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Abstract. The problem of detection and diagnosis of an unobservable change in the dis-
tribution of a random sequence is studied via a hidden Markov model approach. The
formulation is Bayesian, on-line, discrete-time, allowing both single- and multiple- disorder
cases, dealing with both i.i.d. and dependent observations scenarios, allowing for statistical
dependencies between the change-time and change-type in both the observation sequence
and the risk structure, and allowing for general discrete-time disorder distributions. Sev-
eral of these factors provide useful new generalizations of the sequential analysis theory for
change detection and/or hypothesis testing, taken individually. In this paper, a unifying
framework is provided that handles each of these considerations not only individually, but
also concurrently. Optimality results and optimal decision characterizations are given as well
as detailed examples that illustrate the myriad of sequential change detection and diagnosis
problems that fall within this new framework.

1. Introduction, contributions, and related work

Suppose that we observe sequentially the random variables X1, X2, . . . whose finite-di-

mensional distribution changes at an unobservable disorder time T due to an unobservable

cause A, which represents one of several competing risks. Our objective is to detect quickly

this disorder and determine accurately its cause based only on the observation sequence.

We approach this problem by modeling in a Bayesian framework the disorder time T ,

its cause A, and the distribution of the observation sequence X := {Xt; t ≥ 1}, as func-

tionals of an underlying hidden Markov chain Y . We derive an optimal solution and useful

characteristics of its structure. We show how the classical sequential change detection and

hypothesis-testing problems and recent extensions fit this formulation. Furthermore, we il-

lustrate how this framework provides a foundation for the study of an expansive range of

new sequential analysis problems.

This problem has been studied extensively in very restricted forms under headings such

as sequential change detection and sequential (multiple) hypothesis testing, employing a

variety of approaches, with numerous cited applications, including fault detection and isola-

tion in industrial processes, target detection and identification in national defense, pattern
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recognition and machine learning, radar and sonar signal processing, seismology, speech and

image processing, biomedical signal processing, finance, and insurance. Foundational studies

include the non-Bayesian (minimax) formulation proposed by Lorden [21] and the Bayesian

formulation proposed by Shiryayev [27] for sequential change detection and the papers of

Wald and Wolfowitz [28] and Arrow, Blackwell, and Girshick [1] on sequential hypothesis

testing. We refer the reader to Basseville and Nikiforov [3], Dragalin, Tartakovsky, and

Veeravalli [10, 11], and Lai [17, 19] and the references therein for detailed background on

these topics, recent developments, and discussion of applications. Despite the progress that

has been made in these areas, the literature offers few non-asymptotic optimality results

and provides for the most part very limited models of the general problem, and hence many

important considerations have remained open. In this paper we provide a comprehensive

formulation that addresses such considerations.

The contributions of this paper and its connection to the literature are detailed below.

The organization of the paper is outlined in Section 1.6.

1.1. General disorder distributions. Almost all Bayesian approaches to sequential change

detection and/or sequential hypothesis testing have been limited to the (zero-modified) geo-

metric prior distribution for the disorder time in discrete-time settings (or its continuous-time

analog of the exponential distribution for continuous-time frameworks). This is due primarily

to the memoryless property of the geometric distribution which lends readily to a Markov-

ian sufficient statistic that can be used, for example, in an optimal stopping framework. A

geometric disorder time can be a reasonable assumption in some cases, such as in modeling

the lifetime of a highly reliable system. However, in many cases the disorder distribution

of interest cannot be approximated adequately by a geometric distribution. In fact, the

disorder is often the result of several competing risks, and hence the disorder time depends

on some underlying root cause, which cannot be captured in general with the geometric

assumption. Such dependencies arise frequently in a variety of applications; see Crowder [8]

for an overview. In this paper we provide an optimal solution for more general disorder

distributions through the use of phase-type representations. See Examples 1, 2, and 3 of

Section 2 for more details.

