
neighborhood of the upper-left corner of the triangular region Cy, then it will drift into C,
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before the next jump with positive probability. Otherwise, the behavior of the sample-paths

of ® relative to Cy is very similar to that in Case I; see Figure 2(b).

5. A FAMILY OF RELATED OPTIMAL STOPPING PROBLEMS

Let us introduce the family of optimal stopping problems
TAOR - -
(5.1)  Val(do,é1) £ inf Efo-¢1 [/ e Mg (@?%@i”) dt] . (fo, 1) €RZ, neN,
TE 0

obtained from (4.12) by stopping the process ® at the nth jump time o,, of the process N.
Since g(-,-) in (4.12) is bounded from below by the constant —(\/c)v/2, the expectation in
(5.1) is well-defined for every stopping time 7 € S. In fact, —v/2/c < V,, < 0 for every n € N.
Since the sequence (0,,),>1 of jump times of the process N is increasing almost surely, the

sequence (V,,)n>1 is decreasing. Therefore, lim,,_,, V,, exists everywhere. It is also obvious
that V,, >V, n € N.

5.1. Proposition. As n — oo, the sequence V, (¢, $1) converges to V(po, ¢1) uniformly in
(¢o, 1) € R%. In fact, for every n € N and (¢o, ¢1) € R%, we have

(5.2) g : (ﬁ)n > Vilo, #1) — V(¢o, ¢1) = 0.

Proof. Let us fix (¢, ¢1) € ]Ri. For every 7 € § and n € N, we have

T TAOR . T ~
e [ [ va@ga] cmo [ cvigs] 458 [ [ ot
0 0 on
TNAOp, . )\ T
> Ego"bl {/ e’\sg(fIJS)ds} — z\/i-]Eg’O"z’l [1{72%}/ e’\sds]
0 On
TAOR . \/§ \/§ n
> Ego,m {/ 6/\Sg((I)S)d8} _ ? ~Eg0’¢l [eﬂ\an} > Vn<¢07 (bl) _ 7 . (L)
0

A+

We have used the bound g(¢o, ¢1) > —(\/c)v/2 from (4.12), as well as the fact that N is

a Poisson process with rate p under Py, and o, is the n-th jump time of N. Taking the

infimum over 7 € S gives the first inequality in (5.2). O

We shall try to calculate now the functions V,,(+) of (5.1), following a method of Gugerli
(1986) and Davis (1993). Let us start by defining on the collection of bounded Borel functions
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w : R3 — R the operators

tAo1 _ . _ B
63 Tt ) 25 [ [ g (59, 80) ot 1z0ne 0 (39, 59)].
0
(5.4) Jow(do, 1) = i[nf } Jw(u, ¢o, 1) for every t € [0, o).
u€|t,00

The special structure of the stopping times of jump processes (see Lemma 7.1 below) implies

TNO1 . » B _
50 dowtonon) = ng | [ (B0B) -ty (8, 387)
T 0

By relying on the strong Markov property of the process N at its first jump time oy, one
expects that the value function V' of (4.12) satisfies the equation V' = JyV. Below, we show
that this is indeed the case. In fact, if we define v, : R — R, n € Ny sequentially by

(5.6) =0, and v, = Jyu,_1 VneN,

then every v, is bounded and identical to V,, of (5.1), lim, . v, exists and equals the value
function V' in (4.12).
Under Py, the first jump time o of the process N has exponential distribution with rate

. Using the Fubini theorem and (4.10), we can write (5.3) as

t
57 Jultdnon) = [ €O g0 w0 ) (el ylu.o)du, € 0,00]

where z(-,¢9) and y(-, ¢1) are the solutions (4.8) of the ordinary differential equations in

(4.7), and S : R% — R? is the linear mapping

(5.3) S(d0, én) £ ((1 - %) o, (1 ‘ %) m) |

5.2. Remark. Using p > 1 and the explicit forms of x(u, ¢y) and y(u, ¢1) in (4.8), it is easy
to check that the integrand in (5.7) is absolutely integrable on R,. Therefore,

tliglo J’LU(t, ¢07¢1) = J’LU(OO, ¢07¢1) < 00,

and the mapping ¢t — Jw(t, ¢o, ¢1) : [0,00] — R is continuous. The infimum Jyw(po, ¢1) in
(5.4) is attained for every t € [0, oc].

5.3. Lemma. For every bounded Borel function w : R% — R, the mapping Jow is bounded.

If we define |Jw]] = SUD (g9,¢1)€R2 |w(go, ¢1)| < oo, then

(5.9) — (ﬁ . g + ﬁ : ||w||> < Jow(¢go, ¢1) <0, (¢o,$1) € RY.
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If the function w(¢y, ¢1) is concave, then so is Jow(¢o, d1). If wy < wy are real-valued and

bounded Borel functions defined on R2., then Jowy < Jyws.

5.4. Corollary. Every v,, n € Ny in (5.6) is bounded and concave, and —/2/c < ... < v, <
Un_1 < vy < vy =0. The limit

(5.10) v(¢o, 1) £ r}g{}o%(%@l)a (¢, $1) € R

exists, and is also bounded and concave.
Both v, : RZ — R, n € N and v : R] — R are continuous, increasing in each of their

arguments, and their left and right partial derivatives are bounded on every compact subset
of R?.

5.5. Proposition. For every n € N, the functions v, of (5.6) and V,, of (5.1) coincide. For
every € > 0, let

75 (o, ¢1) = inf {s € (0,00] : Ju, (s, do, ¢1) < Jovn(go, 1) + €}, n €Ny, (¢o, 1) € RZ,
T2/2 (‘50), Zf o1 > ’I“i/2 (‘50)

SE &g @) Aoy, and S— ~
(o) " o1+ 8700, if o1 <r? (Do)

, neN,

where O is the shift-operator on 2: Nyo @y = Ngiy. Then
S5 -
(5.11) RS04 U e_”g(q)t)dt} < vp(po, 1)+, VneN, Ve >0.
0

5.6. Proposition. We have v(¢o, 1) = V(¢o, ¢1) for every (¢o, ¢1) € RZ. Moreover, V is

the largest nonpositive solution U of the equation U = JyU.

5.7. Lemma. Let w: R2 +— R be a bounded function. For everyt € Ry and (¢o, ¢1) € R%,
(5.12) Jiw(go, ¢1) = Jw(t, o, ¢1) + e Jyw (w(t, 4o, y(t, 61))

5.8. Corollary. Let

(5.13) ra(¢o, $1) = inf {s € (0,00] : Jun (s, (o, 1)) = Jovn(go, ¢1) }

be the same as 15(¢o, ¢1) in Proposition 5.5 with € = 0. Then

(5.14) (@0, @1) = inf {t > 0 : vpq (2(t, do), y(t, ¢1)) =0} (inf @ = o0).

Proof. Let us fix (¢o,¢1) € R2, and denote 7,(¢o, ¢1) by r,. By Remark 5.2, we have
J’Un(rn>¢0a ¢1) = JOUn<¢07¢1) = Jrnvn<¢07 ¢1)



24 ERHAN BAYRAKTAR, SAVAS DAYANIK, AND IOANNIS KARATZAS

Suppose first that r,, < co. Since Jyv, = v,41, taking t = r, and w = v,, in (5.7) gives
JUTL(T'M ¢07 ¢1) = Jrnvn(¢07 (bl) = JUn<T‘n, ¢07 §Z51) + 6_()\+#)Tnvn+1(m(rn7 ¢0)7 y(rn, ¢1))

Thereforea UnJrl(x(rnu ¢0)7 y<rn7 ¢1)) = 0.
If 0 <t <y then Juy(t, ¢o,d1) > Jova(do, ¢1) = Jr,vn(¢0, 1) = Jewvn(¢o, ¢1) since
u +— Juu,(do, ¢1) is nondecreasing. Taking t € (0,7,) and w = v,, in (5.7) imply

JOUn<¢Oa (bl) = Jtvn((bOa ¢1) = Jvn(ta ¢07 (bl) + ei()\+u)tvn+1 (l’(t, ¢0)7 y<t7 (bl))

Therefore, v,41(x(t, ¢o),y(t, ¢1)) < 0 for every t € (0,7,), and (5.14) follows.
Suppose now that 7, = co. Then we have v, 1(x(t, ¢o), y(t, $1)) < 0 for every t € (0, 00)

by the same argument in the last paragraph above. Hence, {t > 0 : v,1(x(¢, o), y(t, ¢1)) =
0} = @, and (5.14) still holds. O

5.9. Remark. For every le [07 Tn(qSOa ¢1)]7 we have Jtvn(¢07 ¢1) - Jovn(¢07 ¢1) = Un+1(¢07 qbl)
Then substituting w(-,-) = v,(+,-) in (5.12) gives the dynamic programming equation for the

family {v(-, ) }reno: for every (¢o, ¢1) € RZ and n € Ny
(515) Un+1 (¢07 ¢1) - Jvn(t7 ¢07 ¢1) + 6_(>\+u)tvn+1(x(ta ¢0)7 y(t7 gbl))v le [07 Tn(¢0: ¢1>]

5.10. Remark (Dynamic Programming Equation for V'(-,-)). Since V(-,-) is bounded, and
V = JoV by Proposition 5.6, Lemma 5.7 gives

(516) Jtv(¢07¢1> = JV(t,¢0,¢1) +ei()\+u)tv('x(t7¢0)ay(ta (bl)))a te R+
for every (¢, 1) € R?; and if we define

(5.17) (o, ¢1) = inf{t > 0: JV(t,¢0,01) = JoV(¢o, ¢1)}, (¢o, 1) € R,

then arguments similar to those in the proof of Corollary 5.8, and (5.16), give
(5.18) r(¢o, ¢1) = inf{t > 0: V(z(t, ¢o),y(t, ¢1)) = 0}, (¢o0, ¢1) € Riu

as well as the Dynamic Programming equation

(5.19) Vo, ¢1) = JV (L, do, 1) + e~ YTV (2(t, ¢0), y(t, ¢1)), ¢ € [0,7(do, p1)]

for the function V'(-,-) of (4.12). Because t — Jw(t,(¢o,¢1)) and t — Jaw(¢pg, 1) are
continuous for every bounded w : R% — R (see, e.g., (5.7)), the identity (5.16) implies
that t — V(z(t,¢o),y(t, 1)) is continuous. Therefore, every realization of ¢ — V/(®;) is

right-continuous and has left-limits.
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Let us define the F-stopping times
(5.20) U.L2inf{t >0:V(®,) > -}, >0
By Remark 5.10, we have
(5.21) V(;IV)UE) > —¢ on the event {U. < oo}.

5.11. Proposition. Let M, £ ¢V (®,) + fg e g(D,)ds, t > 0. For everyn €N, € >0,
and (¢, 1) € R3, we have E" [Mo] = B [My. e, ], i-e.,

. U:sNon .
(5.22) V(po, ¢r) = B0 [e‘A(UEA"")V(fI)USMn) + / e Mg(®,)ds| .
0

5.12. Proposition. For every ¢ > 0, the stopping time U, in (5.20) is e-optimal for the
problem (4.12), i.e.,

Ue ~
Ego,asl [/0 e_’\sg(‘i’s)ds} < Vo, 1) +¢&, forevery (oo, d1) € Ri'

Proposition 5.5 above shows how we can calculate the V,,’s sequentially; it also identifies
explicitly e-optimal times for every optimal stopping problem in (5.1). Together with Propo-
sition 5.1, it suggests a way to calculate e-optimal alarm times: Let ¢; > 0 and €3 > 0 be

two arbitrary numbers such that €; + 9 = ¢ > 0. Let us choose n € N such that

2 n
(5.23) vz, <L) <en

c A
Then we have V,(¢o, 1) — &1 < V(do, 1) < Vi(¢o, ¢1) for every (¢o,¢1) € R%, and the
stopping time S;? of Proposition 5.5 is an e-optimal stopping time for our original optimal

stopping problem (4.12) in the sense that

< V(¢07 (bl) + g, ((bOa ¢1) € Ri_

Sp2 _
/ e Mg (<I>t)dt
0

V(go, 1) < E§°’¢1

Since n € N satisfies (5.23), and S5?(w) < 0, (w) for all w € €, setting the alarm at the nth
jump of the process N (if this has not been triggered by S2?(w) earlier) is not in error more
than e.

In this section, we showed that the (more classical) stopping times U, of (5.20) are also

e-optimal for (4.12); especially the stopping time Uy is optimal, see Proposition 5.12.
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6. A BOUND ON THE ALARM TIME

We shall show that the optimal continuation region C = {(¢o, ¢1) € R2 : V (¢, ¢1) < 0}

is contained in some set
A
(6.1) D ={(¢o, 1) ERZ : ¢g + ¢1 < &'} for a suitable £* € {%\/ﬁ, oo) :

Therefore, the region C has compact closure; this will be very useful in proving in the next
section that C has a strictly decreasing convex boundary.
Recall from Section 4.1 that it is not optimal to stop before the process & leaves the region

Cy in (4.13). Thus the optimal stopping time Uy of Proposition 5.12 is bounded by
~ ~ A - ~
(6.2) 7¢, 2 inf {t >0: 0" + oM > —\/5} <Up<mp2inf{t >0:3" + oM > ¢*}
c

the exit times 7¢, and 7p of the process ® from the regions Cy and D, respectively. The
constant threshold ¢* in (6.1) is essentially determined by the number (A + u)v/2/c (see
(6.5), (6.9) and (6.11)), and our calculations below suggest that they are close. Therefore,
the bounds in (6.2) may prove useful in practice. The difference [(A + p)/c]v2 — (A\/c)V2 =
(11/¢)V/2 between the thresholds that determine the latest and the earliest alarm times is also
meaningful. It increases as u/c increases: waiting longer is encouraged if the new information
arrives at a higher rate than we pay for detection delay per unit time when the disorder has
already happened.

Finally, we prove in Lemma 6.1 that 7p in (6.2) has finite expectation. Therefore,
R (U] < ES'[rp] < 00 for every (¢o, 1) € R3.

Let 7 € § be any F-stopping time. By Lemma 7.1, there is a constant ¢ > 0 such that

T A op =t A o; almost surely. Therefore
(6.3) EZ™ { / e)‘sg(&)s)dsl
0

TAO - T =
— B { /0 1e‘”9(¢>5)d8} +E {1{»@} / ¢ (%) ds]

' V2
> Eg” {/0 1{s§o1}€A89($<3»¢0)’y(s,¢1))d5} - B (s ]

_ /Ot o~ (M tw)s [g(a:(s,gbo),y(s,¢1)) — %\/ﬂ ds.

9(0,0) = —(\/c)V2, see (4.12). The functions

The inequality follows from g¢(¢g, p1) >
x(-,¢0) and y(-,¢,) are the solutions of (4.7) (see Remark 4.1), and o; has exponential
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A
1-X 2

A
V2

< 2 \\\\ (IIJ(t, ¢0)7y(t7¢1
(qbo,qé// bd
CO \\\ C’() //
0 V2 ARV g V2 AV V2 AEve
@A>1 (pg <0) ) 25 =2 (<D ©0< 25 <2 (A<D)

FI1GURE 3. Region D

distribution with rate p under Py. Clearly, if
A+
(64) 0< g(l’(S,Qbo), ( ¢1)) - _\/_ LU(S, ¢0) + y(S, le) - T\/ia 0<s< 0,

then (6.3) implies that E(‘?D’m [fOT e_)‘sg(EI;s)ds] > 0 for every F-stopping time 7 # 0 almost
surely (since the filtration F is right-continuous, the probability of {T > 0} € Fy equals zero
or one). Thus, “stopping immediately” is optimal at every (¢q, ¢1) where (6.4) holds.

If A > 1, then s — x(s,¢p) and s — y(s, ¢1) are increasing for every (¢o, ¢1) € R, see
(4.7) and Figure 3(a). Therefore, (s, ¢o) + y(s, p1) > x(0, o) +y(0, $1) = ¢ + ¢1 for every
0 < s < 0o. Hence, (6.4) holds, and therefore it is optimal to stop immediately outside the

region
A 2 A+ p .
(65) D, = {(¢0,(b1) c ]R+ S+ o1 < T\/i} if A>1.

Suppose now that 0 < A < 1; equivalently, ¢4 of (4.14) is positive. Then s — x(s, ¢)
is increasing for every ¢g € R,. For ¢y = ¢g4, the derivative dy(s, ¢q4)/ds in (4.7) vanishes
for every 0 < s < oo. The mapping s — y(s, ¢1) is increasing if ¢; € [0, ¢q), decreasing if
¢1 € (¢g,00), and (s, pq) = ¢q for every 0 < s < oo; see (4.7) and Figures 3(b,c). The

derivative

(6:) et 00) +y(6,60)] = O Dot 60) + (A= (e, 01) + A2
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of the righthand side of (6.4) (see also (4.7)) vanishes if the curve s — (z(s, ¢o), y(s, 1))

meets at s = ¢ the line

1
(6.7) (: A+Dz+N-1y+I/2=0, or yzlt;\\$+$\/§.

Since m € (—1,1), the “mean-level” ¢4 in (4.14) and the y-intercept of the line ¢ in (6.7) are

related as in

A 1+m A
. 2
3 a ST Y2

$q =

Because /¢ is increasing, this relationship implies that the line ¢ in contained in R X (¢4, 00)
(see Figures 3(b,c)). However, every curve t — (x(t, ¢o), y(t, 1)) starting at some (dg, ¢1) in
Ry X (¢g,00) is “decreasing”, and the derivative in (6.6) is increasing. Therefore, any curve
t— (x(t, ¢0),y(t,é1)), (¢, ¢1) € RZ may meet £ at most once, and

if t — (x(t, do),y(t, d1)) meets the line £ at t, = t;(¢g, ¢1), then t — z(t, Pg) +
(6.8) < y(t, ¢1) is decreasing (resp., increasing) on [0, t,] (resp., on [t;,00)). Otherwise,
t — x(t, o) + y(t, ¢1) is increasing on [0, 00).

e Consider now the first of two possible cases: the line ¢ does not meet D; of (6.5); i.e.,

A (1—=X) > (A p)/c, as in Figure 3(b). Then ¢o + ¢ > (A + p)v/2/c for every (¢o, ¢1) € L.

