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Abstract. One of two simple hypotheses is correct about the unknown arrival rate and

jump distribution of a compound Poisson process. We start observing the process, and the

problem is to decide on the correct hypothesis as soon as possible and with the smallest

probability of wrong decision. We find a Bayes-optimal sequential decision rule and describe

completely how to calculate its parameters without any restrictions on the arrival rate and

the jump distribution.

1. Introduction

Let N = {Nt; t ≥ 0} be a simple Poisson process with arrival rate λ on some probability

space (Ω,F ,P). Independent of the process N , let Y1, Y2, . . . be i.i.d. Rd-valued random vari-

ables with some common distribution ν(·). The pair (λ, ν(·)) is the unknown characteristic

of the compound Poisson process

Xt = X0 +
Nt∑
i=1

Yi, t ≥ 0.(1.1)

Suppose that exactly one of two simple hypotheses

H0 : (λ, ν(·)) = (λ0, ν0(·)) and H1 : (λ, ν(·)) = (λ1, ν1(·))(1.2)

is correct, and the alternatives (λ0, ν0(·)) and (λ1, ν1(·)) are known. At time t = 0, we know

only that the hypotheses H0 and H1 are correct with prior probabilities 1−π and π ∈ [0, 1),

respectively, and start observing the process X = {Xt; t ≥ 0}. Our objective is to decide

as soon as possible between the null hypothesis H0 and its alternative H1 with the smallest

probability of wrong decision.

Any admissible decision rule is a pair (τ, d) of a stopping time τ : Ω → [0,∞] of the

observation process X and a random variable d : Ω 7→ {0, 1} whose value is determined
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completely by the history {Xt∧τ ; t ≥ 0} of the process X at time τ . On the event {τ <∞},
we select at time τ the null hypothesis H0 if d = 0, and the alternative hypothesis H1

otherwise.

A wrong decision is made if either d = 1 and H0 is correct (Type I error), or d = 0 and H1

is correct (Type II error). The costs of Type I and Type II errors are some positive constants

b and a, respectively.

For every admissible decision rule (τ, d) we define the Bayes risk as

Rτ,d(π) = E
[
τ +

(
a · 1{d=0, H1 is correct} + b · 1{d=1, H0 is correct}

)
· 1{τ<∞}

]
, π ∈ [0, 1).(1.3)

Our problem is to calculate the minimum Bayes risk

U(π) , inf
(τ,d)

Rτ,d(π), π ∈ [0, 1)(1.4)

over all admissible decision rules and to find (if it exists) an admissible decision rule which

attains the infimum for every π ∈ [0, 1). If the Bayes risk Rτ,d(·) in (1.3) is the minimum,

then the rule (τ, d) is Bayes-optimal : it solves optimally the trade-off between the expected

length of observation before a decision is made and the probabilities of making a wrong

decision.

Special problems of sequential testing for compound Poisson processes have been studied

by Peskir and Shiryaev (2000) and Gapeev (2002). Peskir and Shiryaev (2000) solved the

problem in (1.3, 1.4) when the Poisson process X is simple. Equivalently, the mark distribu-

tion ν(·) is known (i.e., ν0(·) ≡ ν1(·)), and the objective is to find an admissible decision rule

(τ, d) with minimum Bayes risk Rτ,d(·) in order to decide between the hypotheses H0 : λ = λ0

and H1 : λ = λ1; compare with (1.2).

For the first time, Gapeev (2002) studied sequential testing of unknown arrival rate λ and

mark distribution ν(·) as in (1.2), but assumed that they are very special: the distribution

ν(·) is exponential on R+, and the expected value
∫∞

0
y ν(dy) of the marks is the same as

their arrival rate λ.

The contribution of this paper is the complete Bayes solution of the sequential testing

problem of simple hypotheses in (1.2) for a general compound Poisson process. The problem

is non-trivial if the distributions ν0(·) and ν1(·) are equivalent. In this case, an optimal

admissible decision rule (U0, d(U0)) is described in terms of the likelihood ratio process
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Φ = {Φt; t ≥ 0} of (2.4, 2.5): for some suitable constants 0 < ξ0 < b/a < ξ1 <∞, if the rule

d(U0) ,

{
0 (choose the null hypothesis H0), if ΦU0 ≤ b/a

1 (choose the alternative hypothesis H1), if ΦU0 > b/a

}

is applied at the first time

U0 , inf{t ≥ 0 : Φt /∈ (ξ0, ξ1)}

that the process Φ exits the interval (ξ0, ξ1), then the corresponding Bayes risk R(U0,d(U0))(·)
is the smallest in (1.3, 1.4) among all admissible decision rules. We describe an accurate

numerical algorithm in order to calculate the critical thresholds ξ0, ξ1, and the minimum

Bayes risk U(·).
The process Φ jumps at the arrival times of the observation process X and evolves de-

terministically between them. It is a piecewise-deterministic Markov process and can be

updated recursively. This special structure of the process is crucial for our analytical and

numerical results.

The decision rule (U0, d(U0)) is the well-known Sequential Probability Ratio Test (SPRT).

It is easy to check that this test has the smallest expected observation time under both

hypotheses among all admissible decision rules whose Type I and II error probabilities are

not greater than those of the SPRT.

In fact, the SPRT is known to be optimal for the fixed error probability formulation of a

wide class of sequential testing problems of simple hypotheses, including (1.2) for a compound

Poisson process. In this formulation of the compound Poisson case, there is, however, no

procedure to calculate the boundaries ξ0 and ξ1 of the optimal SPRT with pre-determined

Type I and II error probabilities. We are hoping to address this problem in the future by

using the numerical solution method of this paper for the Bayesian formulation.

The optimality of the SPRT was proved by Wald and Wolfowitz (1948) for the fixed error

probability formulation of testing two simple hypotheses about unknown common distribu-

tion of i.i.d. random variables, which are observed sequentially. Shiryaev (1978, Chapter 4)

proved that the SPRT is optimal for both Bayes and fixed error probability formulations of

testing two simple hypotheses about the unknown drift of a linear Brownian motion. Irle

and Schmitz (1984) showed that the SPRT is optimal for fixed error probability formulation

for a wider class of continuous-time processes. Recently, Peskir and Shiryaev (2000) showed

the optimality of the SPRT for both formulations of sequential testing of two simple hy-

potheses about unknown arrival rate of a simple Poisson process. See, also, the forthcoming
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book by Peskir and Shiryaev (2006) for an up-to-date presentation of major techniques and

important results.

In Section 2, we describe the problem and reduce it to an optimal stopping problem for a

Markov process. In Section 3, accurate successive approximations of latter problem’s value

function are obtained. They are used in Section 4 to identify the structure of an optimal

decision rule and an efficient numerical method to calculate its parameters. Results are

illustrated on several old and new examples in Section 5. Finally, we investigate in Section

6 the analytical properties of the solution. Long derivations are deferred to the Appendix.

2. Model and problem description

In this section we construct a probability model of the random elements described in the

introduction by means of a reference probability measure.

2.1. Model: Let (Ω,F ,P0) be a probability space on which the process X of (1.1) is a

compound Poisson process with arrival rate λ0 and jump distribution ν0(·) (ν0({0}) = 0).

Moreover, let Θ be an independent random variable with the distribution

P0{Θ = 1} = π and P0{Θ = 0} = 1− π.(2.1)

Let F = {Ft}t≥0 be the natural filtration of X enlarged with P0-null sets and G = {Gt}t≥0,

Gt , Ft ∨ σ(Θ) be its augmentation by the events in σ(Θ). We replace F with ∨t≥0Gt.

Let λ1 ≥ λ0 be a constant and ν1(·) be a ν0(·)-equivalent probability distribution on

(Rd,B(Rd)) with the Radon-Nikodym derivative

f(y) ,
dν1

dν0

∣∣∣∣
B(Rd)

(y), y ∈ Rd.(2.2)

We define a new probability measure P on (Ω,F) by specifying it locally in terms of the

Radon-Nikodym derivatives

dP
dP0

∣∣∣∣
Gt

= Zt , 1{Θ=0} + 1{Θ=1} · e−(λ1−λ0)t

Nt∏
i=1

[
λ1

λ0

f(Yi)

]
, 0 ≤ t <∞.(2.3)

Under the new probability measure P, the G-adapted marked point process X is a compound

Poisson process with arrival rate (1−Θ)λ0 +Θλ1 and mark distribution (1−Θ)ν0(·)+Θν1(·)
on (Rd,B(Rd)): if Θ = 0, then the probability measures P and P0 coincide on (Ω,F); if

Θ = 1, then Zt in (2.3) coincides with the likelihood ratio

Lt , e−(λ1−λ0)t

Nt∏
i=1

[
λ1

λ0

f(Yi)

]
, 0 ≤ t <∞(2.4)



SEQUENTIAL TESTING OF SIMPLE HYPOTHESES ABOUT COMPOUND POISSON PROCESSES 5

of the finite-dimensional distributions of two compound Poisson processes with characteristics

(λ1, ν1(·)) and (λ0, ν0(·)), respectively; see also Appendix A.1.

Finally, Z0 ≡ 1 and P ≡ P0 on G0. Therefore, the G0-measurable random variable Θ has

the same distribution under P and P0. Hence, on the probability space (Ω,F ,P) we obtain

the same setup as described in the introduction.

2.2. Problem description. In the remainder, we shall work with the explicit model con-

structed above. The main result of this section describes below an optimal decision rule

at every stopping time of the process X. Therefore, sequential hypothesis testing problem

reduces to an optimal stopping problem. In the following sections we solve the optimal

stopping problem and identify an optimal time to stop and decide between two hypotheses.

Let Φ = {Φt; t ≥ 0} be the same as the likelihood ratio process L = {Lt; t ≥ 0} in (2.4)

starting from an arbitrary fixed point Φ0 ≥ 0; namely,

Φt , Φ0 · Lt, t ≥ 0.(2.5)

Any admissible decision rule is a pair (τ, d) of a stopping time τ : Ω 7→ [0,∞] of the filtration

F (i.e., τ ∈ F) and a random variable d : Ω 7→ {0, 1} measurable with respect to the σ-algebra

Fτ = σ{Xt∧τ ; t ≥ 0} (i.e., d ∈ Fτ ).

2.1. Proposition. For every π ∈ [0, 1) and admissible decision rule (τ, d), the Bayes risk in

(1.3) can be written as

Rτ,d(π) = b(1− π)P0{τ <∞}+ (1− π)E
π

1−π

0

[∫ τ

0

(1 + Φt)dt+ (aΦτ − b)1{d=0,τ<∞}

]
,(2.6)

where the expectation Eφ
0 is taken with respect to the probability measure Pφ

0 , which is the

same as P0 such that P0{Φ0 = φ} = 1. If we define

d(τ) ,

{
0, if Φτ ≤ b/a

1, if Φτ > b/a

}
· 1{τ<∞} ∈ Fτ ,(2.7)

then (τ, d(τ)) is admissible, and Rτ,d(π) ≥ Rτ,d(τ)(π) for every π ∈ [0, 1). The minimum

Bayes risk in (2.7) equals

U(π) = inf
τ∈F

Rτ,d(τ)(π) = b(1− π) + (1− π) · V
(

π

1− π

)
, π ∈ [0, 1)(2.8)

in terms of the function (x− , max {0,−x})

V (φ) , inf
τ∈F

Eφ
0

[∫ τ

0

(
1 + Φt

)
dt− (aΦτ − b)− 1{τ<∞}

]
, φ ∈ R+.(2.9)
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Proposition 2.1 implies that the minimum Bayes risk U(·) can be found as in (2.8) by

calculating first the value function V (·) of the optimal stopping problem in (2.9). If that

problem admits an optimal stopping time τ ∗, then the admissible decision rule (τ ∗, d(τ ∗)) is

Bayes-optimal for (1.4): observe the process Φ = {Φt; t ≥ 0} until time τ ∗ and then stop;

on the event {τ ∗ < ∞}, select the null hypothesis H0 (respectively, its alternative H1) if

Φτ∗ ≤ b/a (respectively, Φτ∗ > b/a).