Therefore, (6.8) implies that (6.4) holds, i.e., it is optimal to stop immediately, outside

(6.9 D1={<¢o,¢1>eR1:¢o+¢l<“T”¢§} s AT

e In the second case, the line £ of (6.7) meets the region Dy, i.e., 0 < A/(1 =) < (A+ pu)/c,
see Figure 3(c). Let us denote by (¢f, ¢7) the point at the intersection of the line ¢ and the
boundary = +y — (A + p)v/2/c = 0 of the region D;. By running the time “backwards”, we
can find £* (and t*) such that

(6.10) (0,€7) = (x(—t", ¢p), y(—t*, 67)).

Indeed, using (4.8), we can obtain first t* > 0 by solving 0 = z(—t*, ¢}), and then & =
y(—t*, ¢%) . By the semi-group property (4.9), we have

z(t*,0) = z(t*, x(—t*, ¢p)) = x(t* + (=), ¢;) = 2(0, ¢5) = ¢p,
y(t*, &) = y(t*,y(=t*, 7)) = y(t* + (=), ¢7) = y(0, ¢7) = ¢1.
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Hence, the curve t +— (x(t,O),y(t,g*)), t > 0 meets ¢ at (¢g, ¢7), and t, in (6.8) equals t*,
see Figure 3(c). Therefore, (6.8) implies that

A
#(,0) + 5(t,€) 2 2l 0) + y(t',€) = 65+ 61 = VB 0t <00
In particular, & = 0+ & = 2(0,0) + y(0,£*) > (A + pu)v/2/c. We are now ready to show

that it is optimal to stop immediately outside the region

where ¢* is as in (6.10). The curve ¢ — (z(¢,0),y(t,£*)) divides R? into two connected

components each containing the region D; of (6.5) and
M 2 (R2\D,) N {(x,y) ER2:(A+1)z+(A—1)y+I2< o},

respectively (see (6.7)). Every curve ¢ — (z(t, do),y(t, 1)), t > 0 starting at (¢o, ¢1) in M
will stay in the same component as M. Therefore, the curve intersects the line ¢ away from
Dy, and (6.8) implies that (6.4) is satisfied for every (¢, ¢1) € M.

For (¢o, 1) € (R2\D2) N {(z,y) ER%: (A+ 1)z + (A — 1)y + AV2 > 0}, the curve ¢ —
(z(t, ¢0), y(t, ¢1)), t > 0 does not meet ¢; therefore, ¢ — z(t, ¢o) + y(t, ¢1) increases by (6.8)

and
x(t7¢0) +y(t’¢1) > x(ovgbO) +y(07¢1> - ¢0 + le Z 5* Z A%\/E, 0< s < o0.

Thus, the sufficient condition (6.4) for the optimality of immediate stopping holds for every
(¢o, P1) € Ri\DQ-

6.1. Lemma. Let 7p be the exit time of the process P from the region D in (6.1). Then
Ey* % [rp)] is finite for every (¢o,¢1) € R2.

Proof. Let f(¢o, ¢1) = ¢o + ¢1, (¢o, 1) € RL. Using the explicit form of the infinitesimal

generator A of the process ® in (7.4), we obtain

A1 —m)
T+(A—1)¢1+T

b (1= ) oot (145 ) o= Gt 0] = New-+ on VB 2 02

(6.12) Af(¢o, 1) = (A+ 1)y + L +2m)
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for every (¢, ¢1) € R2. Since f(-,-) is bounded on D of (6.1) and 7p At, t > 0 is a bounded
F-stopping time, (7.3) holds for 7 = 7p A t. Then we have

(6.13) & (1 + %) > B f(B,00)
= f(¢o, ¢1) + B [ / v Jff@t)dt] > W2EP? mp At], £ 20,
0

The process ® may leave the region D in (6.1) continuously or by a jump. Since f(S(do, ¢1)) =

(L+1/p)go+ (1 =1/p)¢1 < (L+1/p)(¢o+ ¢1) = (14 1/p) f(do, ¢1) < (14 1/p)§" for every
(o, ®1) € D, and this upper bound is larger than &*, the first inequality in (6.13) follows.

The second inequality is due to (6.12). Finally, the monotone convergence theorem and
(6.13) imply that EZ? [rp] is finite. O

7. APPENDIX: PROOFS OF SELECTED RESULTS IN PART 1

The Py-infinitesimal generator A of the process ® in (4.5). Let us denote by A the infin-

itesimal generator under P, of the process d = [5(0) &)(1)} in (4.5). For every function
f e CH (R, x R,), we have

(T1) J(@) = f(@0)+ > [F(@) - [(@,)]

0<s<t

- /Ot {D¢of(i>s) [(A + 1) + m—\/ém)l + Dy, f(®s) [()\ — )30 + W_\Em)] } ds
and
3 1@ - 1@ = (1) a0 (1 1) a0 s (a0.80) .

Note that {N; — ut; t > 0} is a (Py, F)-martingale. Then for every F-stopping time 7 such
that

f(@)

T 1\ ~ 1\ =~ ~0) =
Efr {/ f ((1 _ _) 30, (1+ _) .q)glz) y (q)@,@glz)\ds
0 K H

(7.3) Eof(®,) = f(Do) + Eo /0 T,If(éﬁs)ds, t>0,

Eg < oo and

(7.2)
< 00,

we have
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and

Af(90.61) = Doy f(00:61) {(A 1)+ M2 m)} + Dy, f(b0,61) {(A 1y 4 ML)

~ Ve
w (-2 (141) o)~ flano] . oy e xR

Proof of Lemma 5.3. Let w : RZ — R be a bounded Borel function. Since g(-,-) >
g(0,0) = —Av/2/c in (4.12) is bounded from below, the function Jyw is well-defined. By
(5.7),

A &0 A 1
Ju(t, do,61) > — (—ﬂ +u||w||> | e = - (—ﬂ +u|\w\l) 1
c 0 c A p

for every t € [0, 00]. Since we also have Jow(¢pg, $1) < Jw(0, ¢g, 1) = 0, we obtain (5.9).

Suppose now that w is also concave. For every u € R, the functions ¢g +— x(u, ¢o)
and ¢; — y(u,¢p) in (4.8) are linear. The mappings (¢, ®1) — S(¢o,¢1) in (5.8) and
(o, &1) — g(¢o, ¢1) in (4.12) are also linear. Therefore, the integrand in (5.7), namely

(o, Py) — e~ A (9+ - woS)(x(u,do),y(u,¢1)) is concave for every u € [0, 00).

Thus, the mappings (¢o, 1) — Jw(t, (¢o,¢1)), t € [0,00] in (5.7) are concave. Then
Jow(go, #1) = infiepo,00) JW(t, o, #1) is a lower envelope of concave mappings, and there-
fore, is a concave function of (¢g,¢1) € R3. Finally, it is clear from (5.7) that w; < ws

implies that Jyw; < Jyws. ]

Proof of Corollary 5.4. The function vy = 0 has all of the properties. The proof of the

lemma now follows from an induction and the properties of concave functions. 0

For the proof of Proposition 5.5, we shall need the following result on the characterization
of F-stopping times, see Brémaud (1981, Theorem T33, p. 308), Davis (1993, Lemma A2.3,
p. 261).

7.1. Lemma. For every F-stopping time 7 and every n € Ny, there is an F,,_ -measurable
random variable R, : Q +— [0,00] such that 7 A 0py1 = (0, + Ry,) A 0py1 holds Py-a.s. on
{r > 0.}

Proof of Proposition 5.5. First, we shall establish the inequality

TNOn -
(75) Egm(ﬁl / eiAtg(Qt)dt 2 ’Un(¢07 ¢1)7 TE Sa (¢07 ¢1) € Ri—
0
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for every n € Ny, by proving inductively on k =1,...,n + 1 that

TN, .
(7.6) E§»* / e Mg (®,)dt
0

TAOp—k+1 —~
> Ego’@ |:/ e_Atg ((I)t) dt + 1{720n7k+1}6_)\%7k+lvk*1 ((I)Unfkﬂ) = RH Sy
0

Observe that (7.5) follows from (7.6) when we set k = n + 1.

If £ =1, then the inequality (7.6) is satisfied as an equality since vy = 0. Suppose that
(7.6) holds for some 1 < k < n+ 1. We shall prove that it must also hold when £ is replaced
with k& + 1. Let us denote the righthand side of (7.6) by RHSk_1, and rewrite it as

TNOp—k .
(7.7) RHSj_, = RHS\", + RHS? £ El [ / e Mg (®,)dt
0

¢ ¢ T/\O'n,k+1 )\t — )\ ~
0,P1 — —AOp—
+ K Lirson_i} / e g(q)t) dt + TS LI ((I)Unkarl)
On—k
TNOp—k+1 __ TAOp—k TAOp—k+1 __ TAOp—k TNAOp k41
where we used fo = Jo —I—fw\a%k = Jo +lir>0, 4 hos 5 a8 well as

Lirso, i lir>on iy = >0, 1) By Lemma 7.1, there is an F, _, -measurable random

variable R,,_; such that
TAOp—k+1 = (On_k + Rn_i) Nop_s1 holds Py-almost surely on {7 > o, _}.

Therefore, the second expectation, denoted by RSH ,52_)1, in (7.7) becomes

¢ ¢) (Jn7k+Rn7k)/\U'nfk+1 At ~
Ey"™  Lirso, i) / e Mg (®y)dt + 1o, 4Ry >0 i)

n—k

6_A07L7k+1vk*1 (Qank+1):| } = ]Egm(z)l {1{7’20n,k}6_)\o’nikfnfk<Rnfka &)Un,k)}

by the strong Markov property of N, where

rAo1 . .
foo1(r, do, ¢1) & EGO™ [/ 6_/\t9(‘1’t) dt + 1isorye o1 (‘I)al)}
0
= Jog-1(r, (¢o, ¢1)) = Jovi-1(¢o, 1) = v (o, P1)-
The (in)equalities follow from (5.3), (5.4) and (5.6), respectively. Thus

RHSP, > B [0, e tue(, )|



ADAPTIVE POISSON DISORDER PROBLEM 33

From (7.6) and (7.7), we finally obtain
TNOR, - TANOn—k . 9
Ego / e Mg (®;)dt > RHS),_; = E*” { / e—Mg(cbt)dt] +RHS?,
0 0

TNCp — — ~
> Egjo’m |:/ k e_Mg ((I)t>dt + 1{720n7k}6_)\0n_kvk ((I)Un—k):| = RHSy.
0

This completes the proof of (7.6) by induction on k, and (7.5) follows by setting k = n + 1
in (7.6). When we take the infimum of both sides in (7.5), we obtain V,, > v,, n € N.

The reverse inequality V,, < v,, n € N follows immediately from (5.11) since every F-
stopping time S; is less than or equal to o,, Py-a.s. by construction. Therefore, we only
need to establish (5.11). We will prove it by induction on n € N. For n = 1, the lefthand
side of (5.11) becomes

s 58 v = b0 75 (P0,¢1)A01 [
Eg 1/ e Mg (D)) dt = EL 1/ e Mg(@:)dt = Juo(r5 (o, ¢1), bo, P1)-
0 0

Since Jug(r5(¢o, #1), Po, P1) < Jovo(Po, ¢1) + € by Remark 5.2, (5.11) holds for n = 1.

Suppose that (5.11) holds for every € > 0 for some n € N. We will prove that it also holds

when n is replaced with n + 1. Since S; | Aoy = re/? (;ISO) A o1, Pg-a.s., we have

e €
Sn+l

Sn+l ~ Si+l/\01 =
Eg0=¢l {/0 G_Atg<'1>t)dt} _ Ego,qh {/0 e—Atg<fI)t)dt+ 1{Si+1>‘71}/
o1

75/ (0,1) A0 _
/ e_’\tg(@t)dt
0

by the strong Markov property of N, where

e‘”g(&)t)dt}

— ¢ 7¢ (b 7(15 — Ao T
— g +EP [1{&/2(%@1)201}@ 1fn(<1>01)]

SE/2

Ful@o, d1) 2 EGO™ e Mg (®,)dt| < va(do, d1) + /2

0

by the induction hypothesis. Therefore,

Se TTSL/2 b 4
78) oo | [ oMo ($\di| < mot Gt e (BNt
(7:8) I ¢ g(®i)dt| < B e g(®e)di+
0 0

1 ’A"lvn(&)al) +e/2 = Jua(rs? (o, ¢1), (G0, $1)) + /2.

7"2/2(¢07¢1)201}€

Since Jvn(rfl/Q(%, ®1), (0o, $1)) < vpy1(Po, P1) +€/2 by Remark 5.2; this inequality and (7.8)
prove (5.11) when n is replaced with n + 1. O
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Proof of Proposition 5.6. Corollary 5.4 and Propositions 5.5 and 5.1 imply that v(¢g, ¢1) =

hmn%oo 'Un<¢07¢1) = hmnaoo Vn(¢07¢1> = V(¢07¢1) for every (¢07¢1) € Ri NeXta let us
show that V = JoV. Since (v,),>1 is a decreasing sequence, for every (¢o, ¢1) € R

(7.9) V(go, ¢1) = nll_{go Un (@0, P1) = 71Abf>lf1 Un (@0, ¢1) = }gfl Jovn-1(o, ¢1).

Since (Juvy,)n>1 is a decreasing sequence, and {v, }nen are uniformly bounded, the dominated
convergence theorem and (7.9) imply that V (¢, ¢1) = inf,>1 Jovn—1(¢o, $1) = Jov(o, 1) =
JoV (¢o, #1). Finally, since U < 0, we have U < wv, for every n by induction, and U

<
lim,, v, = V. [

Proof of Lemma 5.7. Let us fix a constant u > ¢ and (¢, ¢1) € R%. Then

uNo1 . .
(7.10)  Jw(u, ¢o, 1) = B { / e M g(®,)ds + 1{u>gl}6_)“’1w(<1>01)}
0

tAo1 _ - uNo1 -
= g0 { / e Mg(®y)ds + 1{@01}6)‘”111)(@01)] + P09 {1{01»} / e)‘sg(és)ds] .
0 t

On the event {0y > t}, we have u Aoy = [t+ (u—t)|A[t+ (0100, =t+ [(u—1t) A(o106,)].
Therefore, the strong Markov property of N applied to the last integral above, gives

uNo1 . uNo1—t .
(7.11) EH* {1{01»} / e_’\sg(cbs)ds] = Ego* [1{01»} / e_>‘(8+t)g(<1>s+t)ds}
t 0

(u—t)No1 -
/ e Mg(®,)ds
0

= E{ [1{ol>t}e%t (‘]w(u —t,®,) — By [1{%@01}6%0%@“)] )]

— O T (u — 1, (2(t 90), 9t 60))) — EE [T Lpzae " w(@0)]

_ Ego,% 1{01>t}e—>\tE(<)I>t

The third equality follows from the definition of Jw in (5.3) and the last from (4.10) and
the strong Markov property. Substituting (7.11) into (7.10) and simplifying the rest give

Jw(u, ¢o, ¢1) = Jw(t, (¢o, ¢1)) + e~ MW Jw(u —t, (x(t, ¢o), y(t, ¢o)))-

Finally, taking the infimum of both sides over u € [t, +o0] gives (5.12). O
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Proof of Proposition 5.11. First, let us show (5.22) for n = 1. Fix ¢ > 0 and (¢q, ¢1) €
R?. By Lemma 7.1, there exists a constant u € [0, 0o] such that U. A oy = u A o1. Then

uNo1 -
(7.12) EL' My pp, = ESOO {e““/\gl)‘/(@wgl)—k / e’\sg(@s)ds}
0

uNo1 . " ~
= g™ { / e Mg(®,)ds + 1{u>01}6_>‘01V(<I>01)} +E§o [1{u<al}e_A“V(<I'u)
0

= JV(U, (¢07 ¢1)) + 6—(>\+,u)uv($(u’ ¢O)a y(“? Cbl)) = Juv(¢0> ¢1)7
where the third equality follows from (5.3) and (4.10), and the fourth from (5.16).
Fix any ¢t € [0,u). By (5.16) and (4.10) once again, we have
V(t, do, 1) = SV (o, $1) — em Oty (@(t, ¢o), y(t, ¢1))
> JoV (0, 61) = TV (a(t, 60), Yt 61)) = oV (60, 61) — B [Tggme V()]

On the event {07 > t}, we have U. > t (otherwise, U. < t < oy would imply U, = u < t,
which contradicts with our initial choice of ¢ < u). Thus, V(®,) < —¢ on {01 > t}. Hence,

V(t, ¢, 61) > JoV (90, é1) + e " [Ligysne™] = oV (b0, 01) +ee” X" > JoV (o, 61)
for every t € [0,u). Therefore, JoV (¢o, 1) = J,V (do, 1), and (7.12) implies
E§0’¢1 [(Mu.noi] = JuV (¢0, ¢1) = JoV (o, 61) = V(¢o, ¢1) = ]Egom [Mo].

This completes the proof of (5.22) for n = 1.
Now suppose that (5.22) holds for some n € N, and let us show the same equality for
n + 1. Note that

ES™ [Myonani] = B [ <oy M) + EQ {1{@‘”} /0 o @s)ds}

UcNon41 . ~
+E;"” {1{Uszm} {/ e Mg(®,)ds + eA(UEM”“)V(‘I’UE/\onH)H '

1

Since U A 041 = 01+ [(U: N oy,) 08,,] on the event {U. > o}, the strong Markov property
of ® at the stopping time o7 will complete the proof. O

Proof of Proposition 5.12. Note that the sequence of random variables

UeNop, ~ ~ &0 2\/_
/ e Mg(®,)ds + e AUV ( Dy ) > _2/ e —\/_ds -
o 0
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is bounded from below, see (4.12). By (5.22) and Fatou’s Lemma, we have

U:Non . .
V (¢, ¢1) > Ego {h_m ( / e g(®,)ds + e-WWn>v<<I>UM))}
0

n—oQ

Ue » U, _
R I
0

for every (¢o, ¢1) € R3. The second inequality follows from (5.21).
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Part 2. SYNTHESIS: SOLUTION AND NUMERICAL METHODS
8. THE SOLUTION

In Proposition 5.1, we showed that the value function V(¢y, ¢1) of our original optimal
stopping problem in (4.12) is approximated uniformly in (¢o,¢1) € R% by the decreasing
sequence {V,,(¢o, ¢1)},cn of the value functions of the optimal stopping problems in (5.1).
The value functions V,,(-, ) = v,(+, ), n € N can be calculated sequentially by setting vy = 0,

and

(8.1) Unt1(Po, #1) = Jovn(do, ¢1) = inf Ju,(t, do, d1), (¢0, ¢1) € RZ,

- t€[0,00]
where the operator J is defined in (5.3); see Proposition 5.5.