The underlying process Φ of the optimal stopping problem in (2.9) can be expressed as

(see Appendix A.2)
Φt = x

(
t− σn−1,Φσn−1

)
, t ∈ [σn−1, σn)

Φσn =
λ1

λ0

f(Yn)Φσn−

 , n ≥ 1(2.10)

in terms of the deterministic function

x(t, φ) = φ · e−(λ1−λ0)t, (t, φ) ∈ R× R,(2.11)

the Radon-Nikodym derivative f : Rd 7→ R+ in (2.2) of the distribution ν1(·) with respect

to ν0(·), and the arrival times of the point process X in (1.1)

σn , inf{t > σn−1 : Xt 6= Xt−}, n ≥ 1 (σ0 ≡ 0).(2.12)

The process Φ is a piecewise-deterministic Markov process with random jump magnitudes.

Between successive jumps of the process X, every sample-path of Φ decreases asymptotically

to 0 along the curves t 7→ x(t, ·) of (2.11) if λ1 > λ0, and stays constant if λ1 = λ0. At every

jump time σn, it is adjusted instantaneously by the proportion (λ1/λ0)f(Yn) up or down.

See Figure 1.

In Appendix A.3, the infinitesimal generator of the Markov process Φ is shown to coin-

cide on the collection of continuously differentiable functions H with the integro-differential

operator

AH(φ) , −(λ1 − λ0)φH
′(φ) + λ0

∫
Rd

[
H

(
λ1

λ0

f(y)φ

)
−H(φ)

]
ν0(dy).(2.13)

The dynamic programming principle suggests that the value function V (·) of the optimal

stopping problem in (2.9) must satisfy the variational inequalities

min
{
Av(φ) + 1 + φ, (aφ− b)− − v(φ)

}
= 0(2.14)

under suitable conditions and may be identified explicitly by solving (2.14). However, (2.14)

is not easy to analyze analytically due to the integro-differential operator A. Instead, we

use successive approximations whose details are deferred to the next section. This method,
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σ3(ω)0

Φt(ω)

t

φ

Φσ4(ω)−(ω)

σ1(ω) σ2(ω) σ4(ω)

λ1

λ0
f(Y4(ω))×

x(t− σ4(ω),Φσ4(ω)(ω))

Figure 1. A sample-path of the process Φ in (2.5, 2.10) when λ1 > λ0. The deterministic

function x : R × R 7→ R is given by (2.11), and the function f : Rd 7→ R+ is the density

in (2.2) of the jump distribution ν1(·) under H1 with respect to the jump distribution ν0(·)
under H0. The process Φ rides on the curves t 7→ x(t, φ), φ ∈ R+. At every arrival time

σ1, σ2, . . . of the observation process X in (1.1), the process Φ jumps onto a new curve; the

jump size depends on the mark size Y1, Y2, . . . of the arrival. If λ1 = λ0, then the curves

t 7→ x(t, φ), φ ∈ R are flat.

being easy to implement numerically, is very suitable for piecewise-deterministic processes.

In addition, as we will see in later sections, it allows us to show that the value function V (·) of

(2.9) is actually the unique solution of (2.14) under suitable conditions. A similar approach

has been taken by Bayraktar, Dayanik, and Karatzas (2006) and Dayanik and Sezer (2006) in

order to solve optimal stopping problems arising from sequential change detection problems

for Poisson processes. However, unlike in the aforementioned papers, the optimal stopping

problem of this paper involves a nonzero terminal penalty and no discount factor, both of

which make the current analysis significantly harder and more interesting.

3. Successive approximations

Let us denote the running and terminal cost functions of the problem in (2.9) by

g(φ) , 1 + φ and h(φ) , −(aφ− b)−,(3.1)

respectively, and introduce the family of optimal stopping problems

Vn(φ) , inf
τ∈F

E0

[∫ τ∧σn

0

g (Φt) dt+ h (Φτ∧σn)

]
, n ≥ 1,(3.2)
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obtained from the original problem in (2.9) by stopping the process Φ at the nth jump

time. Since the sequence of jump times {σn}n≥1 is increasing, the sequence {Vn(·)}n≥1

is decreasing, and limn→∞ Vn exists. Since g(·) ≥ 1 and 0 ≥ h(·) ≥ −b, we also have

−b ≤ V (·) ≤ Vn(·) ≤ h(·) ≤ 0. Therefore, V (·) and Vn(·), n ≥ 1 are bounded.

3.1. Proposition. As n→∞, we have Vn(·) ↘ V (·) on R+.

Later in Section 4 (see Proposition 4.4) we shall show that the convergence Vn(·) ↘ V (·) is

uniform on R+. To calculate the functions Vn(·), n ≥ 1 successively, we define the following

operators acting on bounded functions w : R+ → R:

Jw(t, φ) , Eφ
0

[∫ t∧σ1

0

g(Φu)du+ 1{t<σ1}h(Φt) + 1{t≥σ1}w(Φσ1)

]
, t ∈ [0,∞],(3.3)

Jtw(φ) , inf
u∈[t,∞]

Jw(u, φ), t ∈ [0,∞].(3.4)

Since the first arrival time σ1 of the process X has exponential distribution with rate λ0

under P0, the explicit dynamics of Φ in (2.10) gives

Jw(t, φ) =

∫ t

0

e−λ0u
[
g + λ0 · Sw

](
x(u, φ)

)
du+ e−λ0th

(
x(t, φ)

)
,(3.5)

where x(·, ·) is the same deterministic function in (2.11), and the operator S is defined as

Sw(φ) ,
∫

y∈Rd

ν0(dy)w

(
λ1

λ0

f(y)φ

)
, φ ∈ R+.(3.6)

Moreover, using the special decomposition of the stopping times of the jump processes (see

Lemma 3.6 below), one can show that

J0w(φ) = inf
τ∈F

Eφ
0

[∫ τ∧σ1

0

g(Φu)du+ 1{τ<σ1}h(Φτ ) + 1{τ≥σ1}w(Φσ1)

]
.(3.7)

Let us define successively a sequence of functions {vn}n∈N by

v0 , h and vn+1 , J0vn, n ≥ 0.(3.8)

We shall show by Proposition 3.5 that the functions vn(·) and Vn(·) are identical for every

n ≥ 0. Therefore, the sequence {vn(·)}n∈N converges to V (·) by Proposition 3.1.

3.2. Remark. Using the explicit form of x(u, φ) in (2.11), it is easy to check that the

integrand in (3.5) is absolutely integrable on R+ for every bounded w : R+ → R. Therefore,

lim
t→∞

Jw(t, φ) = Jw(∞, φ) <∞,
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and the mapping t 7→ Jw(t, φ) from the extended nonnegative real numbers [0,∞] into the

real numbers is continuous. Therefore, the infimum Jtw(φ) in (3.4) is attained for every

t ∈ [0,∞].

3.3. Remark. If w1(·) ≤ w2(·), then Sw1(·) ≤ Sw2(·), Jw1(·, ·) ≤ Jw2(·, ·), and J0w1(·) ≤
J0w2(·). If w(·) is concave, then Sw(·), Jw(t, ·) for every t ≥ 0, and J0w(·) are concave.

Finally, if w(·) is bounded and w(·) ≥ −b, then −b ≤ J0w(·) ≤ h(φ) ≤ 0.

Proof. We shall verify the last claim only; the rest are easy to check. We always have

J0w(φ) ≤ Jw(0, φ) ≤ h(φ) ≤ 0. Suppose that w(·) is bounded and w(·) ≥ −b. Then Sw(·)
is well-defined, and Sw(·) ≥ −b. Since g(·) ≥ 0 and h(·) ≥ −b, (3.4) implies Jw(t, φ) ≥ −b
for every t ≥ 0. Therefore, J0w(φ) = inft∈[0,∞] Jw(t, φ) ≥ −b. �

3.4. Proposition. The sequence {vn(·)}n≥0 in (3.8) is decreasing with a limit

v(φ) , lim
n→∞

vn(φ), φ ∈ R+.

We have −b ≤ v(·) ≤ vn(·) ≤ h(·) ≤ 0 and v(0) = vn(0) = −b for every n ≥ 0. Both v(·)
and vn(·), n ≥ 0 are concave, nondecreasing, and continuous on R+. Their left and right

derivatives are bounded on every compact subset of R+.

3.5. Proposition. For every n ≥ 0, we have vn(·) = Vn(·). For every ε ≥ 0, let

rε
n(φ) , inf

{
s ∈ (0,∞] : Jvn

(
s, φ
)
≤ J0vn(φ) + ε

}
, n ≥ 0, φ ∈ R+,

Sε
1 , rε

0

(
Φ0

)
∧ σ1, and Sε

n+1(φ) ,

{
rε/2
n

(
Φ0

)
, if σ1 > rε/2

n

(
Φ0

)
σ1 + Sε/2

n ◦ θσ1 , if σ1 ≤ rε/2
n

(
Φ0

)} , n ≥ 1,

where θs is the shift-operator on Ω: Xt ◦ θs = Xs+t. Then

Eφ
0

[∫ Sε
n

0

g
(
Φt

)
dt+ h(ΦSε

n
)

]
≤ vn(φ) + ε, ∀n ≥ 1, ∀ ε ≥ 0.(3.9)

Proposition 3.5 gives ε-optimal stopping rules for the problems in (3.2). Its proof in

Appendix A.4 follows from the strong Markov property and the next characterization of the

F-stopping times; see Brémaud (1981, Theorem T33, p. 308), Davis (1993, Lemma A2.3, p.

261).

3.6. Lemma. For every F-stopping time τ and every n ≥ 0, there is an Fσn-measurable

random variable Rn : Ω 7→ [0,∞] such that τ ∧σn+1 = (σn +Rn)∧σn+1 P0-a.s. on {τ ≥ σn}.

3.7. Proposition. We have v(φ) , limn→∞ vn(φ) = V (φ) for every φ ∈ R+. Moreover, V

is the largest solution of U = J0U smaller than or equal to h.
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Proposition 3.7 hints the numerical algorithm in Figure 2 described in detail in Section 4

in order to solve the optimal stopping problem in (2.9). We continue by deriving dynamic

programming equations satisfied by the functions vn(·), n ≥ 1 and v(·). These equations will

be useful to establish an optimal stopping rule by Proposition 3.13 and analytical properties

of the value function V (·) in Section 6.

3.8. Lemma. For every bounded function w : R+ 7→ R, we have

Jtw(φ) = Jw(t, φ) + e−λ0t
[
J0w

(
x(t, φ)

)
− h
(
x(t, φ)

)]
, t ∈ R+, φ ∈ R+.(3.10)

3.9. Corollary. Let rn(φ) = inf
{
s ∈ (0,∞] : Jvn

(
s, φ
)

= J0vn(φ)
}

be the same as rε
n(φ) in

Proposition 3.5 with ε = 0. Then

rn(φ) = inf
{
t > 0 : vn+1

(
x(t, φ)

)
= h

(
x(t, φ)

)}
(inf ∅ ≡ ∞).(3.11)

3.10. Remark. For every t ∈ [0, rn(φ)], we have Jtvn(φ) = J0vn(φ) = vn+1(φ). Then

substituting w(·) = vn(·) in (3.10) gives the dynamic programming equation for the family

{vn(·)}n≥0: for every φ ∈ R+ and n ≥ 0

vn+1(φ) = Jvn(t, φ) + e−λ0t
[
vn+1(x(t, φ))− h

(
x(t, φ)

)]
, t ∈ [0, rn(φ)].(3.12)

3.11. Remark. Since V (·) is bounded by Propositions 3.4 and 3.7, and V = J0V by

Lemma 3.8, we obtain

JtV (φ) = JV (t, φ) + e−λ0t
[
V
(
x(t, φ)

)
− h
(
x(t, φ)

)]
, t ∈ R+(3.13)

for every φ ∈ R+. If we define

r(φ) , inf{t > 0 : JV (t, φ) = J0V (φ)}, φ ∈ R+,(3.14)

then (3.13) and same arguments as in the proof of Corollary 3.9 with obvious changes give

r(φ) = inf{t > 0 : V (x(t, φ)) = h
(
x(t, φ)

)
}, φ ∈ R+,(3.15)

V (φ) = JV (t, φ) + e−λ0t
[
V (x(t, φ))− h

(
x(t, φ)

)]
, t ∈ [0, r(φ)].(3.16)

Since V (·) is continuous by Propositions 3.4 and 3.7, the paths t 7→ V (x(t, φ)), φ ∈ R+

are continuous. Because the process Φ has right-continuous sample-paths with left limits,

the paths t 7→ V (Φt) = v(Φt) are right-continuous and have left-limits. Therefore, if

Uε , inf{t ≥ 0 : h(Φt) ≤ V (Φt) + ε}, ε ≥ 0.(3.17)

then h
(
ΦUε

)
≤ V (ΦUε) + ε on the event {Uε <∞}. The next two propositions verify that

the F-stopping times Uε, ε ≥ 0 are ε-optimal for the problem in (2.9).
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3.12. Proposition. Let Mt , V (Φt) +
∫ t

0
g(Φs)ds, t ≥ 0. For every n ≥ 1, ε ≥ 0, and

φ ∈ R+, we have V (φ) = Eφ
0 [M0] = Eφ

0 [MUε∧σn ], i.e.,

V (φ) = Eφ
0

[
V (ΦUε∧σn) +

∫ Uε∧σn

0

g(Φs)ds

]
.(3.18)

3.13. Proposition. For every ε ≥ 0, the stopping time Uε has finite expectation under P0

and is an ε-optimal stopping time for the optimal stopping problem (2.9), i.e.,

Eφ
0

[∫ Uε

0

g(Φs)ds+ 1{Uε<∞}h(ΦUε)

]
≤ V (φ) + ε, for every φ ∈ R+.

The following results will be needed later to show that the convergence of the sequence

{Vn(·)}n≥0 to V (·) is uniform on R+. They imply that the exit time of the process Φ in (2.5,

2.10) from every bounded interval away from the origin is finite P0-a.s.

3.14. Proposition. Let τ̂ , inf {t ≥ 0; Φt /∈ (φ0, φ1)} be the exit time of the process Φ from

the interval (φ0, φ1) for some 0 < φ0 < φ1 < ∞. Then there exists an integer k ≥ 1 and a

constant p ∈ (0, 1) such that for every n ≥ 1

Pφ
0 {τ̂ ≥ σnk} ≤ pn, φ ∈ R+.(3.19)

If λ1 > λ0, then the inequality holds with k = 1 and p = 1− (φ0/φ1)
λ0/(λ1−λ0). If λ1 = λ0

and ν0(·) 6≡ ν1(·), then there exists some δ > 0 such that q , ν0

{
y ∈ Rd : f(y) ≥ 1 + δ

}
> 0,

and (3.19) holds with k = inf {m ≥ 1 : (1 + δ)m ≥ φ1/φ0} and p = 1− qk.

3.15. Corollary. If we let n→∞ in (3.19), then we obtain

P0 {Φt /∈ (φ0, φ1) for some t ∈ R+} = 1 for every 0 < φ0 < φ1 <∞.

4. Solution

We start by describing the stopping and continuation regions(
Γn , {φ ∈ R+ : Vn(φ) = h(φ)}, n ≥ 1

Γ , {φ ∈ R+ : V (φ) = h(φ)}

)
and

(
Cn , R+ \ Γn, n ≥ 1

C , R+ \ Γ

)
,(4.1)

respectively, of the problems in (2.9) and (3.2). By Proposition 3.13 and Corollary 3.9 the

optimal stopping time U0 of the problem in (2.9) and the components rn(·) ≡ r0
n(·), n ≥ 1

of the optimal stopping times S0
n, n ≥ 1 of the problems in (3.2) can be rewritten as

U0 = inf{t ≥ 0 : Φt ∈ Γ} and rn(φ) = inf{t > 0 : x(t, φ) ∈ Γn+1}, φ ∈ R+, n ≥ 0.(4.2)
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We show that each continuation region Cn, n ≥ 1 and C is an interval and is contained in

the same bounded interval away from the origin. This common structure of the continuation

regions guarantees that the convergence of the sequence {Vn(·)}n≥1 to the function V (·)
(see Proposition 3.1) is uniform on R+. These results are proved by explicit construction,

which later reveals an efficient numerical method to compute the successive approximations

{Vn(·)}n≥1 of the value function V (·) in (2.9). The illustration of this method on several

examples is deferred to the next section. We conclude this section by describing some ε-

optimal strategies to complement the numerical method.

4.1. Continuation and stopping regions. Let us show that V (·) = h(·) on [0, ξ]∪ [ξ,∞)

for some 0 < ξ ≤ b/a ≤ ξ <∞. Recall from Proposition 3.7 that V (·) satisfies

V (φ) = inf
t≥0

[∫ t

0

e−λ0u[g + λ0 · SV ]
(
x(u, φ)

)
du+ e−λ0th

(
x(t, φ)

)]
, φ ∈ R+.(4.3)

Since V (·) ≥ −b (Propositions 3.4 and 3.7) and λ1 ≥ λ0, we have SV (·) ≥ −b and

JV (t, φ) ≥ ϕ(t, φ) ,
(
1− e−λ0t

)( 1

λ0

− b+
φ

λ1

)
+ e−λ0th

(
x(t, φ)

)
, t, φ ∈ R+.(4.4)

Denote the exit time of the paths t 7→ x(t, φ) of (2.11) from any interval (ψ,∞) by

T (φ, ψ) , inf{t ≥ 0;x(t, φ) ≤ ψ} =

[
1

λ1 − λ0

· ln
(
φ

ψ

)]+

, φ ∈ R+, ψ > 0.(4.5)

For every φ ≥ [λ1b− (λ1/λ0)] ∨ (b/a), we have inf{ϕ(t, φ); t ∈ [0, T (φ, b/a)]} = 0 = h(φ),

where ϕ(·, ·) is the function on the righthand side of (4.4). If φ ≥ [λ1b− (λ1/λ0)]∨ (b/a) and

t > T (φ, b/a), then ϕ(t, φ) is greater than or equal to(
1− e−λ0T (φ,b/a)

)( 1

λ0

− b+
φ

λ1

)
− e−λ0T (φ,b/a)b ≥ −b+

(
1− e−λ0T (φ,b/a)

)( 1

λ0

+
φ

λ1

)
.

The function of φ on the righthand side is increasing and goes to +∞ as φ → +∞. If we

denote by ξ the smallest φ such that this function vanishes; i.e.,

ξ , inf

{
φ ≥ [λ1b− (λ1/λ0)] ∨ (b/a);

[
1−

(
b

aφ

)λ0/(λ1−λ0)
]
·
(

1

λ0

+
φ

λ1

)
≥ b

}
,(4.6)

then inf{ϕ(t, φ); t ∈ (T (φ, b/a),∞)} ≥ 0 and V (φ) = h(φ) for every φ ≥ ξ.

On the other hand, we have ϕ(0, φ) = h(φ) and

∂ϕ(t, φ)

∂t
= e−λ0t + φe−λ1t

(
1− aλ1

)
≥ e−λ1t [1 + φ (1− aλ1)] , ∀φ ∈ [0, b/a], t ∈ R+.(4.7)
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Thus, the derivative is positive and V (φ) ≥ inft≥0 ϕ(t, φ) ≥ ϕ(0, φ) = h(φ) (i.e., V (φ) =

h(φ)) for every φ ∈ [0, ξ], where

ξ ,

(
b

a

)
∧
(

1

(1− aλ1)−

)
(1/0 ≡ +∞).(4.8)

This completes the proof of the first inclusions in (4.9) below. The rest of the inclusions

follow from the inequalities V (·) ≤ . . . ≤ Vn(·) ≤ Vn−1(·) ≤ . . . ≤ V1(·) ≤ h(·).

4.1. Proposition. Let 0 < ξ < b/a < ξ <∞ be defined as in (4.6) and (4.8). Then

[0, ξ] ∪ [ξ,∞) ⊆ Γ ⊆ . . . ⊆ Γn ⊆ Γn−1 ⊆ . . . ⊆ Γ1,

(ξ, ξ) ⊇ C ⊇ . . . ⊇ Cn ⊇ Cn−1 ⊇ . . . ⊇ C1.
(4.9)

4.2. Corollary. Since the functions V (·) and Vn(·), n ≥ 1 are concave by Propositions 3.4,

3.5, and 3.7, the continuation regions C and Cn, n ≥ 1 of (4.1) are bounded open intervals

C = (ξ0, ξ1) and Cn = (ξ
(n)
0 , ξ

(n)
1 ), n ≥ 1(4.10)

for some 0 < ξ ≤ ξ0 ≤ · · · ≤ ξ
(n)
0 ≤ · · · ≤ ξ

(1)
0 ≤ b/a ≤ ξ

(1)
1 ≤ · · · ≤ ξ

(n)
1 ≤ . . . ≤ ξ1 ≤ ξ <∞.

4.3. Corollary. (i) We have V (·) = Vn(·) = h(·) for every n ≥ 1 if and only if either

Vn(b/a) = h(b/a) = 0 for some n ≥ 1 or V (b/a) = h(b/a) = 0.

(ii) If λ1 ≤ (1/a)+ (1/b), then V (·) = Vn(·) = h(·) everywhere, and “immediate stopping”

is an optimal rule for every problem in (2.9) and (3.2).

(iii) If (1/a) + (1/b) < λ1 − λ0, then the continuation regions C and Cn, n ≥ 1 of (4.1)

are not empty.

Corollary 4.3 is very useful in determining whether the solution is trivial. One can easily

calculate v1(b/a) = J0h(b/a) and check if it equals h(b/a) = 0 or not.

4.2. Uniform Convergence. The optimal stopping time U0 of Proposition 3.13 for the

problem in (2.9) becomes U0 = inf{t ≥ 0 : Φt /∈ (ξ0, ξ1)} by (4.2) and Corollary 4.2.

Therefore, Proposition 3.14 guarantees the existence of some k ≥ 1 and p ∈ (0, 1) such that

supφ∈R+
Pφ

0 {U0 ≥ σnk} ≤ pn for every n ≥ 1. Thus, for every φ ∈ R+ and n ≥ 1

Vnk(φ) ≥ V (φ) ≥ Vnk(φ) + Eφ
0

[
1{U0≥σnk}

(∫ U0

σnk

g(Φt)dt+ h(ΦU0)− h(Φσnk
)

)]
≥ Vnk(φ) + Eφ

0

[
1{U0≥σnk}h(ΦU0)

]
≥ Vnk(φ)− bPφ

0 {U0 ≥ σnk} ≥ Vnk(φ)− bpn.