Finding the infimum in (8.1) is not as formidable as it may look. By Proposition 5.5,
the infimum in (8.1) is always attained (i.e., the case ¢ = 0 in (5.11)). By Corollary 5.8,

it is attained at the exit time r,(¢g, ¢1) of the deterministic and continuous curve ¢ —
(x(t, ¢0),y(t, 1)) in (4.7) from the set

{(d0,d1) € RZ 2 v, 11(¢0, 1) < 0} € {(¢o, 1) € R : w(¢hg, 1) < 0} C D,

where D is the triangular region in (6.1), and the last inclusion is proven in Section 6.

Therefore, the search for the infimum in (8.1) can be confined for every n € N to

(8:2)  Jun(t, do, ¢1) = / e O g 4 - v, 0 S)(x(u, o), y(u, ¢1))du, € [0,7(¢o, ¢1)]
0
over the interval ¢ € [0,7(¢g, ¢1)], where

(o, ¢1) = inf{t > 0: 2(t, ¢o) +y(t,d1) > &}, (¢o,d1) € RY

is the (bounded) exit time of the curve t — (z(t, ¢o), y(t, ¢1)) out of the region D in (6.1).
Finally, the error in approximating V'(-,-) of (4.12) by {v,(-,)}nen in (8.1) can be con-
trolled. For every € > 0,

53) @(ﬁ) <o = e <V(dobr) — aldodr) <O, ¥ (60,n) € R,

by Propositions 5.1 and 5.5. The exponential rate of the uniform convergence of {v,(+, ) }nen
to V(-,-) on R% in (8.3) may also reduce the computational burden by allowing relatively
small number of iterations in (8.1).

In the remainder, we draw attention to certain special cases where the value function

V(-,-) can be calculated gradually at each iteration in (8.1); see Proposition 9.3. In the
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meantime, we will give a precise geometric description of the stopping regions

(8-4) r, = {(¢07 ¢1) € Ri : Un(¢o7¢1) = 0}> C, £ Ri\rn; n e N,
T £ {(¢o, ¢1) € R : v(¢o, ¢1) = 0}, C2R2\T,

and describe the optimal stopping strategies.

9. THE STRUCTURE OF THE STOPPING REGIONS

By Proposition 5.12; the set I' is the optimal stopping region for the problem (4.12).
Namely, stopping at the first hitting time Uy = inf{t € R, : ®, € I'} of the process
® = (0@, dM) to the set T is optimal for (4.12).

Similarly, we shall call each set T'),, n € N a stopping region for the family of optimal
stopping problems in (5.1). However, unlike the case above, we need the first n stopping
regions, I'y, ..., I',, in order to describe an optimal stopping time for the problem in (5.1).
Using Corollary 5.8, the optimal stopping time S,, = S° in Proposition 5.5 for V,, of (5.1)
may be described as follows: Stop if the process ® hits T, before N jumps. If N jumps before
® reaches L', then wait, and stop zf@ hits T',,_1 before the next jump of N, and so on. If
the rule is not met before (n — 1)st jump of N, then stop at the earliest of the hitting time of
I'; and the next jump time of N. See Figure 4(b) for three realizations of the stopping time
Ss.

We shall call each C, £ R3\T',, n € N a continuation region for the family of optimal
stopping problems in (5.1), and C £ R2\T the optimal continuation region for (4.12). The

stopping regions are related by

(9.1) RI\DCTC---CI,CI,;C--CI CRI\Cy, and T'=(T,

n=1

since the sequence of nonpositive functions {v,},en is decreasing, and v = lim, .o | v,
by Lemma 5.4. The sets D and Cg are defined in (6.1) and (4.13), respectively. Since vy,
n € N and v are concave and continuous mappings from R? into (—oo,0] by Lemma 5.4,
the stopping regions I';,, n € N and I'" are convex and closed. Let us define the functions

Yo Ry —= Ry, ne€Nandy: Ry — Ry by (see, also, Figure 4(a))

Yo(z) 2 inf{y € R, : (2,9) € T}, r e Ry,
v(z) £ inf{y € R, : (z,y) € T}, x € Ry,
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A =
D QU()(UJ) (w)

S @ 5)52(w)(W)

y

0 2V2 &y én § &
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FIGURE 4. (a) The stopping regions (each arrow at the boundary of a region points toward
the interior of that region), and (b) three sample paths and the optimal stopping times S,
and Uy for the optimal stopping problems V5 in (5.1) and V in (4.12), respectively.

and the numbers
& 2inf{z € R, i y,(z) =0}, n€N and &= inf{z € R, :v(z) =0}.

Then the stopping regions I',, n € N and I' are the convex and closed epigraphs of the
functions 7,(-), n € N and 7(-), respectively. Therefore, v,(-), n € N and 7(-) are convex
and continuous mappings from R, into R,.

By the set-inclusions in (9.1), we have ()\/c)\/i < & <& < € < €F for the same
¢* € R, in the description (6.1) of the set D. Since v,, n € N and v vanish on R, \D =
{(¢o,#1) € R : o+ > &} by (9.1), the functions ,(+), n € N and ~(-) vanish on [£*, 00).
However, &, and £ are the smallest zeros of the continuous functions 7,(-), n € N and ~(-),
respectively. Since both functions are also nonnegative and convex, the function 7, (-), n € N
(resp. v(+)) equals zero on [, 00) (resp. on [£, 00)) and is strictly decreasing on [0, &,] (resp.

on [0,¢]). For future reference, we now summarize our results.

9.1. Proposition. There are decreasing, convexr and continuous mappings v, : Ry — Ry,

n € N and v: Ry — Ry such that

L, = {(¢0,¢1) € Ri P01 > Yuldo)}, n €N and T = {(¢o, 1) € Ri td1 > (o)}
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The sequence {vn(Po) }nen is increasing and vy(¢o) = lim T v, (¢o) for every ¢g € Ry. There
are some numbers

(9.2) %\/ﬁéélé--één1§§n§--~§£<§*<00

such that v,(-), n € N (resp., v(+)) is strictly decreasing on [0,&,], n € N (resp., [0,&]), and

equals zero on [§,,00), n € N (resp., [£,00)). Moreover,

(9.3) VB <(0) < S 7a(0) S 7(0) < - $7(0) <€ < 0o
The number £* is the same as in the definition of the set D in (6.1).
9.2. Notation. Let S : R? — R2 be the same linear map as in (5.8).
(N1) For any subset R C R?,
STUH(R) £ STH(ST(R)), n €N, STH(R) & {(z,y) € R} : S(z,y) € R},
S"(R) £ S(S"(R)), n €N, S(R) = {S(z,y) € R : (z,y) € R},

and S°(R) = S(S7'(R)) = S"Y(S(R)) = R.
(N2) For every singleton {(z,y)} C R2, we write

Sz, y}) = S™(x, y) = ((1 - %)mx (1 + %)my) . mez

(N3) For any function g : R, — R, we define the function S™[g] : Ry +— R, n € Z by
S"[gl(x) £ inf{y € R, : (z,y) € S"(epi(9))}, = € Ry.

That is, S™[g] is the function whose epigraph is the set S"(epi(g)). Note that we use
S™(+) and S™[-] to distinguish the sets and the functions.

(N4) For every subset R of R%, we denote by cl(R) its closure in R% and by int(R) its
interior. We shall denote the support of a function g : Ry — R, by

supp(g) = cl({z € Ry : g(z) > 0}).

The process ® jumps into the region T' (resp., S™(T"), n € N) if the process N jumps
while ® is in the region S™H(T") (resp., S~ ™*)(T'), n € N). Clearly, if the process ® can
never leave the region S~(T') before a jump, then the value functions V(-,-) and V;(-,-) in

(5.1) must coincide on the region S~1(T).
9.3. Proposition. Suppose that

(94)  VneN: (¢o,d)€STI) = (2(t,¢0),y(t,¢1)) € ST(T), te€0,00)
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FIGURE 5. Here we assume that (9.4) holds. In (a), the dashed curve is the non-zero part
of the boundary function S™"[7](:) of the region S~ (T'), see (9.6). The region S~™(TI") is
obtained by “shifting” T" to “down and right.” At z = x,, the functions ~(-) and S™"[y,](*)
meet for the first time, see (9.9). By Proposition 9.3, the value functions V(-,-) and V,,(-, )
are equal on S™"(I"). Therefore, the boundry functions 7(-) and ~,(-) coincide on [0, x,] (the
thick continuous curve). The image under S~ of the common part stretches beyond [0, z,,]
(the thick dashed curve). Hence, the triangular region on [0, z,,| belongs to both S~™(I')NC
and S™(T',,)NC,,. In (b), we describe how to calculate V (-, -) on Ry x [B, 00) for any B > 0
by the three-step method on page 43. Here, the number n is the smallest satisfying (9.9).

holds. Then for every n € N, we have

V(po, $1) = Valdo, 1) = Viga(do, ¢1) = - -+ for every (¢o, ¢1) € S™"(T')
(9.5) STTIryNnr=s"Mmnr,=5"MT)Nr,;;=---
sTrmnc=s5s"Ir)nC,=5"TNCp1="---

Since I" and T',, are convex and closed, and S(-,-) is a linear mapping, the sets S~"(I")
and S™™(T',,), n € N are convex and closed. The sets I and I',,, n € N are the epigraphs of

the continuous functions (-) and 7,(+), n € N in Proposition 9.3, respectively. Therefore,

(z,y) ERY 1y > S7"[y](2)} and

{
(9.6)
{(z,y) € RY 1y > 5" [ya)(2)}
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are the epigraphs of the functions S™"[y](:) and S™"[7,](-) for every n € Ny. These functions

are decreasing, continuous and convex. In fact,

(9.7) S~ (x) = (ﬁ)%((%)%) reR,, nez

and the function S™"[v,](+) is obtained by replacing v with =, in (9.7). The support of the
functions S™"[y|(:) and S7"[y,](+) are

(98) wmw%mw=@(ﬁ§)Q}am wmeMD:h(#g)%J

respectively, for every n € Z. By Proposition 9.1, the functions S™"[y](:) and S™"[y,](-) are
strictly decreasing on their supports; see Figure 5.

Since ST"[7](0) = (p/ (x4 1))"v(0) < v(0) and S™"[y](§) > 0 = (&) for every n € N, the
functions S™"[y](-) and 7(-) intersect, and

(9.9) z,(7) 2 min{zr € R, : S7"[y](z) = v(2)} € (0,00), n €N.

9.4. Corollary. Suppose that (9.4) holds. Then x, = x,(v) = n(), k> n €N, and
(9.10) ST™I)NCN([0,z,] xRy) =S (L) NCrN([0,2,] xRy), E>n, neN,
Particularly, we have y(x) = v,(x) for every x € [0,x,], and

(9.11) Viz,y) = Vu(z,y) for every (z,y) € ST"(I',) NC,, N ([0,z,] x Ry), n €N.

Proof. Let us fix any k > n € N. Since the value functions V (-, -) and Vi(-,-) are equal on
the region S~(T") by Proposition 9.3, the boundaries of the regions I' and T}, coincide in
the region S™"(T"). Particularly, we have

(9.12) v(z) = v (z) for every x € [0,z,(7)]

since S7"[y](z) < y(x) for every x € [0, x,(7)). Therefore,

013 SBl0 =5l reveyoe [0 (L) 6] 5 Do)

Now, (9.12) and (9.13) imply that z,,(v) = z, (%) , and (9.6) implies that (see also Figure 5

for the case k = n)
ST N CN ([0, zn(y)] x Ry) = S7(T%) N Cr N ([0, 2 (7)] X Ry).

The equality (9.11) follows immediately from Proposition 9.3. O
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The identity in (9.11) suggests that, in a finite number of iterations of (8.1), we can find the
restrictions of the value function V (-, -) and the continuation region C to the set Ry x [B, o)
for any B > 0, when the condition (9.4) holds:

Step A.1: Calculate the value function v1(0,y) for every y € [0,£*], and determine
7(0) = 1(0) = inf{y € Ry : v1(x,y) = 0} € (0,&"); see (9.3), Corollary 9.4 and
Figure 5.

Step A.2: Given any B > 0, find the smallest n € N such that

(9.14) B> () 00 = (525 90 =50,
w1 p+1
Because every S™™[v,,](+), m € N is decreasing, this implies R, x [B,00) C S™(T',);
see (9.6). We also have n < min{m € N: B > (u/(nn + 1))™&*} since v (0) € (0,&*).

Step A.3: Calculate v, (o, ¢1) for every (¢o,¢1) € Ry \D by (8.1), where D is as in
(6.1). By (9.1), DCT, and v, =0 on D.

Then the value functions V (-, -) and v, (-, -) are equal on Ry X [B, o0) and (R4 x [B, 00))NC =
(R4 x [B,o0)) N C,,. See also Figure 5(b).

The next lemma implies that we can calculate the exact value function V(-,-) under
condition (9.4) on the set Ry x (0,00) along an increasing sequence of sets R, x [B,,, o),
and on Ry x {0} by the continuity of the function V(-,-) on RZ.

9.5. Lemma. Suppose that (9.4) holds. Let £ be the same number as in the definition of
the region D in (6.1). Then lim, ., S™"(T') = Ry x (0,00), and

(9.15) R, x [<ﬁ)n : 5*,+oo) C S™(), neN.

Proof. Recall from (9.1) that Ry x [£*,00) C RZ\D C I'. The rectangle on the lefthand
side in (9.15) is the same set as S™"(Ry x [¢*,00)) C S™(T). But, (9.15) implies that
Ry x (0,00) C lim,, ., S7"(T").

On the other hand, for every x € R,, there exists number N(x) such that S™(z,0) =
(1 —=1/p)"z,0) ¢ I', n > N(z). Then (x,0) ¢ S~(I") for every n > N(z). This implies
that lim,, ., S™(T) C R, x (0, 00). O

9.6. Remark. Every set S™™(T'), n € N is separated from its complement by the strictly
decreasing, convex and continuous function S™"[y](x), = € [0, (u/(uw — 1))*€¢]. Therefore,
the condition (9.4) will be satisfied, for example, if the mappings t — z(t, ¢o), t € R, and
t — y(t,¢1), t € Ry are increasing for every (¢, ¢1) € R%Z. We have seen on page 20 that

this is always the case when A is “large”.
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Thus, if A is “large”, then there is a sequence of sets R, x [B,,00), n € N, increasing to
R, x (0,00) in the limit, such that V(-,-) = v,(-,-) on R, X [B,,00) for every n € N. See
also page 49 below.

10. THE BOUNDARIES OF THE STOPPING REGIONS

We shall show that the optimization in (8.1) can be avoided in principle, and vy, va, . ..
can be calculated by integration.

Note that we obtain Ju, (¢, ¢o, ¢1) in (8.1) by integrating the function [g + - v, o S|(+, )
along the curve u — (z(u, ¢o),y(u, $1)) on u € [0,t]; see (5.3). Therefore, the infimum in
(8.1) is determined by the the excursions of u +— (z(u, ¢o),y(u, ¢1)), u € R, into the regions

where the sign of the continuous mapping [g + p - v, 0 S](+, ) is negative and positive.

10.1. Lemma. For every n € N, we have
(10.1) A, 2{(z,y) €R : [g+ p- v, 05)(x,y) <0} C Cpypy.

Proof. Let (¢o,¢1) € An. Since the function v +— [g + p - v, o S|(z(u, do),y(u, P1)) is

continuous, there exists some ¢ = t(¢g, ¢1) > 0 such that

Jvn(tv ¢0’¢1) = /0 6_()\4_#)”[9 + H - Up O S](ZE(U7 ¢0)7y(ua ¢1))du <0.

Therefore, vy,+1(¢o, ¢1) = Jovn(Po, d1) < Juu(t, o, ¢1) < 0, and (Pg, ¢1) € Cppa. O

For certain cases, the regions A, and C,,,; coincide, that is, the continuation region C,,
for vp41(-,-) can be found immediately when the value function v,(-,-) is available. Then

Upt1 =0 on Iy = R2\C,, 44, and we calculate v,41(+,-) on C,4q by the integration

(102) Un+1(¢07¢1) = Jvn(t’¢07 ¢1) t=rn(¢0,01)

rn(d0,$1)
- / 6_(>\+M)u[g + - Up O S](w(u, ¢0)7 y(U,7 ¢1))dua (¢0a ¢1) € Cn+17
0

of the function [g+p-v,0S](+, ) over the curve (z(-, ¢g), y(-, ¢1)) until the exit time 7, (g, ¢1),
see (5.14), of the continuous (and deterministic) curve u — (z(u, ¢o), y(u, ¢1)), v € R, from
the continuation region C, 1.

The region A, in (10.1) has properties very similar to those of the continuation region
C,+1, compare Lemma 10.2 and Proposition 9.1. For example, both sets are separated from
their complements by a strictly decreasing, convex and continuous function which stays flat

on the z-axis for all large x values.
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For every n € N, let us define the function a,, : R, — R, by
(10.3)  an(z) £inf{y € R, : (z,y) € RZ\A,} =inf{y € Ry : [g+ p - v, 0 S](x,y) > 0}.

The function a,(-) is finite since, given any = € R, we have [g + i - v, o S|(x,y) > 0 for
every large y € R,. Recall that the function v,(-,-) equals zero outside the bounded region
C,. The linear mapping S : R — R? in (5.8) is increasing in both z and y. The affine
mapping ¢ : R3 — R in (4.12) is also increasing and grows unboundedly in both z and y.

Similarly, given any large = € R, [g 4+ - v, 0 S](z,y) > 0 for every y € R,. Therefore,
a,(x) = 0 for every x € [M, 00) for some M € R, , and the smallest number M

(10.4) a, = inf{r >0:a,(x) =0} is finite.

The set R2\A, = {(z,y) € R% : [g+ p - v, 0 S](z,y) > 0} is convex and closed since
Uy (-, ) is concave and continuous, S(-,-) is linear, and g(-, -) is affine. Because R%\A4,, is the
epigraph of a,(-), this implies that a,(-) is a convex and continuous mapping from R into
R,.

The function a,(-) does not vanish identically on R,; in particular, a,(0) > 0 since the

continuous function [g + u - v, o S|(z,y) is strictly negative at (z,y) = (0,0):

g+ 1 - v, 05](0,0) = ¢(0,0) + p - v,(0,0) < g(0,0) = —%\/§< 0.