Hence, the subsequence {Vnk(·)}n∈N converges to V (·) uniformly. Since the sequence {Vn(·)}n∈N

is decreasing, it also converges to V (·) uniformly on R+.
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4.4. Proposition. The successive approximations {Vn(·)}n∈N in (3.2, 3.8) decrease to the

value function V (·) of (2.9) uniformly on R+. More precisely, if k ≥ 1 and p ∈ (0, 1) are as

in Proposition 3.14 when the interval (φ0, φ1) is the same as C = (ξ0, ξ1), then

bpn ≥ Vnk(φ)− V (φ) ≥ 0, φ ∈ R+, n ≥ 1.(4.11)

4.3. Numerical Solution. The value function V (·) of (2.9) can be approximated fast and

accurately (with a large control on both by (4.11)) by the functions Vn(·) = vn(·), n ≥ 1 suc-

cessively. The successive approximations {Vn(·)}n≥1 of the function V (·) can be calculated

numerically by solving the deterministic optimization problems in (3.8). The smallest min-

imizer rn(·) in (3.11, 4.2) of the deterministic problem vn+1(·) = J0vn(·) = inft∈[0,∞] Jvn(t, ·)
can be rewritten by Corollary 4.2 as

rn(φ) = inf{t ≥ 0 : x(t, φ) /∈ (ξ
(n+1)
0 , ξ

(n+1)
1 )}, n ≥ 0.(4.12)

The inclusion Cn+1 ⊆ (ξ, ξ) of continuation region Cn+1 = (ξ
(n+1)
0 , ξ

(n+1)
1 ) by Proposition

(4.1) implies that for every φ ∈ R+ the minimizer rn(φ) is bounded from above by the exit

time T (φ, ξ) of t 7→ x(t, φ) from the set (ξ,∞); see (4.5). On the other hand, we have

Cn+1 ⊇ Cn = (ξ
(n)
0 , ξ

(n)
1 ) and rn(φ) ∈ {0} ∪

[
T
(
φ, ξ

(n)
0

)
, T
(
φ, ξ
)]

for every φ ∈ R+.

The computation of {Vn(·)}n≥1 simplifies if λ1 = λ0. In this case, the process Φ of (2.5) is

constant between jumps, and x(t, φ) = φ for all t ≥ 0, φ ∈ R+. Therefore, for every bounded

function w : R+ 7→ R, the function J0w(φ) in (3.4) becomes

inf
t∈[0,∞]

[(
1− e−λ0t

) g(φ) + λ0 · Sw(φ)

λ0

+ e−λ0th(φ)

]
= min

{
h(φ),

g(φ) + λ0 · Sw(φ)

λ0

}
,

and the minimum is attained at t = 0 if h(φ) ≤ (1/λ0)[g + λ0 · Sw](φ) or t = ∞ otherwise.

The complete numerical method is described in Figure 2.

4.4. Nearly optimal strategies. We close this section with the description of two ε-

optimal strategies both of which complement the numerical method above.

The first strategy makes use of Propositions 3.5 and 4.4. For any fixed ε > 0, choose

n ≥ 1 by using (4.11) such that supφ∈R+
|V (φ)− Vn(φ)| ≤ ε/2. Then the stopping time S

ε/2
n

of Proposition 3.5 is ε-optimal:

V (φ) ≤ Eφ
0

[∫ S
ε/2
n

0

g
(
Φt

)
dt+ h(Φσε

n
)

]
≤ Vn(φ) +

ε

2
≤ V (φ) + ε, φ ∈ R+.(4.13)

The stopping rule S
ε/2
n instructs us to wait until the first occurrence of the exit time r

ε/2
n (Φ0)

in (4.12) and the first jump time σ1 of the process X. If r
ε/2
n (Φ0) occurs first, then we stop.
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Step 0: If in (3.4) J0h(b/a) = 0, then stop: v1(·) = v2(·) = . . . = h(·) by Corollary

4.3(i). Otherwise, determine the interval (ξ, ξ) by using (4.6, 4.8). Initialize n = 0,

v0(·) = h(·), ξ(0)
0 = ξ

(0)
1 = +∞, and go to Step 1.

Recall from (3.6) the operator S and from (4.5) the exit time T (φ, ψ) of t 7→ x(t, φ)

from the interval (ψ,∞) for every φ, ψ ∈ R+.

Step 1: For every φ /∈ (ξ, ξ), set vn+1(φ) to h(φ). For every φ ∈ (ξ, ξ) do the following:

� If λ1 > λ0, then set Tn+1(φ) to {0} ∪ [T (φ, ξ
(n)
0 ), T (φ, ξ)] and vn+1(φ) to

J0vn(φ) = min
t∈Tn+1(φ)

[∫ t

0

e−λ0u[g + λ0 · Svn](x(u, φ))du+ e−λ0th(x(t, φ))

]
.

� If λ1 = λ0, then set vn+1(φ) to min {h(φ), (1/λ0) · [g(φ) + λ0 · Svn(φ)]}.
Step 2: Set Cn+1 to {φ ∈ [ξ, ξ] : vn+1(φ) = h(φ)}, ξ(n+1)

0 and ξ
(n+1)
1 to the infimum

and the supremum of Cn+1, respectively. Increase n by one, and go to Step 1.

Figure 2. The numerical algorithm to calculate the successive approximations Vn(·), n ≥ 1

in (3.2, 3.8) of the value function V (·) of (2.9). The infinite loop can be broken according to

bounds in (4.11) when n is so large that the desired accuracy is reached.

Otherwise, we continue waiting until the first occurrence of the exit time r
ε/2
n−1(Φσ1) and the

next jump at time σ2 − σ1 = σ1 ◦ θσ1 . If r
ε/2
n−1(Φσ1) occurs, then we stop. Otherwise, we

continue as before. We stop at the nth jump of the process X if we have not stopped yet.

The second ε-optimal stopping rule is easier to implement and is defined by

U
(n)
ε/2 , inf {t ≥ 0; h(Φt) ≤ Vn(Φt) + ε/2}

after ε and n are chosen as in the previous paragraph. Since t 7→ V (Φt) is right-continuous

and |V (·)− Vn(·)| < ε/2, we have V (Φt) ≥ h(Φt)− ε at t = U
(n)
ε/2 on the event {U (n)

ε/2 <∞}.
Then the arguments leading to Proposition 3.12 yields

V (φ) = Eφ
0

[
V
(
Φ

U
(n)
ε/2
∧σm

)
+

∫ U
(n)
ε/2
∧σm

0

g(Φs)ds

]
, m ≥ 1.

Because U
(n)
ε/2 ≤ Uε/2 of (3.17), the P0-expectation of U

(n)
ε/2 is finite by Proposition 3.13, which

implies after obvious modifications that the stopping rule U
(n)
ε2 is also ε-optimal:

V (φ) ≥ Eφ
0

[∫ U
(n)
ε2

0

g(Φs)ds+ h(Φ
U

(n)
ε2

)

]
− ε.
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5. Examples

Using the numerical method of Section 4 (see Figure 2) we solve a number of examples

with both discrete and continuous mark distributions. The empirical results demonstrate

the effect of difference between the alternative hypotheses (λ0, ν0(·)) and (λ1, ν1(·)) on the

optimal Bayes risk. Finally, we revisit the special case studied by Peskir and Shiryaev (2000).

5.1. Numerical Examples. In the first example, the marks Y1, Y2, . . . of the observation

process X in (1.1) take values in a space with five elements (labeled with integers 1 through

5 without loss of generality), and the (discrete) mark distributions are

ν0 =

{
1

15
,

5

15
,

4

15
,

3

15
,

2

15

}
and ν1 =

{
2

15
,

3

15
,

4

15
,

5

15

1

15

}
under the hypotheses H0 and H1, respectively. From the plot of ν0 and ν1 in the upper left

panel of Figure 3, it is easy to see that ν0 is right-skewed, and ν1 is left-skewed. We fix b = 4,

a = 2 (the respective costs of Type I and II errors) and λ0 = 3 (the arrival rate of X under

the null hypothesis H0). By using the numerical method in Figure 2 on page 15, we solve

the sequential hypothesis testing problem in (1.2, 1.4, 2.9) for three different values of the

arrival rate λ1 of X under alternative hypothesis H1: the panels in the first row of Figure 3

display the successive approximations {Vn(·)}n≥1 for (b) λ1 = 3, (c) λ1 = 6, (d) λ1 = 9. For

each case we recalled the (explicit) uniform bound on the difference |V (·)− Vn(·)| in (4.11)

and calculated the decreasing sequence {Vn(·)}n≥1 until the maximum difference between

two successive approximations is negligible (number of iterations is noted inside each panel).

Thus, in each panel the smallest function is the best approximation to the value function

V (·) of (2.9). In panel (b), V1(·) = V2(·) = . . . = V (·) = h(·), and “immediate stopping”

turns out to be optimal everywhere.

Vertical bars at two horizontal edges of each panel mark the boundaries of each continua-

tion region Cn = (ξ
(n)
0 , ξ

(n)
1 ), n ≥ 1 in (4.1, 4.10). The leftmost and the rightmost bars give

approximately the boundaries of the continuation region C = (ξ0, ξ1). By Proposition 2.1

an optimal admissible decision rule is to wait until the process Φ of (2.10) leaves the interval

(ξ0, ξ1) and to choose the null hypothesis H0 if Φ is less than or equal to b/a upon stop-

ping and the alternative H1 otherwise. See Section 4.4 for other nearly optimal admissible

decision rules and precise error bounds.

If λ1 = λ0, then only observed jump sizes will carry useful information to discriminate

the hypotheses. If λ1 > λ0, then the interarrival times also contain important information.

As the difference λ1 − λ0 increases, this information becomes more significant, and a lower
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(a) Discrete jump
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Figure 3. Numerical examples solved by successive approximations (see Section 4 and

Figure 2). In the upper row, jump distributions ν0 (in the background) and ν1 (with filled

bars) of (1.2) are discrete as in panel (a). Type I and II error costs (b = 4, a = 2) and the

arrival rate under the null hypothesis H0 (λ0 = 3) are fixed, and the sequential hypothesis

problem (1.2, 1.4, 2.9) is solved for different arrival rates λ1 under the alternative hypothesis

H1. The successive approximations {Vn(·)} of the value function V (·) of (2.9) are displayed

in the panels of the first row: (b) λ1 = λ0, (c) λ1 = 2λ0, (d) λ1 = 3λ0. The smallest function

in each panel is the best approximation of the function V (·) and gets smaller as the difference

λ1 − λ0 gets larger along (b)-(d). Namely, if the hypotheses are more “separable,” then the

minimum Bayes risk will be smaller. In (b), V = h, and “immediate stopping” is optimal.

In the second row, λ0 = λ1 = 3, and the distribution ν0 is exponential with rate µ = 2.

The distribution ν1 under H1 is Gamma with the same rate µ, but its shape parameter is

changed: 2 in (f), 3 in (g), and 6 in (h). The panels display the successive approximations

of the value function V (·) and suggest that the smallest Bayes risk decreases as the densities

of jump distributions ν0 and ν1 are pulled apart more from each other.

optimal Bayes risk is expected. Observe that the approximate value functions in the first

row of Figure 3 decrease from (b) to (d). This supports the intuitive remark in light of the

relation (2.8) between the value function V (·) and the minimal Bayes risk U(·).
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In the next set of examples, the parameters b = 4, a = 2, λ0 = λ1 = 3 are held fixed, and

mark distributions are changed. The distributions ν0(·) and ν1(·) in (1.2) are exponential

and Gamma, respectively, with the same rate µ = 2. In the second row of Figure 3, we

solve the sequential hypothesis problem when the shape parameter of ν1 equals 2 in (f), 3 in

(g), and 6 in (h). As before each panel displays the decreasing sequence {Vn(·)} of succes-

sive approximations in (3.8) of the value function V (·) of (2.9) calculated by the numerical

method of Figure 2. The lower left panel shows that as the shape parameter of the Gamma

distribution increases, the weights assigned to sets by ν0(·) and ν1(·) become relatively more

different. Intuitively, if the distributions under alternative hypotheses differ more from each

other, then the jump sizes tend to be more different and carry more information; as a result,

the optimal Bayes risk should be smaller. The figures in panels (f) through (h) are consistent

with this view: the value functions become more negative as the shape parameters increase.

5.2. Sequential testing for simple Poisson process. Peskir and Shiryaev (2000) solved

the sequential testing problem of two simple hypotheses about the unknown arrival rate λ

of a simple Poisson process X; namely, ν0(·) = ν1(·) = δ{1}(·), and (1.2) becomes

H0 : λ = λ0 and H1 : λ = λ1.(5.1)

Their method is different from ours. They obtain the optimal admissible decision rule in

terms of the posterior probability process Π = {Πt , P(λ = λ1|Ft), t ≥ 0} after solving a

suitable free-boundary integro-differential problem similar to (2.14).

The problem (5.1) is a special case of (1.2), and methods of this paper apply. Below we

retrieve the main result of Peskir and Shiryaev (2000) and describe in Figure 4 our solution

of their numerical example.

Since the jump distribution ν(·) = ν0(·) = ν1(·) of the observation process X is known, the

Radon-Nikodym derivative f(·) in (2.2) and (2.10) becomes identically one, and the operator

in (3.6) simplifies to Sw(φ) = w([λ1/λ0]φ), φ ∈ R+ for every bounded function w : R+ 7→ R.

5.1. Proposition. Suppose that the observation process X in (1.1) is a simple Poisson

process. Then V (·) = h(·) in (2.9), i.e., “immediate stopping” is optimal if and only if

1

a
+

1

b
≥ λ1 − λ0.(5.2)

For suitable constants 0 < A∗ < B∗ < 1 the stopping time T ∗ = inf{t ≥ 0 : Πt /∈ (A∗, B∗)}
is optimal for the problem in (2.9), whose continuous value function is continuously differ-

entiable everywhere except at B∗/(1−B∗).
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Since Πt , P{λ = λ1|Ft} = Φt/(1 + Φt) for every t ≥ 0, the stopping time T∗ , inf{t ≥
0 : Πt /∈ (A∗, B∗)} ≡ U0 is optimal by Proposition 3.13 and Corollary 4.2 if we set

A∗ =
ξ0

1 + ξ0
and B∗ =

ξ1
1 + ξ1

.(5.3)

Moreover, the value function V (·) is continuous on R+ by Propositions 3.4 and 3.7 and

continuously differentiable everywhere except at ξ1 by Proposition 6.1 below.

The necessity of the first claim follows from Corollary 4.3 (iii). To prove the sufficiency,

it is enough by Corollary 4.3 (i) to show that V1(b/a) = 0. Recall that f(·) = 1 and

Sh(φ) = (a[λ1/λ0]φ− b)−. If we denote by T the first time T (b/a, [λ0/λ1] · [b/a]) that the

C2 = (ξ(2)
0 , ξ

(2)
1 ) ≈ C = (ξ0, ξ1)

C1 = (ξ(1)
0 , ξ

(1)
1 )

ξ
(2)
1 ≈ ξ1ξ

(1)
0 b/a = 1

h(·)

V1(·)

ξ
(1)
1ξ0 ≈ ξ

(2)
0

V2(·) ≈ V (·)

φ

-1.5

32.521.510.50

0

-0.5

-1

b = −2

Figure 4. Our numerical solution of Peskir and Shiryaev’s (2000, Figure 2) sequential

testing problem in (5.1) for a simple Poisson process (a = b = 2, λ0 = 1, λ1 = 5). This

is a special case of (1.2) with known jump distribution ν(·) = ν0(·) = ν1(·) = δ{1}(·).
The method of Figure 2 applies with f(·) ≡ (dν1/dν0)(·) = 1 and terminates satisfactorily

after only two iterations. The first two successive approximations V1(·) and V2(·) in (3.2,

3.8) of the value function V (·) in (2.9) are displayed. The function V2(·) and the region

C2 = (ξ
(2)
0 , ξ

(2)
1 ) ≈ (0.32, 2.39) in (4.1, 4.10) are very good approximations of the value

function V (·) and the optimal continuation region C = (ξ0, ξ1), respectively. By using (5.3),

we calculate the thresholds A∗ and B∗ of Peskir and Shiryaev’s optimal stopping rule T ∗ in

Proposition 5.1. We find A∗ ≈ 0.32/(1 + 0.32) = 0.24 and B∗ ≈ 2.39/(1 + 2.39) = 0.71 are

very close to (A∗, B∗) ≈ (0.22, 0.70) reported by Peskir and Shiryaev.
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path t 7→ x(t, b/a), t ≥ 0 exits the interval ([λ0/λ1] · [b/a],∞) as in (4.5), then for every t ≥ 0

d

dt
Jh(t, b/a) =

{
e−λ0t[1 + λ0b] + be−λ1t [(1/a)− λ1] , t < T

e−λ0t + (b/a)e−λ1t, t ≥ T

}
≥ 0,

where the inequality from (5.2). Hence, V1(b/a) = inft≥0 Jh(t, b/a) = Jh(0, b/a) = 0.

6. Smoothness and variational inequalities

We start this section with an investigation of the smoothness of the value function V (·) in

(2.9). We show that V (·) is not differentiable at the upper boundary ξ1 of the continuation

region C = (ξ0, ξ1). While V (·) is continuously differentiable everywhere else if λ1 > λ0, it

may not be differentiable at every point of the continuation region C if λ1 = λ0. In the latter

case, the lack of differentiability at ξ1 is transmitted to every point from which the process

Φ jumps to ξ1 with positive probability. Our findings in the case that λ1 > λ0 are consistent

with the “smooth-fit principle” formulated recently by Alili and Kyprianou (2005): the value

function V (·) is continuously differentiable at the lower boundary ξ0, which is regular for the

stopping region, and is not differentiable at the upper boundary ξ1, which is not regular for

the stopping region.

We conclude by showing that the value function V (·) is the unique solution of the varia-

tional inequalities in (2.14) in some suitable sense.

6.1. Smoothness of the value function. In the following analysis, we will assume that the

continuation region C = (ξ0, ξ1) is not empty since the results are immediate from V (·) = h(·)
otherwise. By the same token, continuous differentiability of V (·) on the stopping region

Γ = R+ \ C 63 b/a is obvious. Note also that since V (·) is concave, it has left derivative

D−V (·) and right derivative D+V (·) everywhere, and they are left- and right-continuous,

respectively. Moreover, D−V (·) ≥ D+V (·).

Case I: λ1 > λ0. To determine the smoothness of V (·) on the continuation region C, we

will use the dynamic programming equation given by (3.15, 3.16). Recall from (4.5) the exit

time T (φ, ψ) of the deterministic path t 7→ x(t, φ) of (2.11) from the interval (ψ,∞) for any

φ ∈ R+, ψ > 0. Then for any point φ ∈ C = (ξ0, ξ1), setting t = T (φ, φ− δ) in (3.16) gives

V (φ) =

∫ T (φ,φ−δ)

0

e−λ0u [g + λ0SV ] (x(u, φ))du+ e−λ0T (φ,φ−δ)V (φ− δ).
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We let δ ↘ 0 after subtracting V (φ− δ) from both sides and obtain the left-derivative

D−V (φ) =
1

(λ1 − λ0)φ
· [g(φ) + λ0 · SV (φ)− λ0V (φ)] , φ ∈ C = (ξ0, ξ1).(6.1)

Since V (·) and SV (·) are continuous, the left derivative D−V (·) is continuous on C by (6.1).

Because V (·) is concave, this implies that V (·) is continuously differentiable on C.

To show that V (·) is differentiable at the lower boundary point ξ0 of the continuation region

C = (ξ0, ξ1), let φ ∈ (ξ0, ξ1]. Then the minimum V (φ) = inft∈[0,∞] JV (t, φ) = JV (r(φ), φ)

is attained at t = r(φ) ≡ T (φ, ξ0) ∈ (0,∞) by (3.14, 3.15, 4.10). Since the function t 7→
JV (t, φ) is continuously differentiable at t = T (φ, ξ0), and x(T (φ, ξ0), φ) = ξ0, we have

0 =
∂

∂t
JV (t, φ)

∣∣∣∣
t=T (φ,ξ0)

= e−λ0T (φ,ξ0) [(g + λ0 · SV )(ξ0)− λ0h(ξ0)− aξ0(λ1 − λ0)]

for every φ ∈ (ξ0, ξ1]. Then [g+λ0 ·SV ](ξ0)−λ0V (ξ0) = aξ0(λ1−λ0) because V (ξ0) = h(ξ0),

and (6.1) implies

D+V (ξ0) = lim
φ↘ξ0

V ′(φ) =
[g + λ0 · SV ](ξ0)− λ0V (ξ0)

ξ0(λ1 − λ0)
= a = D−V (ξ0),

since V (·) is concave, and V (·) = h(·) on [0, ξ0] 63 b/a. Therefore, V (·) is continuously

differentiable at ξ0.

To see that V (·) is not differentiable at ξ1, first note that D+V (ξ1) = 0 since V (·) = h(·) =

0 on [ξ1,∞), and (6.1) implies

D−V (ξ1) = lim
φ↗ξ1

DV (φ) =
[g + λ0 · SV ](ξ1)

(λ1 − λ0)ξ1
(6.2)

because the left-derivative D−V (·) of concave function V (·) is left-continuous, and V (ξ1) =

h(ξ1) = 0. By (3.15) and (4.10), we have r(ξ1) = T (ξ1, ξ0) ∈ (0,∞), and (3.14) implies

0 = V (ξ1) = JV (T (ξ1, ξ0), ξ1) =

∫ T (ξ1,ξ0)

0

e−λ0u [g + λ0 · SV ] (x(u, ξ1))du+ e−λ0T (ξ1,ξ0)h(ξ0)

≤ [g + λ0 · SV ](x(0, ξ1))

λ0

+ e−λ0T (ξ1,ξ0)h(ξ0) =
[g + λ0 · SV ](ξ1)

λ0

+ e−λ0T (ξ1,ξ0)h(ξ0).

The inequality above follows from that the function [g+λ0SV ](·) is increasing and that u 7→
x(u, ξ1) is decreasing. It implies that [g + λ0SV ](ξ1) > 0 since h(ξ0) < 0 and T (ξ1, ξ0) <∞.

Now D+V (ξ1) > 0 = D−V (ξ1) by (6.2), and the function V (·) is not differentiable at ξ1.
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Case II: λ1 = λ0. In this case, the process Φ of (2.5) remains constant between jumps, and

(4.3) reduces to

V (φ) = min

{
h(φ),

g(φ) + λ0 · SV (φ)

λ0

}
, φ ∈ R+.(6.3)

Both φ = ξ0 and φ = ξ1 satisfy (1/λ0)g(φ) + SV (φ) = h(φ) by the continuity of V (·). Since

SV (·) is increasing, we have

D−V (ξ1) = lim
φ↗ξ1

[
1

λ0

g(ξ1)− g(φ)

ξ1 − φ
+
SV (ξ1)− SV (φ)

ξ1 − φ

]
≥ g′(ξ1)

λ0

=
1

λ0

> 0 = D+V (ξ1).