Because a,(-) is continuous, this implies that the number «,, in (10.4) is strictly positive.
Since a,(+) is convex and vanishes for every large € R, it is strictly decreasing on [0, ay,),

and equals zero on [ay,, 00).

10.2. Lemma. For every n € N, there are a number a,, € (0,00) and a strictly decreasing,

convez and continuous mapping a, : [0, a,] — Ry such that a,(a,) =0, and

(105)  {(wan(@); z € 0.0,]} = {(z.y) €BZ: g+ p vy S)(z.y) = 0}

Moreover, the continuous mapping (z,y) — [g+ p - v, 0 S|(x,y), n € N is strictly increasing

in each argument, and for every n € N
(10.6) {(z,y) € [0,a5) x Ry; y < an(2)} = {(2,y) € RL; [g+ p- vy 0 S(2,y) <0} = A,

Next, we shall relate the regions A,, in (10.1) and C,1, and their boundaries a,(-) and

Yn+1(+), respectively, for every n € N.
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Using the characterization of the stopping regions I',;, n € N in Proposition 9.1 in terms

of the switching curves v,(-), the exit time r,(-,-) in Corollary 5.8 can be expressed as

(10.7) rn(o, ¢1) = inf {t > 0 y(t,¢1) = Ynyr (x(t, ¢0)) } (¢, 01) € RZ,

since the functions z(-, ¢g) and y(-, ¢1) in (4.8) are continuous. Because every v,.1(+), n € N

is bounded, the function r,(-,-) is finite. Thus

0< Tn(¢07¢1) < oo for every (¢07¢1) € Cn—i—l'

Therefore, the (smallest) minimizer r,(¢o, ¢1) of the function t — Juv,(t, ¢o, ¢1), see (5.13),
is an interior point of (0, o] for every (¢g, ¢1) € C,41, and the derivative 0Jv,(t, ¢g, ¢1)/0t
vanishes at t = r,(¢o, ¢1). Using (5.3) and (10.7) gives

0= [g + p-vp 0 S] (1’(@ o), y(t, ¢1)> t=rn(¢0,61)

= [o+ 100 8] (201, 60), 3 (208, 60))

(10.8)
(¢o, 1) € Cpya-

t=rn(go.61)
Let us denote the boundary of I',, .1 by

(10.9) 8Fn+1 é {(x>7n+1<x>> BN S [07€n+1]}7

and define the entrance and ezit boundaries of I',, 11 by

aFfH_l = { (33(7"”(¢0, (bl)a ¢0)7 7n+1<y(rn(¢07 (bl)a ¢1)))7 for some <¢07 (bl) S Cn+1}7

(10.10)
ory £ {(¢0,¢1) €1t (2(t, do), y(t,¢1)) € Crya, t € (0,6] for some 6 > 0},

respectively. The paths ¢ — (z(t, ¢o),y(t,¢1)) starting at some (¢, 1) € C,.1 enters
the region I',,;; (for the first time) at the entrance boundary oI, ,. Similarly, for every

(¢o, ¢1) € OT% 1, the path t — (z(t,do), y(t, ¢1))) exits T'yy1 immediately.

10.3. Remark. By Lemma 10.5 below, the entrance boundary JI'; ; is a subset of the
boundary 0A,, of the region A, in (10.1). Clearly, the curve t — (x(t, ¢o), y(t, ¢1)) starting
at any (¢o,¢1) € 0T, C 0A, cannot return immediately into the region A, (otherwise
Ju,(t, do, ¢1) < 0 for some ¢t > 0 and (¢g, 1) € C,i1). In the theory of Markov processes,

every element of OI';, ;| (resp., OT'; ;) is a regular boundary point of the domain A, (resp.,

the interior of I',,;1) with respect to the process P.

10.4. Remark. Observe that for every (¢o, ¢1) € OT';,, |, the quantity r,(¢o, ¢1) in (5.14) is
the return time of the curve t — (z(t, ¢o), y(t, 1)) to the stopping region I',, ;1 and is also
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strictly positive. Therefore, the first order necessary optimality condition in (10.8) also hold

xT

on the exit boundary OI';_ ;. Thus,

(10.11)
0= g+ 1 v 0 8] (1(t, du), s (a2, 60)))

, , eC,uar; ..
t=rn(d0,61) (%0 61) ! i

10.1. The entrance boundary JI'; . Since all of the functions in (10.11) are continuous,

(10.11) and the definition of the entrance boundary oT';, ; in (10.10) imply

(10.12) g+ p-vy08](z,y) =0, (w,y) € oIy, ;.

The next lemma immediately follows from (10.12), Lemma 10.2 and the continuity of the

function [g + - vy, 0 S](, -).

10.5. Lemma. For every n € N, let o, € Ry and a, : Ry — Ry be the same as in
Lemma 10.2. Then cl(0T;,, ;) C {(z,an(x)) : € [0, ]}, n € N.

10.6. Corollary. For any n € N, if the equality OT' 1 = cl(OI;,,,) holds, then

(10.13) O, 1 ={(z,a,(x)) : x € 0, ]}
In other words, 11 = ay, and Ypi1(x) = ay(x) for every x € [0,&,41] = [0, o], and
(10.14) Cr1={(z,y) 1 [9+ - vy 0S](z,y) <0}.

Proof. By Lemma 10.5, {(x,vp41(x)) : © € [0,&011]} = 0Tt C {(z,an(x)) : € [0, o]}
Since both 7,41(:) and a,(-) are strictly decreasing, continuous functions which equal zero

at the righthand point of their domains, they must be identical. Finally,

CnJrl = Ri\rn+1 = {(xay) € [0>£n+1> X R+ 1y < ’YnJrl('z.)}
- {(x7y) S [O,Ckn) XRyty< an(‘r)} = {(Iay> < Ri— : [g + v 0 S](w,y) < 0}7
where the last equality follows from (10.6). O

If the disorder arrival rate A is large, then every point on the stopping boundary oT',, 1 of
the stopping region I',4; belongs to the entrance boundary JI';, ,, see Section 11. There-
fore, the stopping boundary 9T',, 41 for the value function v, 1(-, ) is determined as in Corol-
lary 10.6, as soon as the value function v, (-, -) is calculated. Using this observation, the main
solution method described at the beginning of Section 8 can be tailored into a more efficient

algorithm, see Section 11 and Figure 6.
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The exit boundary OI'), | may not always be nonempty. If it is nonempty, it is also deter-
mined by the entrance boundary OI';,_ |, and the general solution method can be similarly

enhanced in this case, see Section 12.

10.2. The exit boundary OI';_ ;. Using the semigroup property in (4.9) of the functions

x(+,-) and y(+,-), and a change of variable, we obtain
(10.15)  Juu(t, do, ¢1) = —e N v, (—t, 2(t, ¢0), y(t, 1)), t € Ry, (do,¢1) € RE.
Substituting in (5.12) w(-,-) = v,(-, ) and the identity above give
(10.16)  Jivn (o, é1) = e~ M v (2(t, d0), y(t, $1)) — Jva(—t, (¢, &), y(t, é1))].
te Ry, (¢, 1) € RY.

Since Jrn(¢0,¢1)vn<¢07¢1) = Un+1(¢07¢1)7 and Un+1(56(7’n(¢07¢1)7¢0)73/(7“n(¢0>¢1)7¢1)) = 0,
evaluating the equality in (10.16) at t = 7,(¢o, ¢1) gives

(1017) Un+1(¢0> ¢1) = [_ei(AJru)tJUn(_ta .’L'(t, ¢0>7 y<t7 ¢1)):| t=rn(do ¢1)> ((bOa ¢1) € Ri

Recall from Section 10.1 that (z(7,(¢o, ¢1), ¢0), Y(rn(d0, $1), ¢1)) € O, for every (¢o, 1) €
C,41 UOI'; ;. Therefore, (10.17) implies that we can both calculate the value function

Unt1(+,+) and find the continuation region C,,;; by backtracking the curves t — (z(—t, ¢y),

y(—t, ¢1)) from every point (¢g, ¢1) € 0T, , on the entrance boundary. Let us define

(10.18)
{ ?(¢07 ¢1) £ inf{t Z 0: (x<_t7 ¢0)7y(_t7 d)l)) g Ri}
Tn(o, ¢1) = inf{t € (0,7(do, ¢1)] : —Jvn(—t, do, ¢1) > 0}

where the infimum of an empty set is infinity. Since the mapping ¢ — Juv,(t, ¢o, ¢1) is
continuous, we have Jv, (=7, (¢o, 1), ¢o, ¢1) = 0 if 0 < 7,(do, P1) < 0.

} ) (¢07¢1) S Ri; n e N07

10.7. Lemma. The entrance boundary 0T}, | determines the exit boundary OT'; |, the con-

tinuation region C, 1, and the value function v,y 1(+,-) on Cpiq:

T = {(al-tion)p=t o] (00 0n) € Oy and oo, ) < Flon, )}

Cn+1 - {(l‘(—t, ¢0)7y(_ta ¢1)) : (¢Oa ¢1) € 81_‘;-1-1 andt € (Ov?n(quv ¢1) A ?<¢07 Cbl)]} \8F2+17
and for every (¢, ¢1) € O,

Un+1 (JJ(—t, ¢0)7 y(_t7 ¢1)) = _67(A+”)tjvn(_t7 (bOa ¢1)7 te (07 ?n(¢07 ¢1) A ?((b()v ¢1)]
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11. CASE I REVISITED: EFFICIENT METHODS FOR “LARGE” POST-DISORDER ARRIVAL
RATES

This is Case I on page 20 where A > [1 — (1 +m)(c¢/2)]" is “large”, and the sample-paths
of both components of the process ® = [®© ®D]T increase between the jumps; see also
Figure 2(a). By the relation (4.10), the deterministic functions ¢ — z(t,¢), t € R, and
t— y(t,¢1), t € Ry are strictly increasing for every (¢, ¢1) € R2.

By Remark 9.6, the identity in (9.11) between the value functions V'(-,-) and V,,(+,-) on
the set S™™(T,) N C, N ([0, x,] x R;) holds for every n € N. Thus, we can find the value
function V(-,-) by calculating V,,(+,-), n € N using steps 1-3 on page 43. This method can
be improved further. We shall show that the optimization in each iteration of (8.1) can be
avoided, and the value function V(-,-) may be calculated in one pass over the continuation
region C; see Figure 6.

Since the boundary OI',,; 1 of the stopping region I',, ;1 is a (strictly) decreasing continuous
curve, every point in the set OT',, 1 Nint(R% ) is accessible from some point in the continuation
region C,;1. Therefore, we have 0T, 11 = cl(9I;,,,) for every n € Ny. By Corollary 10.6,
the set A, in (10.1) and the continuation region C,; (and their boundaries) coincide for
every n € Ny.

If the value function v,(-,-) = V,(-,-) for some n € Ny is already calculated, then the
boundary of the continuation region C,,; becomes immediately available as in (10.13). In
fact, (10.5) and (10.14) imply

(111) S(Cost) = { (00) € B s (o) < | =90 57| e |
(11.2) ST = { (0:0) € B s0s(o) = | 9057 e |

The set on the righthand side in (11.2) is a strictly decreasing, convex and continuous curve

in R%, and it is the same as

S(0T,,4+1) = S(the boundary of the set epi(v,+1) N ([0,&n11] X Ry))

—1
(11.3) = the boundary of the set epi(S[y,+1]) ({0, MT gnﬂl > R+)

ﬂ
=@aﬂ%mw»xe@———&@}
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If we know v, (-, ), then we can determine the set in (11.2) of all points (z,y) € R? satisfying

(11.4) un(,y) = {—%'QOS_I} (2,y) = _Mfl u+1 _\/_

and obtain the boundary function 7, 1(+) after the transformation of this set by S~!. Then
we can calculate the (smallest) minimizer r,(-,-) of (8.1) by the relation (10.7), and the
value function v,41(+,-) by (10.2). We can continue in this manner to find the value func-
tions v,12(+, ), Vnis(s, ), --. This method saves us from an explicit search for the solution
Tn (o, ¢1) of the minimization problem in (8.1) for every (¢g, ¢1) € Cp11:

Step B.0: Initialize n = 0, vo(-, ) = 0.

Step B.1: Find the region

A
1. B, 2 R? - SR AN .
w2 {eneRinen <yt 2vel nen

1

Step B.2: Determine the continuation region C,; = S™1(B,) by the transformation
of B,, under S~

Step B.3: Calculate the value function v,11(+,-) on C,4; by using (10.2) and (10.7).

Step B.4: Set n to n+ 1 and go to Step B.1.

In fact, we can do much better than this. After n € N iterations, we find both v,(-,-) and
V('7 ')7 Un—l—l('a '), 'Un+2(', ‘), .-+ on the subset

(11.6) Qn=5"T,)NC,N([0,2,] x R})
(11.7) = {(z,y) € [0,z,) x Ry : S™"[y](z) <y < ml2)}, n €N

of C,,;1 by Corollary 9.4; see also Figure 5. Therefore, we need to determine only the set

(11.8) Ry = Qn+1\@m necN (R1 = Q1)

in Step B.2, and calculate the value function v, 1(-,-) only on this set in Step B.3. By
Lemma 9.5, this modified method calculates V'(-,-) (and all V,,(+,), n € N simultaneously)
on any given set R, x (0, B), B > 0 in finite number of iterations. We shall describe this
modified method on page 52 after establishing a few facts below. Several steps of the method
are also illustrated in Figure 6.

Since vy = 0, setting n = 0 in (11.4) gives a straight line; substituting (z,y) = (z, S[y](x))
and comparing this with S(0T'1) in (11.3) give

1 1 A
pt :E+M+ C =

(1L9)  Shlr) = L ge+

1 A
27 S Supp(s[’yl]) |:0 Iu— - 2:| )
pwooc



C.2 !

I =RAI\C,

(i) S[v2](+) is obtained by solving
[~1g0 571 () = ()
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A
C.2

Iy = R2\C,y

-
~aa
-

(i) S[vs](+) is obtained by solving
[~2g057Y () = wal)

T2 &2 £ (L)%,

(b) n=11in Step C.1.

51

FiGURE 6. Case I: X is “large.” The illustration of Method C, see page 52: Steps C.1 and
C.2 when (a) n =0, and for (b) n =1 in Step C.1.
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and & = (\/c)v/2. Using (9.7), we find

A A
(11.10) 1(x) = S HS]l(z) = —2 + E\/ﬁ, rel0,&] = [0, E\/ﬁ] :

The function S~*[y](-) is affine, and intersects with v, (-) at z; = z1(11) = (M/¢)(V/2/2), see
(9.9). By Corollary 9.4 and Remark 9.6, the boundary of the stopping region on [0, z] is

W.z].

(11.11) v(z) =71(x) = -2+ %\/5, x €0,24] = [O, 5

see the inset in Figure 6(a). Hence, the boundaries of the optimal stopping region I'" and
the stopping regions I',,, n € N stick on the upper half of the hypotenuse of the rectangular
triangle {(z,y) € R3 : g(z,y) < 0} = cl(Cy).

11.1. Proposition. Fiz any n € N. The functions in S, = (S_k[%])::l do not intersect
inside the continuation region C, = {(z,y) € R3 : y < v,(x)}. The function Syn+1](+)

intersects with each function in S, U {v,} pairwise exactly once.

The same conclusions hold when every v, k = 1,...,n in the proposition is replaced with
v; this can be verified using the elementary properties of convex functions and the affine
structure of the boundary function (-) in (11.11); see Bayraktar, Dayanik and Karatzas
(2004a) for the details. Then the proof of Proposition 11.1 follows easily from Corollary 9.4.
We are now ready to give a better version of method B on page 50 to calculate each v(-, -)
and the boundary function 7(-). Recall that S™"[v,](-) and x,(v,) are defined by (9.7) and
(9.9). The steps C.1 and C.2 below are illustrated in Figure 6 for n =0 and n = 1.

Step C.0: Initialize n = 0, zo = 0, vg(-,-) = 0 and the region R; as in (11.8).

Step C.1: Calculate the value function V(¢g, ¢1) = vpy1(do, ¢1) for every (oo, ¢1) €
Ry +1 using (10.2) and (10.7).

Step C.2: Set nton + 1.

(i) Determine the set

x Yy A
11.12 ‘ - a o’
( ) {(x,y)ERn vn(2,y) -1 u—|—1+cﬂ\/_}

of points in R,, which satisfy (11.4). This is the intersection of the set in (11.3)
and R,. Namely, it is the section of the strictly decreasing, convex and contin-
uous curve = — S[y,4+1](x) contained in R,,.

(ii) Find the subset of R, enclosed between the vertical y-axis and the curve in
(11.12). This is the intersection R, N B,, of the sets R,, and B,, in (11.5).
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(iii) Find the set R,.; = S~ *(R, N B,) in (11.8) by applying the transformation
S~1(-,-) to the set found in (ii).
The region R, is enclosed between the y-axis from left, the S~!-transformation
of the curve in (11.12) from right. This right boundary of R,,; extends the
boundary 7(-) = Yp41(-) from the previous iteration into the region S~"+)(I") =
S™HD (D).

(iv) Go to Step C.1.

12. THE SMOOTHNESS OF THE VALUE FUNCTIONS AND THE STOPPING BOUNDARIES

The general method described at the beginning of this section evaluates the integrals
Jun (-, o, 1) in (8.2) of the function [g + p - v, o S](+, ) along the curves (z(-, ¢o), y(-, ¢1))
in R? in order to calculate the value function v,11(do,¢1) as in (8.1). For an accurate
implementation of this method, it may be useful to know how smooth the integrand, or
essentially the value function v,(-,-) is.

The smoothness of the value function V(-,-) may also allow us to formulate the original
optimal stopping problem in (4.12) as a free-boundary problem. Then, in principle, we can
calculate the value function V(-,-) directly, by solving a partial differential equation, as the

next proposition suggests.

12.1. Proposition. Suppose that there is a bounded and continuous function w : Ri —
(=00, 0] which is continuously differentiable on RZ\OT', and whose first-order derivatives are

locally bounded near the boundary OT' = {(z,v(z)) : © € [0,£]}. Moreover,

(12.1) (A= Nw(z,y) +g(z,y) =0,  (z,y)€C
(12.2) w(z,y) =0,  (z,y) €T,
(12.3) (A= Nw(x,y) +g(z,y) >0,  (z,y) € T\IT,
(12.4) w(z,y) <0, (x,y) € C

where A is the infinitesimal generator in (7.4) of the process P acting on the continuously
differentiable functions.
Suppose also that the sample-paths of the process o = (&)(0),5(1)) spend zero time on the
boundary O almost surely, i.e.,
(12.5) Eg" V 13r($t)dt] =0,  (¢o,¢1) € RL.
0

If the convex function () is also Lipschitz continuous on [0,&], then w(-,-) = V(-,-) on R2.
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Proof. Similar to the proof of Theorem 10.4.1 in QWksendal(1998, p. 215). OJ

Under certain conditions, we are able to show that the bounded, concave and continuous
value functions v,(-,-), n € N and V/(-,-) are continuously differentiable on R3\oI',,; and
R2\OI'*, respectively, and are not differentiable on the exit boundaries oIy, and OI'" in
(10.10), respectively. The exit boundaries OI';,, n € N and 0I'*, and the entrance boundaries

OI'; and OI'° are connected subsets of R2 , and
(12.6) oI, = oI, Ucl(dI'y), ne€ N and OI' = 0I'* U cl(0T).

Moreover, the boundary functions 7,(-) and «(-) are continuously differentiable on their
support.

The hypotheses of Proposition 12.1 are satisfied with w(-,-) £ v(-,-) in (5.10). Thus,
the function v(-,-) = V/(-,-) may be obtained by solving the variational inequalities (12.1)-
(12.4). This may be a challenging problem since, as we already pointed out above, the
smooth-fit principle is guaranteed not to hold on some part of the free-boundary. We shall
not investigate the variational problem here, but give a concrete example with this interesting
boundary behavior, and describe our solution method for it.

The main result is Proposition 12.17 below, and it is proven by induction. Here, we shall
study the basis of the induction by breaking it down in several lemmas. The proof of the
induction hypothesis is very similar, and later we will point out only the major differences.

Let us introduce the continuous mapping G,, : R% — R defined by
(12.7) Gu(t, o, 1) = [9+M'Un05] (z(t, d0), y(t, 1)), (t,¢0,¢1) € R, n € Ny,
Note that (10.2) gives
rn(d0,01) N
(12.8) Uny1(@o, P1) = / e Gn(t, do, ¢1) dt, (¢o, #1) € Cry1, n € No.
0

Using (10.11), (10.12) and Lemmas 10.2 and 10.5, we obtain

(12.9)  (2(Z, ¢0), y(t, ¢1)) oo o1 € {(7, an(2)) - 2 € [0, an]}

= {(z,y) €RY : [g+ p- v, 0S](z,y) =0}, (¢o, ¢1) € Cpy1 UOTT 4.

Therefore, for every n € N

(12.10) 0 = Gnu(t, g0, ¢1)

, (61) € Cpay UATE, .
(o) (00, P1) +1 11
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Under certain local smoothness and nondegeneracy conditions on the function G,(-,-, ),
the implicit function theorems guarantee that the equation G,,(t, ¢g, ¢1) = 0 implicitly deter-
mines t = t,(do, ¢1) in an open neighborhood of every point (7, (g, ¢1), ¢o, #1) in Ry x C,4q,
as a smooth function of the variables (¢g, ¢1). Since the continuation region C,; has com-
pact closure, a finite subcovering of these open neighborhoods exists. Patching the solutions
tn(+,-) in the finite subcovering gives the global solution, which is smooth and must coincide
with the function 7,(-,-) on C,4.

In the remainder, we shall use the following version of the implicit function theorem; see,
e.g., Protter and Morray (1991, Chapter 14), and also Conjecture 12.18 below.

12.2. Theorem (Implicit Function Theorem). Let A C R™ be an open set, F: A— R be a
continuously differentiable function, and (t,7) € R x R™™! be a point in A such that
_ 0
F(t,z) =0, and — F(t,x 0.
(t,7) 5 L(t,2) W
Then there exist an open set B C R™™ ! containing the point T, and a unique continuously
differentiable function f: B+ R such that t = f(Z) and F(f(x),z) =0 for all x € B.

Since wvg(+,+) = 0, we have

A
(12.11) Go(t, do, ¢1) = x(t, ¢o) + y(t, 1) — E\/éa (t, @0, ¢1) € Ry x Cy.
The function Gy(-,-,-) is continuously differentiable on R, x C;. By (6.8) in Section 6, its

partial derivative

(12.12) DiGo(t. do. b1 = % (2(t, o) + y(t, &)

with respect to t-variable may vanish at most once; if this happens, this derivative is strictly
negative before and strictly positive after the derivative vanishes; otherwise, it is strictly
positive everywhere (see, also, Figure 3). Namely, the function ¢ — Gy(t, ¢o, 1) has at most

one local minimum for every (¢o, ¢1) € R?.

12.3. Lemma. Fiz any (¢o, 1) € R2. The function t — Go(t, o, ¢1) from Ry into R has
at most one local minimum. It is strictly increasing if there is no local minimum. If there
is a local minimum, then the function Go(-, ¢o, ¢1) is strictly decreasing before the minimum

and strictly increasing after the minimum.

12.4. Lemma. The smallest minimizer ro(¢o, ¢1) in (5.13) is continuously differentiable at
every (é0.61) € Ci.
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Proof. The result will follow from Theorem 12.2 applied to the function Go(-,-,-) on R x C4
at the point (¢,7) = (ro(¢o, ¢1), do, ¢1) € R x C;. We only need to establish that

DiGo(t, ¢o, ¢1) # 0, (¢o, #1) € C.

t=ro(d0,91)
Let us fix (4o, ¢1) € Cy and assume that D;Go(ro(¢o, 1), ¢o, 1) = 0. Then the function
t — Go(t, ¢o, ¢1) is strictly decreasing on t € [0, 79(¢o, ¢1)] by Lemma 12.3; and

GO(ta ¢07 ¢1) > GO(T0(¢07 qbl)? ¢07 ¢1) - 07 te [07 T0(¢07 ¢1>>
Therefore, (12.8) implies that vy(¢o, ¢1) > 0. This contradicts with our choice of (¢g, ¢1) in

the continuation region Cy, as well as, the bound v;(-,-) < 0. O

12.5. Corollary. The value function vi(po, ¢1) is continuously differentiable at every (¢o, p1) €
C,. For every (¢o, ¢1) € Cr,
1 — e~ (e=Dro(¢o,¢1)

)

To(¢0,41) \
Dgyv1(¢o, 61) —/ e MDD Golt, go, ¢1) dt = 1
. _

1 — e~ (wtDro(o,é1)

f+1
Proof. By (12.8) and Lemma 12.4, the value function v;(-,-) is continuously differentiable.
Using (12.9) after applying the chain-rule to (12.8) with n = 0 gives the integrals in (12.13).
These integrals can be calculated explicitly by using (4.7) or (4.8). O

(12.13)

ro(P0,¢1) \
Dy, v1(¢o, 1) = / e~ MID, Golt, do, ¢r) dt =
0

12.6. Corollary. The the entrance boundary 0T in (10.10) is connected. More precisely,

(12.14) O ={(z,n(z)) :x € (§,&)}  for some 0 < & < &,

where & is the same as in [0,&1] = supp(y1), the support of the boundary function v1(-), see
Proposition 9.1.

12.7. Corollary. The restriction of the boundary function ~1(-) to the interval (£§,&) is

continuously differentiable. In fact,

() = ao(x), €&, 8], and  [0,&] = supp(y1) = supp(ao) = [0, ),

where
—x—i—é\/i, T € {O,é\@>
(12.15) ap(z) = ¢ ¢

0, elsewhere

is the continuously differentiable boundary function of the region Ay = {(z,y) € R% : [g+ -
vg o S|(z,y) < 0} in (10.6).
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Proof. The function ag(-) in (12.15) is continuously differentiable on its support supp(ag) =
[0, ], and the result follows from Lemma 10.5 and Corollary 12.6. O

The entrance boundary OI'{ always exists. However, the exit boundary 0I'7 may not exist

all the time. Next we shall identify the geometry of the exit boundary OI'{ when it exists.

12.8. Lemma. For every (¢o,¢1) € OI'], we have [g + p - vg o S|(¢o, $1) > 0. Therefore,
c(0T¢) N T = @

Proof. Suppose that (¢g, ¢1) € OI'{. Let us assume that [g + - vy © S](¢o, ¢1) < 0. Then
GO(Oa ¢07 ¢1) = [g + M- Ug © S](¢07 ¢1) S 0= GO(r0(¢0a ¢1)7 ¢07 ¢1)7 and Lemma 12.3 1mplles

Go(t, ¢07¢1) = [g + M- Vg © S](x(t7¢0)7y(tv ¢1)) < O’ te (07T0(¢07¢1))‘

This inequality and (12.8) for n = 0 give

T0(¢0,91) \
Ul(¢0> ¢1) = / 6_( +M)tG0(t, ¢0, ¢1)dt < 0,
0

which contradicts with vy (¢g, ¢1) = 0. This proves that [g + u - vy 0 S|(¢o, $1) > 0 for every
(¢0,¢1) € OI']. Since the mapping (x,y) — [g + p - vo o S|(z,y) is continuous, we have
lg + 1 - vg 0 S](o, 1) = 0 for every (¢g, ¢1) € cl(OT']) by Lemmas 10.2 and 10.5. Therefore,
cl(or) Nory = @. O

The next corollary is helpful in determining the point (&§,71(&5)) = (&5, a0(&5)). The

region A, was introduced in Section 10.

12.9. Corollary. The parametric curve
(12.16) Ci 2 R2 N {(2(t, &), y(t, a0(€5))) : € R}

1s the smallest among all the parametric curves Ri N{(x(t, do),y(t,¢1)) : t € R}, (do, 1) €
R2 that majorize the boundary function ag(-) of the region Ag = {(x,y) : [g9+p-vo0S)(x,y) <
0} = {(z,y) € R : y < ag(x)}.

The curve Cy and the boundary 0Ag = {(x, ag(x)) : x € [0, ap|} touch exactly at (£§,ag(&5)) =
(&5, 71(&5)) and nowhere else.

Proof. By Corollary 12.7 and Lemma 12.8, we have (&5, ao(&7)) = (&5, 71(&5)) € cl(0T'1)\OT'S.
Therefore (&5, a0(£5)) ¢ OT'7 U OI']. Hence there exists some d > 0 such that

(12.17) (@(t,€0), y(t ao(&7))) € T1 CRINAg,  t € (=0, +9).
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Recall from (10.18) that 7(£5, ag(£5)) is the exit time of the curve (x(—t, &%), y(—t, ao(&Y))),
t € Ry from R2. Then the function

t— Go(t,&7, a0(7)) = g+ - vo 0 S](x(£,61), y(t, a0(&1))), T € [-T(E], ao(&7)), 00)

has a zero at t = 0, and is nonnegative for every ¢ € (—4,0) by (12.17). Hence it has a local
minimum at (£5,ao(£f)). By Lemma 12.3, the function Gy(t, &5, ap(€5)) is strictly positive
for every ¢t # 0. Therefore, y(t, ag(£5)) > ao(z(t,£5)) for every t # 0. O

12.10. Remark. Since C; C R2\ Ay, we have Juy(t, ¢o, ¢1) > 0 for every ¢ > 0 and (¢g, ¢1) €
Cy. This implies v (g, ¢1) = 0 for every (¢pg, ¢1) € C1. Therefore, C; C I'y.

The curve C; divides R% into two components. Since the continuation region Cy is con-
nected and contains Ay, the region C; is contained in the (lower) component which lays

between the curve C; and z-axis. Thus the boundary 0I'; is completely below the curve Cy,
and they touch at the point (£, ao(£5)) = (£5,71(&5)). See Figure 8(a).

Next corollary shows that no points on the boundary {(z,ao(x)) : = € [0,£5)} over the
interval [0, &) of the region Ay = {(z,y) € R : [g+ pu-v90S](z,y) < 0} is a boundary point
for the stopping region I';.

12.11. Corollary. For every x € [0,&5), we have vy, (x) > ag(x) and [g+p-vooS|(x, y1(x)) > 0.

Proof. 1f [0,£5) = &, then there is nothing to prove. Otherwise, fix any ¢y € [0,£f). As-
sume that (¢o, ao(¢o)) € OI';. By Corollary 12.6 and Lemma 12.8, we have (¢q, ag(¢o)) ¢
O UOT{. The same arguments as in the proof of Corollary 12.9 with (¢g, ag(¢o)) instead of
(€7, ao(£7)) gives that the parametric curve {(2(—t, ¢o), y(—t, ao(¢0))) : t € [=7(¢0, ao(¢0)), )}
is the smallest majorant of the boundary function ag(-), and both curves touch at the point

(0o, ao(¢o)). But this implies ¢g = £5, a contradiction with our choice of ¢y. O

12.12. Corollary. If ¢o € [0,£5), then (¢po,1(do)) € OI'] has an open neighborhood, on the
intersection with the continuation region Cy of which the function ro(-,-) is bounded and
bounded away from zero.

On the other hand, the function ro(-,-) is continuous on the entrance boundary OT'{: for
)

every (¢, ¢1) € O and every sequence {( (()"), ten € Cyp converging to the boundary

point (¢o, P1), we have lim,, ro(gbé”), g")) =0.

12.13. Lemma. If & =0, then 0Ty = cl(OT). If & > 0, then the exit boundary OT' is not
empty, and 0Ty = oIy U cl(JI').



ADAPTIVE POISSON DISORDER PROBLEM 59

A
Fl Fl

71(0)
W

- -A The exit boundary oI'f

| of the stopping region T'; :

. ro(x, ap(z)) < 7z, ap(x))
for every = € [£¢,&T

e Yy [51 &7)

G

¢d 1

y
y

FIGURE 7. (a) The exit boundary OI'{ of the stopping region I’y is found by backtracing the
parametric curves t — (z(t, ¢o), y(t, ¢1)) from every point (¢g, ¢1) on the entrance boundary
OIS = {(z,a0(x)) : z € (&§,&1)}. In (b), the region B defined in the proof of Lemma 12.14
is sketched.

If Oy # cl(0T), then £ > 0, and the exit boundary OI'{ is not empty by Lemma 12.13.
The characterization of the exit boundary in Lemma 10.7 can be expressed better. It can

be easily shown that there exists some &7 € (£5,&;) such that

£ = { (st 0. aa(0n) e ).
More precisely,
(12.18) & = inf{po € [£1,&1] : To(do, 11 (x)) < T (o, M1 (7))}

For every ¢g € (£7,&1], we have To(do, 71(¢0)) < 7(¢o, 71(¢0). See (10.18) and Figure 7(a).
Our next result shows that, the exit boundary OI'7 = {(¢o,71(¢0)) : ¢o € [0,£5)} is on a

continuously differentiable curve, if it is not empty.

t=70(¢0,a0 (b0

12.14. Lemma. The restriction of the boundary function v,(-) to the interval [0,&5) is con-

tinuously differentiable.

If the value function vy(+,-) were continuously differentiable on the exit boundary OT'{,

then the result would follow from an application of the implicit function theorem to the
identity vy (¢o, ¢1) = 0 near the point (¢o, 1) = (¢0, 71(P0))-
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Unfortunately, vy (-, ) is not differentiable on OI'{; see Lemma 12.16. Therefore, we shall
first extend the restriction to the set C; UJT'{ of the value function vy (-, -) to a new function
v1(+,+) on an open set By D Cy U JI'] such that v, (-, -) is continuously differentiable on B.
We shall then use the identity 1 (o, 71(¢1)) = 0 as described above.

12.15. Lemma. The boundary function v1(+) is continuously differentiable on the interior of

its support [0, &].

The next result shows that the value function is not differentiable on the exit boundary
OI'Y. In fact, as the proof reveals, the left and right partial derivatives are different along
the exit boundary. Therefore, the smooth-fit principle does not apply to the value function

v1(+, -) along (some part of) the boundary if the exit boundary 0I'{ is not empty.

12.16. Lemma. The value function vi(-,-) is continuously differentiable on the entrance

boundary OI'§, but is not differentiable on the exit boundary OI'7.

The techniques used above in the analysis of the value function v;(+,-) and the bound-
ary function ~;(-) can be extended inductively to every function v,(-,-) and the boundary

function ~,(-) if the followings are true for every n € N:

A (n): For every (¢, ¢1) € R%, the function t — Gy (t, ¢o, ¢1) in (12.7) from R, into R
has at most one local minimum. It is strictly increasing if there is no local minimum.
If there is a local minimum, then the function G,,(-, ¢g, ¢1) is strictly decreasing before
the minimum and strictly increasing after the minimum.

As(n): The function (z,y) — [g+ p-v,0S5](x,y) is (continuously) differentiable on the
entrance boundary OI';, ; of the stopping region I', 11 = {(2,y) : vp41(z,y) = 0}.

12.17. Proposition. If A,(k) and As(k) above are true for every 0 < k < n, then the
followings hold.
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(1) The value function v,41(-,-) is continuously differentiable on RI\I, | everywhere

except the exit boundary 0T, ... For every (¢o, ¢1) € Cpia
Tn(¢07¢1) A
Do vn+1(do, ¢1) :/ e +H)tD¢oGn<t7¢Oa¢l)du
0
mn(¢0,01)
= / eI [L 4 (1 = 1) Dgvn © 8] (s, do), y(u, ¢1))du,
0
mn(¢0,01) Ny
D, vp41(d0, ¢1) :/ emOth) Dy, Gn(t, do, ¢1)du
0

Tn(0,¢1)
= / e~ MY 4 (1 + 1) Dy, vy 0 S] (2(u, do), y(u, ¢1))du.
0
(2) The entrance boundary OT'; | is connected. More precisely,

ory ., = {(z,an(7)) 2 € (5Z+1afn+1)} Jor some &),y € [0, &ntr)-

The boundary function a,(-) of the region A, = {(z,y) € R% : [g+ p-v, 0 S|(z,y) <
0} is continuously differentiable on (£5.,,&,41). Therefore, the boundary function
Yrt1(+) = an(-) on (&5 41, &nv1) s continuously differentiable.

(3) The parametric curve

Cor1 = REN{(2(t,6041), y(t an(41))) : t €R}Y

is the smallest among all the parametric curves R N {(z(t, o), y(t, ¢1)) : t € R},
(¢o, $1) € R2 that majorize the boundary function a,(-) of the region A, = {(x,y) :
lg+p-v,08](z,y) <0} ={(2,y) € RE 1 y < a,(x)}.
The curve Cpy1 and the boundary 0A, = {(z,a,(z)) : x € [0, ]} touch exactly at
(&rs1s an(&i1)) = (G, W1 (§41)) and nowhere else.
4) If &£, =0, then O, = cl(OT% ;). If &, > 0, then the exit boundary 0T | is
n+1 n+1 n+1 n+1
not empty, and Ol = 0Ty, Ucl(OT;, ).