Therefore, the function V (·) is not differentiable at ξ1. On the other hand, for every φ ∈
(ξ0, ξ1) (6.3) implies

V (φ± δ)− V (φ)

δ
= ± 1

λ0

+
SV (φ± δ)− SV (φ)

δ

= ± 1

λ0

±
∫

Rd

ν0(dy) f(y) ·
[
V (zφ± zδ)− V (zφ)

±zδ

]∣∣∣∣
z=f(y)

.

By Proposition 3.4 the quotient inside the integral is bounded, and ν0

{
y ∈ Rd : f(y) = 0

}
=

ν1

{
y ∈ Rd : f(y) = 0

}
= 0 since the distributions ν0(·) and ν1(·) are equivalent. Then the

bounded convergence theorem as δ ↘ 0 and the relation ν1(dy) = f(y) · ν0(dy) imply

D±V (φ) =
1

λ0

+

∫
Rd

ν1(dy) D
±V (f(y)φ) , φ ∈ R+.(6.4)

Therefore, the function [D−V −D+V ](φ), φ ∈ R+ is nonnegative and bounded, and satisfies

[D−V −D+V ](φ) =

∫
Rd

ν1(dy) [D−V −D+V ] (f(y)φ) , φ ∈ R+.

If A(φ) ,
{
y ∈ Rd : f(y)φ = ξ1

}
, and ν0(A(φ)) > 0, then ν1(A(φ)) = (ξ1/φ)ν0(A(φ)) > 0

and the the last displayed equality imply

[D−V −D+V ](φ) ≥ ξ1
φ
ν0(A(φ)) · [D−V −D+V ](ξ1) > 0,

Therefore, if ν0(A(φ)) > 0, then V (·) is not differentiable at φ.

6.1. Proposition. The value function V (·) of (2.9) is not differentiable at the upper bound

ξ1 of the continuation region C = (ξ0, ξ1).

If λ1 > λ0, then the function V (·) is continuously differentiable on R+ \ {ξ1}.
If λ1 = λ0 and ν0{y ∈ Rd; f(y)φ = ξ1} > 0, then V (·) is not differentiable at a point

φ ∈ C. Namely, the lack of differentiability at ξ1 is transmitted in the continuation region

to every point from which the process Φ of (2.5) jumps to ξ1 with positive probability.
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6.2. Variational inequalities. We start by showing that the value function V (·) of (2.9)

satisfies the variational inequalities in (2.14) at every φ ∈ R+ where AV (φ) makes sense.

First assume that λ1 > λ0, and that the continuation region C = (ξ0, ξ1) is not empty.

Then the derivative V ′(·) exists on R \ {ξ1} by Proposition 6.1 and is equal by (6.1) to

V ′(φ) =
1

(λ1 − λ0)φ
· [g(φ) + λ0SV (φ)− λ0V (φ)] , φ ∈ C = (ξ0, ξ1),(6.5)

which can be rewritten as AV (φ) + g(φ) = 0 for every φ ∈ C in terms of the infinitesimal

generator AH(φ) = −(λ1 − λ0)φH
′(φ) + λ0SH(φ) − λ0H(φ) in (2.13). Therefore, (2.14) is

satisfied by V (·) on the region C.

For every φ ∈ R+\(C∪{ξ1}), we have JV (0, φ) = h(φ) = V (φ) = J0V (φ) = inft≥0 JV (t, φ),

and the mapping t→ JV (t, φ) is continuously differentiable at t = 0. Then, the optimality

of t = 0 implies that for every φ ∈ R+ \ (C ∪ {ξ1})

0 ≤ dJV (t, φ)

dt

∣∣∣∣
t=0

= [g + λ0SV ] (φ)− λ0V (φ)− (λ1 − λ0)φV
′(φ) ≡ AV (φ) + g(φ).(6.6)

Since we also have V (·) ≤ h(·) on R+, this implies that V (·) satisfies (2.14) at every φ ∈
R \ {ξ1}, where V (·) is differentiable.

If the continuation region C is empty, then V (·) = h(·) on R+, and (6.6) holds everywhere

except at the point φ = b/a, where h(·) is not differentiable. Therefore, V (·) satisfies (2.14)

everywhere it is differentiable.

Finally, if λ1 = λ0, then the infinitesimal generator in (2.13) becomes AH(φ) = λ0SH(φ)−
λ0H(φ). By (6.3) it is immediate that V (·) is a solution of (2.14). The following proposition

shows that the value function V (·) of (2.9) is unique solution of (2.14) in a suitable sense.

6.2. Proposition. Let H : R+ 7→ (−∞, 0] be a continuous and bounded function (which is

also continuously differentiable, possibly, except at most finite number of points if λ1 > λ0)

such that the set {φ ∈ R+ : H(φ) 6= h(φ)} is a bounded interval away from the origin. Then

H(·) = V (·) on R+ if at every φ ∈ R+ where AH(·) is well-defined it satisfies

min {AH(φ) + g(φ), h(φ)−H(φ)} = 0.(6.7)

Proof. For every F-stopping time τ and constant t ≥ 0, we have

Eφ
0 [1{τ<∞}h(Φt∧τ )] ≥ Eφ

0 [1{τ<∞}H(Φt∧τ )] ≥ Eφ
0H(Φt∧τ )

= H(φ) + Eφ
0

[∫ t∧τ

0

AH(Φs)ds

]
≥ H(φ)− Eφ

0

[∫ t∧τ

0

g(Φs)ds

]
.
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Above the first and the last inequalities follow from (6.7), the second from H(·) ≤ 0, and

the equality from the chain rule; see Appendix A.3. If the limits of both sides are taken as

t→∞, then the bounded and monotone convergence theorems give

Eφ
0

[∫ τ

0

g(Φs)ds+ 1{τ<∞}h(Φτ )

]
≥ H(φ), φ ∈ R+.(6.8)

The infimum over F-stopping times of both sides give the inequality V (·) ≥ H(·). We shall

prove the equality by showing that the equality holds in (6.8) if τ is the F-stopping time

τ ∗ , inf {t ≥ 0 : H(Φt) = h(Φt)}.
Since the set {φ ∈ R+ : H(φ) 6= h(φ)} is a bounded interval away from the origin, the

stopping time τ ∗ is P0-a.s. finite by Corollary 3.15. For every t ≥ 0 the chain-rule gives

Eφ
0 [1{τ∗<∞}H(Φt∧τ∗)] = H(φ) + Eφ

0

[∫ t∧τ∗

0

AH(Φs)ds

]
= H(φ)− Eφ

0

[∫ t∧τ∗

0

g(Φs)ds

]
,

because AH(Φt) + g(Φt) = 0 on {t < τ ∗} by (6.7). Since H(·) is bounded, and H(Φτ∗) =

h(Φτ∗) on {τ ∗ < ∞}, the bounded and monotone convergence theorems give the desired

equality in (6.8) for τ = τ ∗. �
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Appendix

A.1. Absolutely continuous change of measure. ForA ∈ B(R+), let p(·, A) = {p(t, A)}t≥0

be a point process defined as

p(t, A) ,
∞∑

k=1

1{σk≤t}1{Yk∈A}, t ≥ 0.(A.1)

These processes define on
(
R+ × Rd,B(R+)⊗B(Rd)

)
the random measure p((0, t]× A) ,

p(t, A), and the process X of (1.1) can be expressed as

Xt = X0 +

∫
(0,t]×Rd

y p(dsdy), t ≥ 0.(A.2)

Under the the probability measure P0 of Section 2, the process {p(t, A); t ≥ 0} for every

fixed A ∈ B(Rd) is a (P,F)-Poisson process with the intensity λ0ν0(A). Equivalently, the

process {p(t, A) − p0(t, A); t ≥ 0} is a (P0,F)-martingale, where p0(t, A) = λ0tν0(A), t ≥ 0
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is the (P0,F)-compensator of the point process p(·, A) and induces the compensator measure

p0((0, t]× A) , p0(t, A) on
(
R+ × Rd,B(R+)⊗B(Rd)

)
.

For y ∈ Rd and f(·) given in (2.2), we now define h(y) , (1−Θ) + Θ λ1

λ0
f(y). Since Θ is

G0-measurable, the process

Zt , exp

{∫
(0,t]×Rd

lnh(y) p(dsdy)−
∫

(0,t]×Rd

[h(y)− 1] p0(dsdy)

}
, t ≥ 0

is a (P0,G)-martingale and defines a new probability measure P on (Ω,∨t≥0Gt). Using the

definitions of the measures p(·) and p0(·), it is possible to show that Zt above is equal to the

right-hand side of the expression in (2.3). Then Girsanov theorem for point processes (see,

e.g., Jacod and Shiryaev (2003), Brémaud (1981)) implies that the point process {p(t, A); t ≥
0} has the (P,G)-compensator

p1(t, A) =

∫
(0,t]×Rd

h(y) p0(dsdy) =

∫
(0,t]×Rd

[(1−Θ) λ0ds ν0(dy) + Θ λ1ds ν1(dy)] .

Therefore, the process {p(t, A); t ≥ 0} is a (P,G)-Poisson process with the intensity (1 −
Θ)λ0ν0(A) + Θλ1ν1(A) for every A ∈ B(Rd), and the process X in (1.1, A.2) is a (P,G)-

compound Poisson process with arrival rate (1 − Θ)λ0 + Θλ1 and mark distribution (1 −
Θ)ν0(·) + Θν1(·).

A.2. The dynamics of the process Φ in (2.5). Using (2.4) and (2.5) gives

Φt = Φ0 · e−(λ1−λ0)t

Nt∏
k=1

[
λ1

λ0

f(Yk)

]
, t ≥ 0,

which implies that Φ is a piecewise-deterministic Markov process. It is also the unique locally

bounded solution of the differential equation (see, e.g., Elliott (1982))

dΦt = Φt−

[
−(λ1 − λ0)dt+

∫
Rd

[f(y)− 1]p(dtdy)

]
,(A.3)

where p(·) is the random measure introduced in Section A.1. The equation (A.3) can be

solved pathwise. Let x(t, φ) be the solution of the ordinary differential equation

d

dt
x(t, φ) = −(λ1 − λ0)x(t, φ) and x(0, φ) = φ.(A.4)

The dynamics in (A.3) imply that between jumps the process Φ follows the integral curves

of the differential equation (A.4), and at arrival time σn’s it is adjusted by the proportion

[λ1/λ0]f(Yn). Since (2.11) is the solution of (A.4), the pathwise solution of (A.3) is (2.10).
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A.3. The infinitesimal generator of the process Φ. Let H : R+ 7→ R be a bounded

function. If λ1 > λ0, then we also assume that it is continuously differentiable on R+ except

at most finite number of points. Then the dynamics of Φ in (A.3) and the chain rule give

(see, e.g., Protter (2004))

H(Φt) = H(Φ0)−
∫ t

0

(λ1 − λ0) ΦsH
′(Φs)ds+

∫
(0,t]×Rd

[
H

(
λ1

λ0

f(y)Φs−

)
−H(Φs−)

]
p(dsdy)

= H(Φ0) +

∫
(0,t]

[
− (λ1 − λ0) ΦsH

′(Φs−) + λ0SH(Φs−)− λ0H(Φs−)
]
ds+Mt

in terms of the integral

Mt ,
∫

(0,t]×Rd

[
H

(
λ1

λ0

f(y)Φs−

)
−H(Φs−)

]
(p(dsdy)− λ0ds ν0(dy))

with respect to the compensated random measure p(ds, dy) − λ0ds · ν0(dy). Since H(·) is

bounded, the process M is a (P0,F)-martingale, and taking expectations gives Eφ
0H (Φt) =

H(φ) + Eφ
0

∫ t

0
AH(Φs)ds, with the (P0,F)-infinitesimal generator A given in (2.13).

If λ1 = λ0, then the process Φ moves only by jumps. Therefore, differentiability of H(·) is

not required, and the infinitesimal generator of (2.13) becomes AH(φ) = λ0SH(φ)−λ0H(φ)

in terms of the operator S in (3.6).