(5) The boundary function ~,41(-) is continuously differentiable on the interior of its

support [0, &rq].

The proof of the proposition is by induction on n € Ny. The suppositions A;(0) and A5(0)
are always correct; see Lemma 12.3, and note that [g+ p-vg o S](+,-) = g(+,-) is continuously
differentiable everywhere. All of the claims above are proved for the basis of the induction
n = 0 before the statement of the proposition. For n > 1, the proofs are the same with

obvious changes, with the exception of the differentiability of a,(-) in (2).
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For n = 0, the differentiability of ag(r) = —x + (A\/c)v2, x € (0,&) was obvious. For

n > 1, the function a,(-) is not available explicitly. But
lg+ - vp 0 S)(z,an(x)) =0, z €10,&11]

By As(n), the function [g+p-v,0S5](-, -) is continuously differentiable on 0T}, || = {(z, an(x)) :
€ (£, 1,&1)} Since y — [g+ - v, 0 S|(x,y) is strictly increasing for every « € Ry, we

n

have

0
— g+ p-v, 0 S](x, > 0, x € (& 1,8n+1)-
gy It @] oo (&1s €nt)

Thus, the function a,(-) is continuously differentiable on (&¢

¢ 1-&nt1) by the implicit function

theorem.

12.1. The interplay between the exit and entrance boundaries. Unfortunately, we
were unable to identify fully all the cases where the hypotheses A;(n) and Ay(n) on page
60 are satisfied for every n € N (see, though, Section 12.2 for the important case of “large”
disorder arrival rate A and Section 12.3 for another interesting example, where they are
satisfied). However, they are the sufficient conditions for Proposition 12.17 to hold, and
Proposition 12.17 shows the crucial interplay between the exit and entrance boundaries. We
would like to illustrate this interplay briefly; it may be very useful in designing efficient
detection algorithms for general Poisson disorder problems. Later, we shall point out how
the gap may be closed as an interesting research problem.

In Section 10.2, we showed that both the value functions and the exit boundaries are deter-
mined by the entrance boundaries, see Lemma 10.7. More explicitly, if the entrance boundary
JT'; ., is obtained somehow, then one can calculate the value function v,41(:,-) and the exit
boundary OT'; . ; by running backwards in time the parametric curves ¢t — (z(t, ¢o), y(t, ¢1))
from every point (¢o,¢;) on the entrance boundary JI';, and by evaluating the explicit
expressions of Lemma 10.7 along the way. On the other hand, the entrance boundary JI';, |,
can be found when the value function v,(+,-) is already calculated. Since vy = 0 is read-
ily available, the following iterative algorithm will give us every v,(-,-), n € Ny and the

boundary functions 7,(+), see also Figure 8:

Step D.0: Initialize n = 0, vy(+,-) = 0 on R%. Let ag(-) be the boundary function of
the region Ay = {(¢o, ¢1) € R2 : [g+ p - vg 0 S|(¢o, ¢1) < 0}; see (12.15).
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Iy
Sla1]: The locus of points
satisfying the equation
(9057 () =u(y)

of the stopping region I'y:
7() > ao() on [0,£7)

l? Exit boundary oI'f
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1 —il
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of the stopping region I';,41:
Ynt+1(-) > an(-) on [0,£5. 1)
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boundary JI'y, :
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\:7

i+ Snt1
© (CY
FIGURE 8. For all values of the disorder arrival rate (large or small), both the value functions
Un41(+, ), n € Ny and the exit boundaries OI',,,,, n € Ny are determined by the entrance
boundaries OT'; |, n € Ng; see Lemma 10.7. Figures (a) and (b) illustrate Steps D.1 and
D.2 of Method D page 62 for n = 0, and Figures (c) and (d) for a general n. In (a),
the region Ay = {(z,y) € R : [g+ p- vy 0 S] < 0} is readily available since vy = 0.
There is always a unique number £§ contained in the support [0, &;] of the boundary function
ao(+) of the region Ay such that the parametric curve Cy : (x(t,£5), y(t,a0(£5))), t € R does
not intersect Ag. The entrance boundary OI'{ of the stopping region I'y coincides with the
boundary {(x,a¢(z)) : = € (£5,&1)} of the region Ay above the interval (£,&;). If & > 0,
then the exit boundary OI'{Y = I'1\ cl(I'{) is not empty and can be found by backtracing
the parametric curves (z(—t, ¢o),y(—t,¢1)), t € Ry from every entrance boundary point
(o, P1) € OT'{ until the first time 7, (¢g, ¢1) that Jug(—t, ¢o, ¢1) becomes zero, see Step D.1
for the details. After the value function v;(+,-) is calculated in Step D.1, the region A; and
its boundary function a;(-) is found by a transformation under S~' of the locus in (b) of the
points satisfying [(1/u) - g o S7Y(+,+) = v1(+,+). By reiterating Steps D.1 and D.2 as in (c)

and (d) for every n € N, we obtain all of the value functions v,, n € N.
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Step D.1: There is unique number ¢y = £, in the bounded support ¢g € [0, &, 41] of
the function a,() such that, for every small 6 > 0

an(x(t, 00)) < yl(t,an(¢o)), te€10,0)if pg =0, and t € (=9,9) if ¢pg > 0.

Equivalently, the parametric curve Cny1 = R2 N {(z(t,£5,,), y(t, an(€514))) - t € R}
in (3) of Proposition 12.17 majorizes the boundary {(x,a,(x)) : x € supp(a,)} of
the region A, = {(z,y) € R% : [¢g+ p- v, 0 S](x,y) < 0} everywhere. The entrance
boundary of the stopping region ;11 = {(do, #1) € RZ : v,11(do, 1) = 0} is given
by 0%, = {(60, @u(00) : 0 € (€51, Ens)}.
(i) Find the entrance boundary oI, ;.
(ii) For every (¢o, ¢1) € OI';,,, take the following steps to calculate the value func-
tion vp41(+, ) on the continuation region C,; and the exit boundary oI’} ;:
(a) Calculate 7(¢o, ¢1) = inf{t > 0: (z(—t, ¢o), y(—t,¢1)) & R2}.
(b) If —Jv, (=7 (o, ¢1), Po, $1) < 0, then set 7, (Po, p1) = co. Otherwise, find

?n(gbm ¢1) £ inf{t € (0’?(¢07 ¢1)] : _Jvn(_tv ¢07 gbl) > 0}

by a bisection search on (0, 7(¢g, ¢1)], and add the point

(l’(—?n((]ﬁ(), ¢1)7 ¢0)7 y(_?n(¢07 (bl)? ¢1)) € 8F£+1

to the exit boundary.

(c) Calculate the value function
vas1(@(=t,d0), y(—t,é1)) = —e N T, (—t, 6o, 1)

along the curve (l’(—t, ¢0)7 y(_t7 (bl))? te (07?(¢07 ¢1) A ?n(¢07 (bl)] until it
either leaves R or hits the exit boundary T ;.

The union I, Ucl(dT;, ;) = T, U{(z,a,(x)) : v € [§5,1,&nr1]} gives the
boundary O, 11 = {(z, Yn+1(x)) : € [0,&,41]} and the boundary curve v,11(+),
which is strictly decreasing and convex on its support [0, &,41].
(iii) Set v,4+1(+,+) = 0 on the stopping region I'; 11 = {(z,¥y) : ¥y > Y1 (2)}.
Step D.2: Set n to n + 1. Determine the locus of the points (¢, ¢1) in R? satisfying
the equation
1 _
[; rgosS 1} (¢0, #1) = vn(P0, D1)-
This locus is the same as {(x, S[ans1](2)) : © € supp(Slan+1])}, see Notation 9.2.
Shift it by the linear transformation S~ of (5.8) to obtain the boundary {(z,a,(x)) :
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x € supp(ay,)} of the region A, = {(z,y) : [g + p - v, 0 S](z,y) < 0}. Go to Step
D.1.

12.18. Conjecture. The algorithm relies on only two results from Section 12: (i) the entrance
boundary Iy, n € Ny is connected, and (ii) the boundary JI'; |, n € Ny is the disjoint
union of the exit boundary Ty, ; and the closure of the entrance boundary oI';, ;. Part (ii)
was proved by using (i) and the first hypothesis Aj(n 4 1) on page 60, see Lemma 12.13.
We conjecture that the hypothesis A;(n + 1) always holds for all n € Ny.

On the other hand, part (i) was proved by using the continuity of the mapping (¢g, ¢1) —
rn(o, ¢1) on the connected continuation region C, 1, see Corollary 12.6. The continuity of
the mapping r,(-, -) followed from its continuous differentiability on C,,;1; which we proved
by using the implicit function theorem (Theorem 12.2) under hypothesis As(n + 1), see
Lemma 12.4. We conjecture that this mapping is always continuous on the continuation
region C,,;1. This may be proved directly by using a weaker version of the implicit function
theorem (see, e.g., Krantz and Parks (2002)) or by using nonsmooth analysis (see, e.g.,
Clarke et al. (1998)).

12.2. The regularity of the value functions and the optimal stopping boundaries
when the disorder arrival rate ) is “large”. One of the cases where both A;(n) and
A, (n) on page 60 are satisfied for every n € N is when the disorder arrival rate A is “large”,
see Section 4.3 and Figure 2(a).

Suppose that A > [1 — (1 4+ p©)(¢/2)]T. Then the parametric curve t — (x(t, ¢o), y(t, ¢1)),
and therefore, the mapping ¢t — G,(t,¢o,¢1), t € Ry are strictly increasing for every
(¢o, #1) € R% and n € Ny, see Lemma 10.2. Hence, A;(n) always holds for every n € N.

For the same reason, all of the exit boundaries OI';,, n € N are empty, see Section 11. Since
OI'] is empty, the value function v;(+, ) is continuously differentiable everywhere. Therefore,
A,5(1) holds. Then Proposition 12.17 implies that vs(-,-) is continuously differentiable ev-
erywhere since OI'; is empty. Therefore, As(2) holds, and so on.

12.19. Corollary (“Large” disorder arrival rate: smooth solutions of reference optimal stop-
ping problems). Suppose that A > [1 — (1+ u)(¢/2)]*. Then Ai(n) and As(n) hold for every
n € Ny, and Proposition 12.17 applies. Particularly, for every n € Ny

(1) the value function v, 1(+,-) is continuously differentiable everywhere,
(2) the exit boundary OT;, | is empty, and OT'y 1 = cl(OT, ),
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(3) the boundary function v,11(+) is continuously differentiable on the interior of its sup-
port [0,&u11]. Thus, the function v,.1(:) coincides with the boundary function
Aﬁ]

A
ap(x) = —x + V2 of the region Ay on the interval [O, e
c c

and fits smoothly to this function at the right end-point of the same interval.

The last part of (3) in the corollary follows from (11.11) in Section 11 and Proposi-
tion 12.17. Recall also from Remark 9.6 that, if the disorder arrival rate \ is “large”,
then there is an increasing sequence of sets Ry X [B,,00) whose limit is R, x (0,00), and
v(+,-) = vu(+,+) on Ry x [By,00) for every n € N. Therefore, Corollary 12.19 implies im-
mediately that the value function v(-,-) and the boundary function 7(-) are continuously
differentiable on Ry x (0,00) and on the interior of the support [0,£] of the function ~(-),
respectively.

To prove that v(-,-) is continuously differentiable on (0,00) x {0}, we shall again use the

implicit function theorem. By Proposition 5.6 and Remark 5.10, we have

7(¢0,0)
U(QSOa 0) = JU(T(¢07 O)a ¢07 0) = / 6_(/\+M)tG(ta ¢07 O)dtv ¢0 € R—i—-
0

The function (¢, ¢g) +— G(t,¢0,0) = [g+ p-v o S|(z(t, ¢o),y(t,0)) is continuously dif-
ferentiable on (0,00) x (0,00) since v(-,-) is continuously differentiable on R, x (0, c0)
and (z(t, ¢o),y(t,0)) € (0,00) x (0,00) for every t > 0. Moreover, the partial derivative
(t,¢0) — Dy, G(t, ¢o,0) is locally bounded on (0,00) x (0,00) by Corollary 5.4. Therefore,
the function (¢, ¢o) — Ju(t, ¢, 0) is continuously differentiable on (0, 00) x (0, 00) and

t
Dy, Ju(t, ¢, 0) = / e~ MFED L Gt do, 0)du
0

= /o e~ (nt1)u [1+ (1 — 1) Dgyv o S) (x(u, ¢o), y(u,0))du, (t,¢0) € Ry x (0,00).

Since v(¢po,0) = 0 for every ¢y € [£,00), it is continuously differentiable on (£, 00). To
show that it is differentiable on (0, &), it is enough to prove that the mapping ¢g — r(¢g, 0)

from (0,€) to Ry is continuously differentiable. Observe that, if we define

F(t> ¢0) < 7($(t7 ¢0)) - y(t? 0)’ (ta ¢0) S R%—a

then F(r(¢o,0),¢0) = 0 for every ¢y € [0,&]. For every ¢y € (0,€), the function F(-,-)
is continuously differentiable in some neighborhood of (r4(¢o,0), ¢g) since z(r(¢g,0), ¢o) €
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(0,€) and ~(+) is continuously differentiable on [0, &). Moreover, at every (¢, ¢y) € R%, where
D.F(t, ¢o) exists, we have

DtF<t7 Qb()) = 7’(1‘(25, gbO))thL‘(t? QSO) - Dty(t’ O) < 07

since 7(-) is decreasing, t — x(¢,0) and t — xz(t,¢) are strictly increasing. Then the
implicit function theorem implies that ¢y — 7(¢g,0), and therefore, ¢y — v(¢g,0) =
Ju(r(¢o,0), ¢, 0) is continuously differentiable on ¢g € (0,£). A similar argument as in
12.12 shows that ¢g — r(¢o,0) is continuous at ¢y = & and limg ¢ 7(¢o, 0) = 0. By Leibniz
rule (see, e.g., Protter and Morrey (1991, Theorem 11.1, p. 286)), the limit of the derivative

D¢OU(¢07 O) = thU(T(¢O7 0)7 ¢07 OZ +D¢0JU(T(¢O7 0)7 ¢0a O)

=0 for every ¢o€[0,£)

7(¢0,0)
= [ e (- 1) Do S) o ).yl O, 00 € (0.8
0

of the value function v(-,-) at (¢g,0) as ¢y increases to & equals zero. Recall that, since
7(¢0,0) > 0 for every ¢y € [0,&), the derivative of t — Juv(t, ¢9,0) on the righthand side
vanishes at its minimizer ¢ = r(¢g,0). Thus, the left and right derivatives of the concave
function ¢g — v(¢g,0) at ¢g =&,

D(}:O/l)(g’ O) = ‘EOIT% D;OU<¢07 0) = i’IOITré D¢0v<¢07 0) =0= D;;DU(S, O)a

are equal. This completely shows that the function ¢y — v(¢g,-) from (0,00) to R is
continuously differentiable. Hence the value function v(-,-) is continuously differentiable on
R, x {0}.

12.20. Corollary (“Large” disorder arrival rate: smooth solution of the main optimal stop-
ping problem). Suppose that X > [1 — (1 + u)(c¢/2)]". Then

(1) the value function v(-,-) is continuously differentiable everywhere,
(2) the boundary function ~y(+) is continuously differentiable on the interior of its support
[0,&]. It coincides with the boundary function
A AV2
ap(x) = —x + V2 of the region Ay on the interval [O, %—] ,
c c
and fits smoothly to this function at the right end-point of the same interval,
(3) the value function v(-,-) is the solution of the variational inequalities in (12.1)-(12.4).
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12.21. Corollary. If A > [1 — (1 4+ p)(¢/2)]T, then both the sequence {v,}nen of the value
functions and the sequences of their partial derivatives { D p,vn tnen and { Dy, vy fnen converge

uniformly to the value function v and its partial derivatives Dy v and Dy, v, respectively.

Proof. Immediately follows from Theorem 25.7 in Rockafellar (1997, p. 248). U

The results obtained in Section 10 for the functions v,, n € N can be extended easily for

the value function v(+,-), n € N. As in Lemma 10.2, we have
A2 {(,y) €ERY g+ p-voS)(z,y) <0} ={(x,y) € R} : y < alx)},
{(z,y) €RL : [g+ p-vo S)(z,y) = 0} = {(z,a(x)) : x € [0, 0]}

for some decreasing function a : R, — R, which is strictly decreasing on its finite support
[0,a]. We have A C C all the time, and the equality holds if A > [1 — (1 4 u)(¢/2)]" since
the parametric curves t — (x(t, ¢o),y(t, 1)) increase and do not come back the region A

after they leave; see also Section 11. Therefore, v(-) = a(-) and
(12.19) lg+p-voS)|(z,y) >0, (x,y) € T\OT.

Proof of Corollary 12.20. Only (3) remains to be proven. The function v : R% — (—o0, 0]
is bounded and continuously differentiable. By the definition of the continuation region
C ={(z,y) € R% : v(z,y) < 0} and the stopping region I' = R? \ C, the (in)equalities (12.2)
and (12.4) are satisfied. On the other hand, (12.19) implies

(A= XN+ g](do, $1) = [g+ - v o S](do, &), (¢o,¢1) €T

is strictly positive for every (¢, ¢1) € T\OT, i.e., (12.3) is also satisfied. On the other hand,

[(A = N+ g](¢o, 1) =

= Dy, v(do, $1) [O\ + 1o + Al M]

e :
pafo (1= ) oun (145 ) 01) = o0u00)| = du(on,00) + g0n,0)
= Dyyv(¢o, ¢1) - Dex(0, ¢o) + Dg,v(do, ¢1) - Diy(0, 1) — (A + p)v(¢o, $1)

+ g+ n-voS)(do, 1)

= % [6‘“")tv(x(t,¢o),y(t, 1)) + /0 e g 4 g v o S)(a(u, (bo),y(u,qbl))du}
)

~ ot

+ Dyyo(do. én) [(A gyt

t=0

[e= O (a(t, 60), y(t, @1) + Jolt, 00, 01)] |y (G0, 1) € C.
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Observe that the expression enclosed in square brackets in the last equation above equals
v(¢o, 1) for every sufficiently small ¢ > 0 by (5.19) in Remark 5.10. Therefore, the derivative
above equals zero, and (12.1) holds. This completes the proof of that the function v(-,-)
satisfies the variational inequalities (12.1)-(12.4).

The boundary function ~(+) is strictly decreasing on its support. The process ® can have
at most countably many jumps, and its sample paths are strictly increasing between the
jumps. Therefore, the time that the process P spends on the boundary o' = {(z,~(x)) :
x € [0,£]} equals zero almost surely. Finally, since the derivative of the convex boundary
curve 0 > /() > ~4/(04+) = ag(0+) = —1 is bounded on = € (0,&), it is also Lipschitz

continuous on its support. [

Finally, Corollary 12.20 also shows that, for every A > [1 — (1 + m)(c/2)]T, the smooth
restrictions of value function v,41(+,-) to the continuation region C,; and to the stopping
region Iy, 41 fit to each other smoothly across the smooth boundary oI, 11 = {(z, Yns1(2)) :
z € [0,&n4a]}-

However, if 0 < A < 1—(14m)(¢/2) is small, then the corresponding value function does

not have to have the same smooth-fit property.

12.3. Failure of the smooth-fit principle: a concrete example. Here we shall give
a concrete example for a case where the value function fits smoothly across the entrance
boundary and fails to fit smoothly across the exit boundary of the optimal stopping region,
see Figure 9(d).

Suppose that the disorder arrival rate A, the pre-disorder arrival rate p of the observations,
the detection delay cost ¢ per unit time, and the expectation m = Eo[A — p] of the difference
A — 1 between the arrival rates of the observations after and before the disorder are chosen
such that

( 0<A<1—(1+m)c/2) )
+1 _
(12.20) MM Pa > b1 ,
v <Stale) = a0 (L a) @) e (60D, 0,80}

L
where ¢4 > 0 is the mean-reversion level in (4.14) of y — y(t, ¢1) for every initial condition
01 € Ry, see Section 4.4. The point

(12.21) (68, 67) = (% <? - 1) % (1? 4 1))
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is the intersection point of the straight lines £ in (6.7) and y = ag(x). Recall from (12.15) that
ao(+) is the boundary function of the region Ay = {(z,y) € R% : g(z,y) < 0} = {(z,y) €
R? : y < ao(x)}. For every initial point (¢g, ¢1) in R3, the sum ¢ — x(t, ¢o) + y(t, ¢1),
t € R, of the coordinates of the parametric curve t — (x(t, ¢o), y(t, ¢1)), t € R strictly
decreases before the parametric curve meets the line ¢, and strictly increases thereafter, see
Lemma 12.3 and (6.8). Finally, the point (0, ¢,) with
— A(1 A1

(12.22) b, = — (1 +m) M]

20—y {‘ﬁ“ﬁu—l)

—(A=1)/(A+1)
L+ g V2(A+1)
O \(1—m)

is the initial point on the y-axis of the parametric curve t — (z(¢,0),y(t,9,)), t € R,
which passes trough the point (¢, ¢%) in (12.21). The coordinate ¢, in (12.22) is found by
substituting the solution of x(t*,0) = ¢, for t* into the equation y(t*, ¢,) = ¢} and solving
the latter for ¢,; see also Figure 9(a).

Let us show that, under the conditions in (12.20), the “closedness” property in (9.4) holds.
By Lemma 12.3 and (6.8), the curve C; in Corollary 12.9 becomes

Cr={(x(t,0),y(t,¢1)) : t € R} =R N {(x(t, ), y(t, 67)) : t € R}

it is tangent to the broken line {(z,ao(x)) : € R.} at the point (¢, ¢7). Therefore,
&l = ¢§ by the same corollary, and the entrance boundary of the stopping region I'y =
{(2,) : vi(z,y) = 0} is OT¢ = {(x, ap(x)) : x € (¢, (\/c)v/2)} by Corollary 12.6. Moreover,
the boundary function ~;(-) of the region I'y = {(x,v1(z)) : 71 (z) < y} is supported on
[0, (\/c)v/2] and satisfies

(12.23) m(x) =ap(z), x€ {(b(’;, %\/5} and 71 (z) <y(0,¢,) = ¢y, = € [0,¢p).

The equality follows from Corollary 12.7, and the inequality follows from Remark 12.10 and
that the parametric curve C; is decreasing. One can easily see from (12.23) and the second
inequality in (12.20) that

(0.64) € Ry % [64,00) € S7HT) = { (2.5 [l(x)) - = € R},

(12.24) 602 S n)(0) = 7 7 (0).
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)

v(+,) =v1(-,-) on Ry x [By,00)
v(-) =) on [0,21)
Or® = oIy = {(z,n(x)) : x € [0,£)}

The value function v(-, -)
is differentiable everywhere except

Slar()]: [,% "go 571] () =ul,) on the exit boundary oI'"
;/(0) GO A the exit boundary oI'*
A/ 2/2

1
____Y of the stopping region I'

Y

0 &=¢5 m %\/i 0 =95 m1 %\/i ¢

FIGURE 9. (a) shows the location of points (¢35, #%) and (0, ¢,) and the line described by the
function S[ao](+). If the sufficient-statistic process ® starts in the region Ry X [¢4, 00), then
it stays there forever and jumps above the line y = ¢, every time an observation arrives.
In (b), one can calculate the value function v(-,-) by backtracing the parametric curve
t — (z(t,0),y(t,¢1)) from every (¢, ¢;) on the entrance boundary OI' = {(z,a0(x)) :
r € (£, (\/c)V2)}, see Figure 8(a,b). The thick curve above the region Ay is the boundary
function 7;(-) of the stopping region T';. Since S™(T") is “closed” in the sense of (9.4), the
functions v(-,-) and v;(-,-) (and therefore, every v,(-,-), n € N) coincide on S7!(T'). In
(c), we recall how to find the region A;; the calculation of the value function wvy(+,-) and
the boundary function 7,(-) is similar to (b), see also Figure 6. Since the exit boundary
{(z,v(x)) : z € [0,£°)} is the same for all of the functions and is contained in Ry X [¢4, 00),
the functions a;(-) and 7»(+) coincide on [, 00). This and the boundary function 7(-) of the
stopping region I' = {(z,y) € R% : v(z,y) = 0} are sketched in (d).
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The restrictions of the value functions v(+,-) and vy(+, ), and therefore those of the bound-

aries OI' and OT'y, coincide on R, X [¢4,00). First, observe that
— A
z(t, ¢o) +y(t, d1) = x(t,0) +y(t,¢,) = E\@

i'e'> (ﬁ(t, (b())?y(t? ¢1)) ¢ COJ te R+
where Cy = {(z,y) € R% : g(x,y) < 0} is as in (4.13) and coincides with A,. By the second

) (¢07¢1) S RJr X [51700%

inequality in (12.20) and the properties of the parametric curves ¢ — (z(t, ¢o), y(t, ¢1)),
t € R, (see Section 4.2), we have

{S(¢Oa¢1) € Ry x [¢y,00) C Ry X [pg, o0) }

, eR ;
(60, 91) € Ry X [¢a, 00) (z(t, d0),y(t, ¢1)) € Ry X [pg,00), tE€R,

Using the last two displayed equations gives that, if the initial state :I;o on a sample-path of
the sufficient statistic ® = (®©, ®W) is in R, x [pg, 00), then the sample-path stays in the
region R?2 x [¢4, 00) and never returns to the advantageous region Cy after the first jump,

see Section 4.1. In fact,

v o 5(go,é) = inf g™ { / e—”g@udu} =0, (d0.%1) € Ry x [64,00),
T 0
and therefore,

. =g(-,")
(12.25)  v(o, 1) = Jov(do, ¢1) = inf /0 e~ g + v o S|((u, o), y(u, ¢r))du

te[0,00]
= Jovo(¢o, ¢1) = vi(do, P1), (¢o, #1) € Ry X [¢g, 00).

The stopping region I' = {(z,y) € R : v(z,y) = 0} and its boundary OT" are determined
by the value function v(-,-). Then (12.25) implies that the restrictions of the boundaries OT
and OT'; to the region R, X [¢4,00) also coincide. Therefore, the first inequality in (12.20)
implies

6< VB0 =0, and STRI0) =00 < o

follows from (12.24). Since the boundary function S~*[](-) of the region S7(T") is decreasing
(see (9.7)), the second inequality gives
Ry x [¢a,00) € S7HT) = {(z,y) € RY : ™ [](w) <y}

But starting at any (¢o,¢1) € R x [0, ¢4, the parametric curves ¢t +— (x(t, ¢o), y(t, ¢1)),
t € R, are increasing. Since the boundary functions S~"[v|(:) of the regions S™(I") =
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{(z,y) € RZ : S7"[7](x) < y}, n € N are also decreasing, every region S™"(T'), n € N is
“closed” in the sense of (9.4). Therefore, Method A on page 43 can be used in order to

calculate the value function v(-,-) on R3.

12.22. Corollary. Suppose that (12.20) holds. Let B, = [/(p+ 1)]"71(0) for every n € N.
Then the sequence Ry X [B,,,o0), n € N increases to Ry x (0,00), and we have v(-,-) = v,(+,*)

on Ry X [By,o0) for every n € N.

Since (¢, ¢7) € Ry X [pg,00) € Ry X [By,00), the exit boundaries OI'{ and 0T'* of the

stopping regions I'y and I are the same, and

O = o7 = {(z, . (x)) - 2 € [0,£))} = {(z,m(z)) - 2 € [0,p)}-

From the entrance boundary OT¢ = {(x, ao()) : € (5, (A\/c)v/2)} of the stopping region
I';, we can obtain its exit boundary OI'7 and the value function v;(+,-) on the continuation
region C; by using Method D on page 62, see Figures 8(a,b) and 9(b).

Note also that the value function v(+,-) = v;(+,-) is continuously differentiable on R, x
[By,00)\0T'{ and is not differentiable on 9I'{ by Corollary 12.5 and Lemma 12.16. Let
71 = 21(71) = min{z € R, : S7'[y](x) = v (x)} is the (smallest) intersection point of the
functions S™[y1](-) and ~(-) as in (9.9). Then Corollary 9.4 implies

{(z.9(2)) : 2 € RPN STHTY) = {(z,m(2) 1 2 € [0, ]},

and the restriction of the boundary function v(-) = 71(+) to the interval [0, ;) is continuously
differentiable by Lemma 12.15.

Using Corollary 12.22, we can also show that the restrictions of the value function v(-,-)
and the boundary OT" of the stopping region I" on the complement of the region R x [By, 00)
are continuously differentiable.

Since the sequence {v, (-, ) }nen of the value functions increases to the function v(-,-), all
of them coincide with v(-,-) = v;(+,-) on the region R} x [By, 00). On the region R, x [0, By),
they differ, but are continuously differentiable.

In fact, since every parametric curve t — (x(t, ¢o), y(t, ¢1)), t € Ry starting at any point
(o, 1) € Ry x [0, ¢4] D Ry x [0, By] is increasing, the hypothesis A;(n) on page 60 holds
on the region R, X [0, ¢4 for every n € N,

On the other hand, the third inequality in (12.20) guarantees that hypothesis Ay(n) on
page 60 also holds on R, X [0,¢4] for every n € N. Indeed, every entrance boundary
oT'; | coincides with some part of the boundary 0A, = {(z,a,(x)) : © € Ry} of the region
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A, ={(z,y) € R% : [g+p-v,05](x,y) < 0}, see Lemma 10.5. Since the sequence {a,(+) }nen,

of the boundary functions is increasing, the third inequality in (12.20) implies

y < S[ao](x) S S[an](x)v ne NO; (l’,y) S {(QSS?QST)? (0750}

Thus, by an induction on n € Ny, we can easily show that the transformation S(0T';_ ;) of
the entrance boundary JI';, | of every stopping region I',,; is away from the exit boundary
or; , = OI'{. Therefore, the function (x,y) — [g + i - v, o S](x,y) is differentiable on
the entrance boundary JI';, ;. The same induction, as in Section 12.2, will also prove the
continuous differentiability of the value functions v,(-,-), n € N and v(-,-) on the region
Ry % [0,04) D R4 x [0, By], as well as, the continuous differentiability of the restrictions of
the boundaries 0TI',,, n € N and OI" to the set Ry x [0, ¢4).

12.23. Corollary. Suppose that (12.20) holds. Then the boundary function v(-) of the stop-
ping region T' = {(z,y) € R% : y(z) <y} is continuously differentiable on its support [0,&].
The exit boundary I'® is not empty. The value function v(-,-) is continuously differentiable
on RI\OT™, but not differentiable on OT'”.

The interesting feature of the solutions of the problems covered under condition (12.20) is
that the smooth-fit principle is satisfied on one connected subset and violated on another of
the same connected and continuously differentiable boundary curve of the optimal stopping
region by the value function, which is also continuously differentiable everywhere away from
the boundary.

The conditions in (12.20) are satisfied, for example, if A = 0.15, p = 1.5 and ¢ = 0.7 and
m = 0.9. In general, the functions S™![ag|(-) and ao(-) always intersect on the line y = .
Since 71 (+) > ao(+) and v, (+) is decreasing, we have z; < (\/c) - (v/2/2). The equality holds
if and only if

S @) € {(wy) €R o<y} = 1<p(h+o).

This condition is satisfied for the numbers above. As a result, we have z; = (\/c) - (v/2/2)
and v(x) = ao(r) = x—(\/c)V/2 for every x € [¢}, 71]. The boundary function ~(-) is strictly

above the function ag(-) everywhere else.
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13. APPENDIX: PROOFS OF SELECTED RESULTS IN PART 2

Proof of Proposition 9.3. Let us prove (9.5) for n = 1. Take (¢, ¢1) € S7'(T). By (9.4),
the curve u — (z(u, ¢o),y(u, 1)), u € Ry does not leave S~1(T"). Therefore,

S(z(u, ¢o), y(u,¢1)) €T and (Vo S)(z(u, ¢o),y(u,¢1)) =0, u€R;.

Then Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply that

Vwm@>=%vwm@)=im}/e*“W@+w-Vmﬂ@wwwwW¢gMu
0

te[0,00

= inf / e_(’\+“)“g(x(u,¢0),y(u, ¢1))du = JoVo(do, $1) = Vi(¢o, d1).
0

te[0,00]
Since V' is the limit of the decreasing sequence {V}, },en, the equalities V =1, =V, = - .-
on STHT) follow.

On STH(T)NC, we have 0 >V =V, =V, = --.. Therefore, S~1(I') N C C C,, for every
k > 1. Taking intersection of both sides with S™!(T) gives S™H(T') N C C S~Y(T") N C, for
every k > 1. To prove the opposite inclusion, note that V' =V}, < 0 on S~}(T')NC;, for every
k > 1. Therefore, STH(T') N Cy C C, k > 1. Intersecting both sides with the set S~(T)
gives STH(T)NC, CS™H(T)NC, k> 1.

The proof of S™(I')NT = S"(T')NT, =S ™T)NT,4 =--- reads the same as in the
previous paragraph after every “C” above is replaced with “I'”, and every strict inequality
is replaced with an equality. This completes the proof of (9.5) for n = 1.

Suppose that (9.5) holds for some n € N, and let us prove it for n + 1. Take (¢, ¢1) €
S=(+1(T). Since the curve u — (x(u, ¢),y(u, d1)), v € Ry does not leave the region
S~ () by (9.4), we have S(z(u, do),y(u, ¢1)) € S™(T), u € Ry, and

(Vo) (x(u, ®0),y(u, qbl)) =(V,059) (ac(u, ®0), y(u, qbl)), u€e R,

by induction hypothesis. Then Lemma 5.6, (5.4), (5.6) and Proposition 5.5 imply that

V(¢07 le) = JOV(¢07 ¢1) = inf ] /0 e—()\—i-u)u[g + e Vo S] (l‘(u, ¢0), y(u7 ¢1))du

tel0,00

:iﬁléeOwwﬂﬂkﬁoﬂ@Wﬁ%M%%»W:JWM%ﬁﬂ:WH@m@)

te[0,00]

Since V' is the limit of the decreasing sequence {V, },en, we have V =V, .1 =V, .0 =--- on
S=(*+)(T). From these equalities follows the proof of the equalities of the regions in (9.5)

for n + 1, by the similar arguments presented for n = 1 above. O
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Proof of Lemma 10.2. The obvious choices are the function a, : Ry — R, and the num-

ber a, in (10.3) and (10.4), respectively. By the discussion above,

{(.y) € B2 g+ - vn o S)(z.y) < 0} = A, = B \epi(ay)
= {(z,y) e R%; y < an(2)} = {(x,y) € [0, an) X Ry; y < an(a)},

and (10.6) follows. The proof will be complete if we show the equality in (10.5).
Since [g + p - v, 0 S)(z,y), € R, is continuous, we have [g + - v, o S](x, an(x)) > 0 for
every € R, and the equality holds for every x € [0, a,) because a,(z) > 0, z € [0, a,).

Because a,(-) is also continuous, the equality also holds for (z,y) = (ay, a(ay,)), and
(13.1) g+ 1 - v, 0 S|(z,an(x)) =0, z € [0, ay).
The identity (10.5) will follow immediately if we show for the same A,, in (10.1) that

(13.2) l[g+ p vy 0S|(z,y) >0, (z,y) € (RZ\A4,) \{(z,a,(2)) : € [0, 0, }.