A.4. Proofs of selected results.

Proof of Proposition 2.1. Let us write Rτ,d(π) as Eτ +Kτ,d(π). The independence of Θ

and X under P0 implies

Eτ =

∫ ∞

0

E0

[
Zt1{τ>t}

]
dt =

∫ ∞

0

E0

[
1{τ>t} (1− π + πLt)

]
dt = (1− π)E

π
1−π

0

[∫ τ

0

(1 + Φt) dt

]
.

Moreover, Kτ,d(π) , E
[(
a1{d=0,Θ=1} + b1{d=1,Θ=0}

)
1{τ<∞}

]
is the limit as t→∞ of

E
[(
a1{d=0,Θ=1} + b1{d=1,Θ=0}

)
1{τ≤t}

]
= E0

[(
aπLt1{d=0} + b(1− π)1{d=1}

)
1{τ≤t}

]
.

Since L = {Lt; t ≥ 0} is a (P0,F)-martingale and {d = 0}∩{τ ≤ t} ∈ Fτ∧t, in the last expec-

tation Lt can be replaced with Lτ by optional sampling theorem. By monotone convergence

theorem Kτ,d(π) = E0

[ (
aπLτ1{d=0} + b(1− π)1{d=1}

)
1{τ<∞}

]
, which equals

b(1− π)P0 {τ <∞}+ (1− π) E
π

1−π

0

[
(aΦτ − b) 1{d=0,τ<∞}

]
,

and (2.6) follows. The inequality Rτ,d(π) ≥ Rτ,d(τ)(π) follows now from (2.6) and the defi-

nition of d(τ) in (2.7). Finally, (2.8) follows immediately from (2.6). The term P0{τ < ∞}
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multiplying b(1 − π) is replaced with one without loss of generality since P0{τ < ∞} < 1

implies that Rτ,d(π) = +∞ in (2.6) for every admissible d. �

Proof of Proposition 3.1. Since V (·) ≤ Vn(·) for every n ≥ 1, we have V (·) ≤ limn→∞ Vn(·).
For the reverse inequality, fix any ε > 0. Since V (·) is bounded, there is a stopping time

τε such that Eφ
0

[∫ τε

0
g (Φt) dt+ h (Φτε) 1{τε<∞}

]
≤ V (φ) + ε. Because h(·) ≤ 0, Vn(φ) ≤

Eφ
0

[∫ τε∧σn

0
g (Φt) dt+ h (Φτε∧σn)

]
≤ Eφ

0

[∫ τε∧σn

0
g (Φt) dt+ h (Φτε∧σn) 1{τε<∞}

]
for every n ≥ 1.

As n tends to ∞, we have σn → ∞ and Φτε∧σn → Φτε on {τε < ∞} P0-almost surely.

Therefore, the monotone and bounded convergence theorems imply that limn→∞ Vn(φ) ≤
Eφ

0

[∫ τε

0
g (Φt) dt+ h (Φτε) 1{τε<∞}

]
≤ V (φ) + ε. Since ε is arbitrary, the result follows. �

Proof of Proposition 3.4. Note that v1(φ) = J0h(φ) ≤ Jh(0, φ) = h(φ) = v0(φ). If

vn(·) ≤ vn−1(·) for some n ≥ 0, then vn+1(φ) = J0vn(φ) ≤ J0vn−1(φ) = vn(φ). Therefore, the

sequence {vn(·)}n≥0 is decreasing. Since v0 ≡ h is concave, every vn(·), n ≥ 0 is concave by

(3.8) and Remark 3.3.

The inequalities −b ≤ v(·) ≤ vn(·) ≤ h(·) ≤ 0 follow from Remark 3.3, that v0(·) ≡
h(·) ≥ −b is bounded, and (3.8). For n = 0, we have v0(0) = h(0) = −b. Suppose that

vn(0) = −b for some n ≥ 0. Since Svn(0) = vn(0) and x(t, 0) = 0 for every t ≥ 0, we have

vn+1(0) = inft∈[0,∞] Jvn(t, 0), which equals

inf
t≥0

(
[1 + λ0vn(0)]

1− e−λ0t

λ0

− e−λ0tb

)
=

1− λ0b

λ0

+ inf
t≥0

[
e−λ0t

(
−b− 1− λ0b

λ0

)]
= −b.

Hence, vn(0) = −b for every n ≥ 0 by induction, and v(0) = limn→∞ vn(0) = −b.
The remainder follow easily from the concavity of vn(·), n ≥ 1 (see, e.g., Protter and

Morrey (1991)) and that they can be extended on the set {φ ∈ R+ : φ ≥ −1} ⊃ R+. �

Proof of Proposition 3.5. First, we shall establish the inequality

Eφ
0

∫ τ∧σn

0

g
(
Φt

)
dt+ h

(
Φτ∧σn

)
≥ vn(φ), τ ∈ F, φ ∈ R+(A.5)

for every n ≥ 0, by proving inductively on k = 1, . . . , n+ 1 that

(A.6) Eφ
0

[∫ τ∧σn

0

g
(
Φt

)
dt+ h

(
Φτ∧σn

)]
≥ Eφ

0

[∫ τ∧σn−k+1

0

g
(
Φt

)
dt+ 1{τ<σn−k+1}h

(
Φτ

)
+ 1{τ≥σn−k+1}vk−1

(
Φσn−k+1

)]
=: RHSk−1.

Observe that (A.5) follows from (A.6) when we set k = n+ 1.
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If k = 1, then the inequality (A.6) is satisfied as an equality since v0 ≡ h. Suppose that

(A.6) holds for some 1 ≤ k < n+1. We shall prove that it must also hold when k is replaced

with k + 1. Let us denote the righthand side of (A.6) by RHSk−1, and rewrite it as

(A.7) RHSk−1 = RHS
(1)
k−1 +RHS

(2)
k−1 , Eφ

0

[∫ τ∧σn−k

0

g
(
Φt

)
dt+ 1{τ<σn−k}h

(
Φτ

)]
+ Eφ

0

[
1{τ≥σn−k}

(∫ τ∧σn−k+1

σn−k

g
(
Φt

)
dt+ 1{τ<σn−k+1}h

(
Φτ

)
+ 1{τ≥σn−k+1}vk−1

(
Φσn−k+1

))]
By Lemma 3.6, there is an Fσn−k

-measurable random variable Rn−k such that τ ∧ σn−k+1 =

(σn−k + Rn−k) ∧ σn−k+1 P0-almost surely on {τ ≥ σn−k}. By the strong Markov property

Eφ
0

{
1{τ≥σn−k}Jvk−1(Rn−k,Φσn−k

)
}
≥ Eφ

0

[
1{τ≥σn−k}vk

(
Φσn−k

)]
. From (A.6) and (A.7)

Eφ
0

[∫ τ∧σn

0

g
(
Φt

)
dt+ h

(
Φτ∧σn

)]
≥ RHSk−1 = Eφ

0

[∫ τ∧σn−k

0

g
(
Φt

)
dt+ 1{τ<σn−k}h

(
Φτ

)]
+RHS

(2)
k−1 ≥ Eφ

0

[∫ τ∧σn−k

0

g
(
Φt

)
dt+ 1{τ<σn−k}h

(
Φτ

)
+ 1{τ≥σn−k}vk

(
Φσn−k

)]
= RHSk.

This completes the proof of (A.6) by induction on k, and (A.5) follows by setting k = n+ 1

in (A.6). When we take the infimum of both sides in (A.5), we obtain Vn(·) ≥ vn(·), n ≥ 1.

The opposite inequality Vn(·) ≤ vn(·), n ≥ 1 follows from (3.9) since every F-stopping time

Sε
n is less than or equal to σn, P0-a.s by construction. Therefore, we only need to establish

(3.9). We will prove it by induction on n ≥ 1. For n = 1, the lefthand side of (3.9) becomes

Eφ
0

[∫ Sε
1

0

g
(
Φt

)
dt+ h

(
ΦSε

1

)]
= Eφ

0

[∫ rε
0(φ)∧σ1

0

g
(
Φt

)
dt+ h

(
Φrε

0(φ)∧σ1

)]
= Jv0(r

ε
0(φ), φ).

Since Jv0(r
ε
0(φ), φ) ≤ J0v0(φ) + ε by the definition of rε

0(·, ·) and Remark 3.2, (3.9) holds for

n = 1.

Suppose that (3.9) holds for every ε > 0 for some n ∈ N. We will prove that it also holds

when n is replaced with n+1. Since Sε
n+1∧σ1 = r

ε/2
n

(
Φ0

)
∧σ1, P0-a.s., by the strong Markov

property Eφ
0

[∫ Sε
n+1

0
g
(
Φt

)
dt+ h

(
ΦSε

n+1

)]
equals

Eφ
0

[∫ r
ε/2
n (φ)∧σ1

0

g
(
Φt

)
dt+ 1{rε/2

n (φ)<σ1}
h
(
Φ

r
ε/2
n (φ)

)]
+ Eφ

0

[
1{rε/2

n (φ)≥σ1}
fn

(
Φσ1

)]
where fn(φ) , Eφ

0 [
∫ S

ε/2
n

0
g(Φt)dt+ h(Φ

S
ε/2
n

)] ≤ vn(φ) + ε
2

by the induction hypothesis. There-

fore, it is less than or equal to Jvn(r
ε/2
n (φ), φ) ≤ vn+1(φ) + ε/2 by the definition of r

ε/2
n and

Remark 3.2. Therefore, (3.9) holds when n is replaced with n+ 1. �
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Proof of Proposition 3.7. The first claim follows immediately from Propositions 3.1 and

3.5. For the second claim, since the sequence {vn(·)}n≥0 is decreasing and bounded by

Proposition 3.4, the dominated convergence theorem implies

V (φ) = v(φ) = inf
n≥1

vn(φ) = inf
n≥1

J0vn−1(φ) = inf
n≥1

inf
t≥0

Jvn−1(t, φ) = inf
t≥0

inf
n≥1

Jvn−1(t, φ)

= inf
t≥0

[∫ t

0

e−λ0u[g + λ0 · Sv]
(
x(u, φ)

)
du+ e−λ0th

(
x(t, φ)

)]
= J0v(φ) = J0V (φ).

Let U : R+ → R be a solution of U = J0U smaller than or equal to h. Since U ≤ h,

we have U = J0U ≤ J0h = v1 by Remark 3.3. Assume U ≤ vn for some n ≥ 0, then

similarly U = J0U ≤ J0vn = vn+1. By induction we have U ≤ vn, for every n ≥ 1, implying

U ≤ limn→∞ vn = V . �

Proof of Lemma 3.8. Let us fix a constant u ≥ t and φ ∈ R+. Then

(A.8) Jw(u, φ) = Eφ
0

[∫ u∧σ1

0

g(Φs)ds+ 1{u<σ1}h(Φu) + 1{u≥σ1}w(Φσ1)

]
= Eφ

0

[∫ t∧σ1

0

g(Φs)ds+ 1{u<σ1}h(Φu) + 1{u≥σ1}w(Φσ1)

]
+ Eφ

[
1{σ1>t}

∫ u∧σ1

t

g(Φs)ds

]
.

On the event {σ1 > t}, we have u∧ σ1 = t+ [(u− t)∧ σ1 ◦ θt]. Therefore, the strong Markov

property of Φ applied to the second integral above gives

(A.9) Eφ
0

[
1{σ1>t}

∫ u∧σ1

t

g(Φs)ds

]
= Eφ

0

[
1{σ1>t}EΦt

0

[∫ (u−t)∧σ1

0

g(Φs)ds

]]
= Eφ

0

[
1{σ1>t}

(
Jw(u− t,Φt)− EΦt

0

[
1{u−t<σ1}h(Φu−t) + 1{u−t≥σ1}w(Φσ1)

] )]
= e−λ0t Jw

(
u− t, x(t, φ)

)
− Eφ

0

[
1{u<σ1}h(Φu)

]
− Eφ

0

[
1{σ1>t}1{u≥σ1}w(Φσ1)

]
.

The second equality follows from the definition of Jw in (3.3); the third from (2.10) and the

strong Markov property. Simplifications after substituting (A.9) into (A.8) give Jw(u, φ) =

Jw(t, φ) + e−λ0t
[
Jw
(
u− t, x(t, φ)

)
− h
(
x(t, φ)

)]
. Finally, taking the infimum of both sides

over u ∈ [t,+∞] gives (3.10). �

Proof of Corollary 3.9. Let us fix φ ∈ R+, and denote rn(φ) by rn. By Remark 3.2, we

have Jvn(rn, φ) = J0vn(φ) = Jrnvn(φ).

� Suppose first rn <∞. Since J0vn = vn+1, taking t = rn and w = vn in Lemma 3.8 gives

Jvn(rn, φ) = Jrnvn(φ) = Jvn(rn, φ) + e−λ0rn

[
vn+1(x(rn, φ))− h

(
x(rn, φ)

)]
.

Therefore, vn+1(x(rn, φ)) = h
(
x(rn, φ)

)
.
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If 0 < t < rn, then Jvn(t, φ) > J0vn(φ) = Jrnvn(φ) = Jtvn(φ) since u 7→ Juvn(φ) is

nondecreasing. Taking t ∈ (0, rn) and w = vn in Lemma 3.8 imply

J0vn(φ) = Jtvn(φ) = Jvn(t, φ) + e−λ0t
[
vn+1(x(t, φ))− h

(
x(t, φ)

)]
.

Therefore, vn+1(x(t, φ)) < h
(
x(t, φ)

)
for every t ∈ (0, rn), and (3.11) follows.

� Suppose now that rn = ∞. Then we have vn+1(x(t, φ)) < h
(
x(t, φ)

)
for every t ∈

(0,∞) by the same argument in the last paragraph above. Hence, {t > 0 : vn+1(x(t, φ)) =

h
(
x(t, φ)

)
} = ∅, and (3.11) still holds. �

Proof of Proposition 3.12. First, let us show (3.18) for n = 1. Fix ε ≥ 0 and φ ∈ R+.

By Lemma 3.6, there exists a constant u ∈ [0,∞] such that Uε ∧ σ1 = u ∧ σ1. Then

Eφ
0 [MUε∧σ1 ] = JV (u, φ) + e−λ0u

[
V
(
x(u, φ)

)
− h
(
x(u, φ)

)]
= JuV (φ),(A.10)

where the first equality follows from (3.3) and (2.10), and the second from (3.13).

Fix any t ∈ [0, u). By (3.13) and (2.10),

JV (t, φ) = JtV (φ)−e−λ0t
[
V (x(t, φ))−h

(
x(t, φ)

)]
≥ J0V (φ)−Eφ

0

[
1{σ1>t} (V (Φt)− h(Φt))

]
.

On the event {σ1 > t}, we have Uε > t (otherwise, Uε ≤ t < σ1 would imply Uε = u ≤ t,

which contradicts with initial choice of t < u). Thus, V (Φt) < h(Φt) − ε on {σ1 > t}, and

JV (t, φ) > J0V (φ)+ ε e−λ0t ≥ J0V (φ) for every t ∈ [0, u). Therefore, J0V (φ) = JuV (φ), and

(A.10) implies Eφ
0 [MUε∧σ1 ] = JuV (φ) = J0V (φ) = V (φ) = Eφ

0 [M0]. This completes the proof

of (3.18) for n = 1.

Now suppose that (3.18) holds for some n ≥ 1, and let us show the same equality for n+1.

Note that Eφ
0 [MUε∧σn+1 ] = Eφ

0 [1{Uε<σ1}MUε ] + Eφ
0 [1{Uε≥σ1}MUε∧σn+1 ] equals

Eφ
0

[
1{Uε<σ1}MUε + 1{Uε≥σ1}

∫ σ1

0

g(Φs)ds

]
+Eφ

0

[
1{Uε≥σ1}

{∫ t

σ1

g(Φs)ds+ V (Φt)
}∣∣∣

t=Uε∧σn+1

]
.

Since Uε ∧ σn+1 = σ1 + [(Uε ∧ σn) ◦ θσ1 ] on the event {Uε ≥ σ1}, the strong Markov property

of Φ at the stopping time σ1 and the induction hypothesis imply that the last expectation

equals EΦσ1
0

[∫ Uε∧σn

0
g(Φs)ds+ V (ΦUε∧σn)

]
= V (Φσ1), and Eφ

0 [MUε∧σn+1 ] = Eφ
0 [1{Uε<σ1}MUε ]+

Eφ
0 [1{Uε≥σ1}Mσ1 ] = Eφ[MUε∧σ1 ] = Eφ[M0], where the last equality was proved above. This

concludes the proof of the induction step. �

Proof of Proposition 3.13. Recall from Propositions 3.4 and 3.7 that −b ≤ V (·) ≤ h(·) ≤
0. Since g(·) ≥ 1, using (3.18) we have 0 ≥ V (φ) = Eφ

0

[
V (ΦUε∧σn) +

∫ Uε∧σn

0
g(Φs)ds

]
≥

Eφ
0 [−b+ Uε ∧ σn] . So b ≥ Eφ

0 [Uε ∧ σn] for every n ≥ 1, and Uε has finite expectation by the
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monotone convergence theorem. For the second claim, note that the sequence of random

variables
∫ Uε∧σn

0
g(Φs)ds+ V (ΦUε∧σn) ≥ −b, n ≥ 1 is bounded from below. Since Uε is finite

P0-a.s., the remark before Proposition 3.13, (3.18) and Fatou’s Lemma give the inequality

V (φ) ≥ Eφ
0

[∫ Uε

0
g(Φs)ds+ 1{Uε<∞}V (ΦUε)

]
, which is equal to

Eφ
0

[∫ Uε

0

g(Φs)ds+ 1{Uε<∞}h(ΦUε)

]
+ Eφ

0

[
1{Uε<∞}

(
V (ΦUε)− h(ΦUε)

)]
≥ Eφ

0

[∫ Uε

0

g(Φs)ds+ 1{Uε<∞}h(ΦUε)

]
− ε for every φ ∈ R+. �

Proof of Proposition 3.14. It is enough to prove only for n = 1 that (3.19) holds for some

k ≥ 1 and p ∈ (0, 1). Indeed, if (3.19) holds for some n ≥ 1, then the strong Markov property

will imply that Pφ
0

{
τ̂ ≥ σ(n+1)k

}
= Eφ

0

[
1{τ̂≥σnk}P

Φσnk
0 {τ̂ ≥ σk}

]
≤ Pφ

0 {τ̂ ≥ σnk} · p ≤ pn+1.

If Φ0 = φ /∈ (φ0, φ1), then clearly Pφ
0 {τ̂ ≥ σm} = 0 for every m ≥ 1, and the inequal-

ity (3.19) holds for n = 1 and for any k ≥ 1 and p ∈ (0, 1). Suppose that Φ0 = φ ∈
(φ0, φ1), and λ1 > λ0. In terms of the exit time T (φ, φ0) , inf {t ≥ 0; x(t, φ) ≤ φ0} =

− ln(φ0/φ)/(λ1 − λ0) of the deterministic path t 7→ x(t, φ) in (2.11), Pφ
0 {τ̂ ≥ σ1} = 1 −

Pφ
0 {τ̂ < σ1} equals

1− Pφ
0 {T (φ, φ0) < σ1} = 1− e−λ0T (φ,φ0) = 1−

(
φ0

φ

)λ0/(λ1−λ0)

≤ 1−
(
φ0

φ1

)λ0/(λ1−λ0)

,

since the first arrival time σ1 of X has exponential distribution with rate λ0 under P0. Hence,

if λ1 > λ0, then (3.19) holds for n = 1 with k = 1 and p = 1− (φ0/φ1)
λ0/(λ1−λ0) ∈ (0, 1).

If λ1 = λ0, then Φ stays constant between jumps and T (φ, φ0) = ∞, and a new argument

is needed. If the distributions ν0(·) and ν1(·) are not identical, then ν0{y ∈ Rd : f(y) 6=
1} > 0 in (2.2), and the identity

∫
Rd f(y)ν0(dy) = 1 implies that there is some δ > 0

such that P0{f(Y ) ≥ 1 + δ} = ν0

{
y ∈ Rd : f(y) ≥ 1 + δ

}
> 0. Fix such δ and define

k , inf {m ≥ 1 : (1 + δ)m ≥ φ1/φ0} < ∞. Finally, the dynamics of Φ in (2.10) imply that

{τ̂ ≥ σk} ⊆ Ω \
(⋂k

i=1 {f(Yi) ≥ 1 + δ}
)

for every Φ0 = φ ∈ (φ0, φ1), and Pφ
0 {τ̂ ≥ σk} ≤ p ,

1−(P0 {f(Y ) ≥ 1 + δ})k ∈ (0, 1). This completes the proof of (3.19) for n = 1 if λ1 = λ0. �

Proof of Corollary 4.3. (i) Necessity is obvious. Since V (·) ≤ Vn(·) ≤ V1(·) ≤ h(·), it

is enough to prove the sufficiency when V1(b/a) = h(b/a). This implies V1(·) = h(·) on

[0, ξ] ∪ {b/a} ∪ [ξ,∞) by Proposition 4.1. But the latter and the concavity imply that

V1(·) = h(·) everywhere. If Vn(·) = h(·) for some n ≥ 1, then Vn+1(·) = J0Vn(·) = J0h(·) =

V1(·) = h(·). By induction Vn(·) = h(·) for every n ≥ 1, and V (·) = limVn(·) = h(·).
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(ii) If λ1 ≤ (1/a) + (1/b), then the righthand side of (4.7) equals zero when φ = b/a, and

t 7→ ϕ(t, b/a) is nondecreasing. Therefore, V (b/a) ≥ inft≥0 ϕ(t, b/a) = ϕ(0, b/a) = h(b/a) by

(4.4). Thus V (b/a) = h(b/a), and the conclusion follows from the first part.

(iii) Since h(·) is concave, we have Sh(φ) ≤ H(φ) , h((λ1/λ0)φ) by Jensen’s inequality.

If T , T (b/a, [λ0/λ1] · [b/a]) as in (4.5), then V1(b/a) = v1(b/a) = inft∈[0,∞] Jh(t, b/a) ≤

inf
t≤T

[∫ t

0

e−λ0u [g + λ0 ·H] (x(u, b/a))du+ e−λ0th (x(t, b/a))

]
=

1

λ0

+
b

aλ1

+ inf
t≤T

ϕ(t),

where ϕ(t) , e−λ0t [−(1/λ0)− b] + e−λ1t [−(b/(aλ1)) + b]. If (1/a) + (1/b) < λ1 − λ0, then

ϕ′(0) = 1 + λ0b + (b/a)− bλ1 < 0. Hence ϕ(·) is strictly decreasing in the neighborhood of

t = 0, and V (b/a) < (1/λ0)+ (b/(aλ1))+ϕ(0) = 0−h(b/a). Therefore, b/a ∈ C1 ⊆ Cn ⊆ C

for every n ≥ 1 are not empty. �
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