The nonpositive function v, (-, ) is concave and equal to zero outside the bounded region
C,.. Therefore, the functions y — v, (z,y), z € Ry and z +— v,(x,y), y € R, are nonpositive,
concave and equal zero for every large real y and =z, respectively. This implies that the
functions y — v,(z,y), x € Ry and x — v,(z,y), y € R, are nondecreasing. Therefore, the
functions y — [g+ - v, 0S](x,y), z € Ry and x +— [g+ p-v, 0 S](x,y), y € Ry are strictly
increasing since both S(x,y) and g(z,y) are strictly increasing in both = and y. Now, (13.2)
follows from (13.1). O

Proof of Lemma 10.7. Fix any (¢o, ¢1) € Oy, ;. Then v,,41(do, 1) = 0, and substituting
(60", ¢1") = (x(~t, do), y(—t, ¢1)) into (10.15) for any ¢ € [0,7(¢o, ¢1)] gives

(133) Jtvn(*r(_tv ¢0)7y(_t7¢1)) = _67()\+u)t<]vn<_t7 ¢07¢1)7 te [07?(¢07¢1)]7

thanks to the semigroup property of z(-,-) and y(,-).
By the definition of the entrance boundary OI';, ,; in (10.10), the point (¢, ¢1) is reachable

n

from the inside of the continuation region C,,,;. Namely, there exists some § > 0 such that

(I(_t7¢0)7y(_t7¢1)) S Cn+1 and Tn<x(_tv¢0)ay(_ta le)) =t for every t € (076] Then
(10.16) implies

0> UnJrl(x(_tu ¢0>7 y(_tu ¢1)) = Jtvn(x<_t7 ¢0>7 y<_t7 ¢1)) = _ei()\+u)t&]vn(_t7 ¢07 (bl)
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for every t € (0,0]. Since 7,,(¢o, ¢1) is the first time when the last function on the right may

change its sign, we obtain

_Jvn(_ta ¢07¢1) < Oa S (Oa?n(¢07 ¢1) A ?(¢07¢1))

Using (10.16) once again, we conclude

Un-i—l(x(_ta ¢0)7 y(_t7 gbl)) S Jtv”(‘r(_tv ¢0)7 y<_ta gbl))
= _eioﬁhu)tjvn(_t? ¢Oa ¢1> < 07 te (07?n(¢07 ¢1) A ?(¢07 ¢1))

Thus

{(l‘(—t, ¢0)7 y(_t7 ¢1)); le (07 ?n(qbi)v gbl) A ?(QbOa ¢1))} g Cn—l—la
Tn<x(_t7 ¢0)7 3/(—757 (bl)) - t? te (07 ?n((b()? ¢1) A ?((bOa (bl))?
Un+1(‘r(_t7 ¢0)7 y<_ta Cbl)) = _e_o\—ﬂt)t‘]vn(_t’ ¢07 ¢1>a te (07 ?n(¢07 ¢1) A ?(QS(), ¢1))

The third equation follows from the second and (13.3), and the second equation follows from
the first and the fact (x(t,z(—t, ¢0)), y(t,y(—t, ¢1))) = (po, ¥1) € T'. Taking the limit in the

third equation as t increases to 7, (¢g, ¢1) gives
0, and

Un+1(l'(—t,¢0),y(_t7¢1)) P =Y —~ ~
t="n (¢0,01) if 7To(éo, d1) < T(o, d1).
(2(=Tn (b0, 1), Do), (=700, ¢1), ¢1)) € OT;

Finally, every (¢, ¢1) € Cri1 Uadr, ,, is reachable from (¢g, ¢1) = (o, 1) € or';, , on the
entrance boundary by the curve {(z(t, %0),1/(25, 51)); t e [O,TH@O, 51)]} which is contained

(possibly, except the end-points) in the continuation region C,, 1. O

Proof of Corollary 12.6. By Lemma 12.4, the function (¢q, ¢1) — 70(¢o, ¢1) is continuous
on the continuation region (¢, ¢1) € C;. Therefore, the entrance boundary 0TI’ is the image

of the continuous mapping, see the definition in (10.10),

(G0, 1) = (x(ro(do, ¢1), 1), 71 (y(10(P0, D1), ¢1))), (¢0, 01) € Cy

from the connected region C; into RZ. Thus the set OI'{ is a connected subset of R?.
Since the parametric curves t — (x(t, ¢o),y(t,0)), ¢o € R, starting on the z-axis are

increasing, the points on the boundary 0I'; where these curves meet the boundary belong

to the entrance boundary OI'{; see also Figure 2. Hence {(z,7(x)) : x € [0,&)} C OI'] for

A

some 0 < 0 < &. Then the connectedness of OI' gives (12.14) with & = inf{z € R, :
(z,7(2)) € ITT}.
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Indeed the point (£§,71(£f)) does not belong to the entrance boundary OI'{. Suppose it
does. Then {(x(—t, &), y(—t,11(&5)));t € (0,6]} C Cy for some § > 0. Let (¢, ¢1) € Cy be
the point in the middle of the vertical line-segment connecting the points (z(—0, £5), y(—6, 71 (£5)))
and (z(—=6,£5),v1(x(—=6,£5))). Then we have (0, pg) = (0, 2(—6,&5)) = &§ and y(0, ¢1) >
y(0,y(=0,7(£7))) = (1) = n(x(d; do)) since the mapping ¢ — y(t, @) is increasing for
every t € R. Therefore, (z(9,¢o),y(d,¢1)) € T'y and 0 < ro(¢o, ¢1) < J. Thus we have

(z(ro(do, #1), o), y(1o(Po, ¢1), ¢1)) € OT], but x(ro(¢o, ¢1), ¢o) < x(d, do) = £ (the mapping
¢ +— x(t, ¢) is increasing for every ¢t € R). This contradicts with the minimality of £f. O

Proof of Corollary 12.12. Suppose & > 0 and fix any ¢g € [0, £5). Let ¢y = (1/2)(¢o+£5).
Then (¢g, 71(dg)) € OTF, and v1(do) > 11 (@) > Y1(£5) since () is strictly decreasing on
its support. Then the set B = [0,¢,) x (71(¢,),o0) is an open neighborhood of the point
(¢o, 1(dy)) such that for every (¢, ¢1) € BN Cy, we have

O<£§TO($07;Z\§1>SF<OO>

where r £ inf{t > 0 : y(t,71(¢)) < 71(£)} and 7 = inf{t > 0: x(¢,0) > & }. This completes
the proof of the first part.

Now let (¢g, ¢1) € OI'{ be a point on the entrance boundary. Take any convergent sequence
{(gbé”), ¢§”>)}neN in the continuation region C; whose limit is the boundary point (¢, ¢1).
Since ro(+,+) < T (see above) on Cj, the sequence {r( (()n), ¢§”))}neN is bounded and has a
convergent subsequence. We shall conclude the proof of the second part by showing that
every convergent subsequence of the sequence {r0(¢(()n), @)}neN has the same limit 0.

Without changing the notation, suppose that {To(gb(()"), 5”))}7@ converges to some finite
number ro > 0. Since the value function (¢, ¢1) — v1(¢o, ¢1) from R2 to R and the function

(t, ¢o, 1) — Jug(t, do, 1) from R? to R are continuous, we have

0= v1(60, 1) = lim vy (6", &) = Tim Ju (ro(6("”, 6"), 6", o)

= J,UO<T07 ¢07 ¢1> = / ei()\Jru)tGO(t’ ¢07 (bl)dt
0

If we show that Go(t, ¢, 1) > 0 for every t > 0, then ro = 0 follows.

However, t = 0 is a point of increase for the function ¢ — Gy(t, ¢o, ¢1). Since (¢, ¢1) €
OT = {(z,a0(x)) : © € (&§,&1)} by Corollary 12.7, and the boundary function ag(-) of the
region Ay = {(2,y) € R2 : [g+ p-vp o0 S|(x,y) < 0} is strictly decreasing, there exists some
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d > 0 such that (z(t, ¢o),y(t, 1)) € Ag C C; for every t € [—0,0). Therefore,

G(t, do, ¢1) = lg + - vo 0 SJ((t; do), y(t, 61)) < 0= Go(0,¢0,01), T €[=6,0).

Then Lemma 12.3 implies that Gy(t, ¢o, ¢1) > 0 for every ¢ > 0 and completes the proof of
To = 0. 0

Proof of Lemma 12.13. If £ = 0, then cl(0T]) = {(z,71(z)) : = € [0,&]} = Oy by
Corollary 12.6. In the remainder, suppose that £ > 0 and fix any ¢y € [0,£5). The
boundary point (¢, ¥1(¢o)) is not included in the entrance boundary OI'{. We shall prove
that it is an exit boundary point; namely, there exists some 0 > 0 such that (see (10.10))

(13.4) (z(t, ¢0), y(t, 11 (o)) € Cu, vt e (0,d].

Since the boundary 7(+) is strictly decreasing on its support [0, &;], we have

0< ¢y <& = 7(do) > (&)

Then there is always a sequence of points {( (()n), ¢§n))}neN C C; such that
03" =0 and ¢f" > (&) foreveryn €N, and lim 6" =T 71(¢y).

Namely, the sequence {( (()n), ¢§"))}neN “Increases” to the point (@g,71(¢po)) along the vertical
line passing through the point (¢, v1(¢0)). For every n € N, we have

U1 (gbg’")’ gn)) = ‘]UO (TO( (()n)7 gn)>) ¢én)7 gn)> ) and
(o (ol ), o (ol ), 1)) € 0%

By Corollary 12.12, the sequence {rg( én), ¢§"))}neN is bounded. Therefore, it has a conver-
gent, subsequence; we shall denote it by the same notation and its limit by ry. The functions
Jug(+, -, ), z(+,+), y(+,+) and vy (-, -) are continuous, and v1(pg, V1(¢0)) = 0. Therefore, taking

limits of the displayed equations above gives

(13.5) 0 = Juo(r0, $0, 11 (¢0)) and (z(ro, d0), y(ro, 71(d0))) € cl(OTT).

The second expression implies that x(rg, ¢g) > £5. We shall prove that the inequality is

strict, and therefore,

(13.6) (x(ro, ¢0), y(ro,71(0))) € OTY.

Let us assume that x(ro,¢9) = &. Then the second expression in (13.5) implies that
(x(r0, ¢0), y(r0, 71 (0))) = (&5, 71(£5)). Thus (¢o, 1(¢p0)) is on the curve C; given by (12.16).
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Then Corollary 12.9 implies that G(t, ¢, 71(¢0)) > 0 for every ¢ # 1. Since rq > 0, this
implies that

Juo(ro, 0,1 (d)) = / " OG5, o, (60))ds

is strictly positive. But this contradicts the first equality in (13.5). Therefore, we must have
x(ro, ¢o) > &, and (13.6) is correct.

Now we are ready to prove (13.4). Since ¢y < &5, we have [g + - vg 0 S](¢o, 71 (¢0)) > 0
by Corollary 12.11. Because the mapping [g + p - vg 0 S](+, ) is continuous, there exists some

ro > 0 > 0 such that

GO(ta ¢0771(¢0)) - [g + M- Vo O S](x(t7¢0)7y(t771(¢0>>> > 07 te {07 6]

Then for every ¢ € (0, d]

U0($(t7 ¢0)7 y(t’ ’Yl<¢0))) S JUO(TO - tv [L’(t, ¢0)7 y(t7 ’71(¢0)))

6—(A+u)u[g + p-vgoS] (x(u, z(t, ¢o)), y(u, y(t, 71(¢0)))>du

I
o\
3
(=)
L

_ Ot / "m0t g 4 g0 8] (2(t, ). y(t 7 (60) )

t
= 6(/\+M)t JUO(TOa ¢0, T (¢0)2 B / 6_(>\+M)UGO(U7 quv M (¢0))du <0.
0

~~
=0

Therefore, (13.4) holds, and (¢g,71(¢0)) € OI']. O

Proof of Lemma 12.14. There is nothing to prove if £§ = 0. Therefore, suppose &f > 0.
Let B; be the union of the continuation region C; and the open subset of [0,£5) x R, strictly
below the curve C; in Corollary 12.9, see Figure 7(b). Then B is open and C; UJI'] C By,
see Remark 12.10. Define

{ To(¢o, 1) = inf{t > 0: (z(t, ¢0), y(t, ¢1)) € ']

}
’ f ®o, 1) € B1.
01(o, 1) = Jvg(To(bo, b1), G0, P1) } or every (¢o, 1) € By

Then

(13.7) To(¢0, $1) = To(¢o, #1) and  v1(¢o, $1) = V1o, P1), (¢, 1) € C; UOTY,
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Let us show that 7y(+,-), and therefore, v;(-,-) are continuously differentiable on B;. The

infimum 7(¢g, ¢1) is finite and strictly positive for every (¢, ¢1) € By. By (10.12),

(13.8)  Go(To(¢o, ¢1), G0, ¢1) =
[g + M-V O S](ZE(”FO(QZ)Oa ¢1)7 ¢0)a y(?0(¢07 ¢1)a gbl)) = 07 <¢07 le) € Bl-

The mapping (¢, ¢o, ¢1) — Go(t, ¢o, ¢1) from R3 to R is continuously differentiable. If
(13.9) D,Go(t, o, p1)| #0, (¢o, 01) € By,
t=70(d0,¢1)

then Theorem 12.2 implies that, in an open neighborhood in Bj of every (¢, ¢1), the equation
Go(t, o, #1) = 0 determines t = t(¢py, ¢1) implicitly as a function of (¢g, ¢1), and this function
is continuously differentiable. In every neighborhood, these solutions must then coincide
with 7o(¢o, ¢1). Therefore, 7o(¢g, ¢1) is continuously differentiable on B;. Then the function
01(¢o, 1) is continuously differentiable on B; since Juy(-, -, ) is continuously differentiable
on R3 .

Now fix any (o, 1) € By and assume D;Go(To(Po, ¢1), ¢, ¢1) = 0. Then the function
t — Go(t, go, $1) has a local minimum at ¢ = 79(¢o, ¢1). Lemma 12.3 and (13.8) imply that
Go(t, o, ¢1) > 0 for every t # To(¢o, ¢1). Therefore, the parametric curve

{(x(t, o), y(t, 1)) : t € R}NRE C R\ A

does not intersect Ag, but touches the boundary 0Ay. Then this curve has to be the same
as C; in Corollary (12.16), and (¢g, ¢1) € C;. But this contradicts with (¢g, ¢1) € By, since
Remark 12.10 and the description of By show that C; N By = &. Therefore, (13.9) holds.

Now let us show that 7;(+) is continuously differentiable on [0,£5). Fix any ¢y € [0,&5).
Then (¢o,71(¢0)) € OI'7 C By, and 01(¢o, 71(¢0)) = 0 by (13.7). The function vy(-,-) is
continuously differentiable on B;. Therefore, the result will again follow from the implicit
function theorem (Theorem 12.2) if we show that Dy, 01(¢o, 71(¢0)) # 0. However,

Dy, 01(Po, 11(¢0)) = Dy, 01(do, 71(¢0)) = Dy, v1(do, 71(¢0))

1 — e~ (wtDro(o,é1)

= lim D, wv , = lim Dywv , = lim > 0.
¢1T71(0) $1 1(¢0 (bl) ?1171(¢0) & 1(¢0 (bl) d1171(¢0) u+1

The second equality follows from (13.7), and the third from the concavity of vi(-,-). The
fourth and the fifth follow from Corollary 12.5. Finally, the limit at the end is strictly positive
since rg(+,-) is bounded away from zero in the intersection of C; with some neighborhood of
(0, 71(¢p0)) by Corollary 12.12. O
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Proof of Lemma 12.15. The result follows from Corollary 12.7 if £ = 0. Therefore, sup-
pose & > 0. Then the boundary function ~; (-) is continuously differentiable on [0, £)U(5, &1)
by Corollary 12.7 and Lemma 12.14. We need to show that = — 7;(x) is continuously dif-
ferentiable at x = £f.

Recall that the function 7, (-) is convex. Therefore, the left derivative D™+, (-) and the right
derivative DT~ (-) of the function v;(-) exist and are left- and right- continuous, respectively,
at x = &7. Thus

(13.10) lim Dy (z) = lim D™y (z) = D™y (&) < DTy (&) = lim DTy () = lim Dy ().
z1€S T]ES z]&§ z]E§

The continuity of the derivative D, (-) of the function v, (+) at z = £ will follow immediately
from the existence of the derivative of v (-) at x = &f.

Now recall from Corollary 12.9 and Remark 12.10 that the point (£,v1(£7)) is on the
parametric curve C;, which lays above {(z,7(x)) : * € R, } and touches it at the point

(&5, 71(&5)). Therefore, for every t > 0 and s > 0

y(0,m(E) —y(=t,n(&D) o n@0,&)) = n@(=t&))

2(0,87) —x(=t,61) = 2(0,€) — x(—t,&7)
(s &) = n(@0,€0) _ y(s:mE)) —y(0,m(&))
( ff) I(Ov ) N x(‘sagij) - 17(075?) ‘

When we take the limit as ¢ | 0 and s | 0, we obtain

Dty(07 71 5 ))

( Dyy(0,71(£7))
Dtm(()? ff

D™y (€9) < DYy (£9) < D,z (0,£5)

1

<
)
Note that the terms on far left and far right are the same. Therefore, D™, (£§) = DT v1(£5)

and the derivative of the boundary function 7(:) at z = £ exists. O

Proof of Lemma 12.16. Since v;(-,) is concave, the left partial derivatives Dy vi(-,),
Dy vi(-,-) and the right partial derivatives D7 vi(-,-), D vi(-,) exist and are left- and
right-continuous on the boundary JI', respectively. Because v;(+,-) vanishes on I'y, and the

function v, (-) is strictly decreasing, we have

(13.11) Dy vi(¢o, ¢1) = D vi(do, 01) =0, (g0, ¢1) € IT1\{(0,71(0))}.
(13.12) Dy, v1(¢o, 1) = D vi(do, 1) = 0, (00, ¢1) € OT1\{(£1,0)}.
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For every boundary point (¢g, ¢1) € 9T'1\{(0,71(0))} and any sequence {( én), ") new C
C; such that lim,,_,o ¢(()n) =1 ¢o and ¢\"”) = ¢, for every n € N, we have
(13.13) Dy en(do, é1) = lim Dy vi(@”,¢1") = lim Dgur (66", 61")

1—exp {~(u = Dro(sf”, &1") }
= lim .

The second and the third equalities follow from Corollary 12.5. The function (-, -) is con-
tinuous on the entrance boundary 0I'] and is bounded away from zero in some neighborhood
of every point on the exit boundary OI'{, see Corollary 12.12. Therefore, the limit on the
right in (13.13) equals zero for every point (¢, ¢1) on the entrance boundary OI'] and is
strictly positive for every point (¢g, ¢1) on the exit boundary OT'7.

Thus, for every (¢o, ¢1) € OI'], the equality in (13.11), and as a result of a similar argu-
ment, the equality in (13.12) are attained. Therefore, the partial derivatives Dy, v1(+,-) and
Dy, v1(-,-) exist at every (¢g, ¢1) € OT'] and are continuous since Dy v;(-,-) = D§0v1(~, )) is
both left- and right-continuous near the entrance boundary OI'{.

However, if (¢g, ¢1) is a point on the exit boundary OI'{, then the inequalities in (13.12)

and (13.13) are strict. Namely, the v;(+, ) is not differentiable on the exit boundary oT'{. O
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