1.2. Statistically dependent disorder time and its cause. Just as it is natural to

expect consequences of the disorder to depend on its cause, it is also of interest to diagnose

the underlying cause of the disorder in addition to detecting when it happens. Yet, the

literature has been sparse along this direction. The first results regarding the extension of the

sequential change detection problem to include the diagnosis task are given by Nikiforov [25]

and Lai [18] in a non-Bayesian framework. Dayanik, Goulding, and Poor [9] study the

extension in a Bayesian framework, albeit under the assumption of statistical independence

between the disorder and its cause. However, not only may the disorder be statistically

dependent on its cause, but also the detection delay cost (as well as the false alarm and
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misdiagnosis costs) may depend on the cause of the disorder. In this paper we incorporate

such dependencies and their expanded risk structure in a Bayesian framework for the joint

problem of detection and diagnosis; see Remark 1 and Examples 2 and 4 of Section 2.

1.3. Multiple regime changes. The on-line change detection and hypothesis testing lit-

erature has focused on models that recognize only a single abrupt change in the distribution

of observations. This restriction to a single change (i.e., a “two-regime” model) is oversim-

plifying and inappropriate for virtually all real applications. In addition, the restriction to

an abrupt change can be unsuitable since gradual changes in a system’s performance are

often more realistic. The solution we present in this paper applies, with or without these

restrictions, to the separate problems of on-line change detection and hypothesis testing as

well as the joint problem of detection and diagnosis; see Example 4 of Section 2 for more

details.

1.4. Markov channels with noise. The Bayesian on-line change detection and hypothesis

testing literature has focused much attention on the case of i.i.d. observations within each

regime. An exception is a paper by Yakir [29] that gives a solution for the quickest detection

of a single abrupt unobservable change in the transition matrix of a Markov chain based

on sequential observations of the states of the chain, where the change time has a (zero-

modified) geometric prior distribution. Our model includes that solution as a special case

but also allows for generalizations beyond its scope, such as “noisy” observations of the chain

(see Example 5 of Section 2), general disorder distributions, multiple regime changes, and

several ultimate regimes.

1.5. Hidden Markov models. The observation sequence X together with its modulating

unobservable Markov chain Y forms a doubly stochastic process known as a hidden Markov

model. Such models have appeared in an increasing variety of applications, such as digital

communications, economics, molecular biology, speech recognition, etc. However, the main

focus has been on the inference techniques for the hidden state, while the detection and

diagnosis problem has received much less attention except in simple models. An exception is

a recent paper by Fuh [12] that studies the detection problem in a non-Bayesian framework.

In the current paper, we solve the joint detection and diagnosis problem for a hidden Markov

model in a Bayesian framework.

1.6. Organization of the paper. In Section 2 we formulate precisely the problem and

illustrate its flexibility on a variety of examples. In Section 3 we carry out a Bayesian

posterior analysis and derive an optimal solution to the problem. In Section 4 we provide

numerical illustrations of the optimal sequential decision strategy. Proofs of selected results

are deferred to the appendix.



4 SAVAS DAYANIK AND CHRISTIAN GOULDING

2. Problem description

Let Y = {Yt; t ≥ 0} be a time-homogeneous Markov chain on some probability space

(Ω, F , P) with finite state space Y , initial state distribution η, and one-step transition ma-

trix P . Suppose that Y1, . . . ,Ya are a closed (but not necessarily irreducible) mutually

disjoint subsets of the state space Y , and the collection Y0 = Y \
⋃a

k=1 Yk of the remaining

states does not contain any closed sets of Y ; in other words, every state in Y0 is transient.

The submatrices of P corresponding to subsets Y0,Y1, . . . ,Ya are denoted by P0, P1, . . . , Pa,

respectively, and the submatrices Q1, . . . , Qa denote the transition probabilities from Y0 into

Y1, . . . ,Ya, respectively:

Y0 Y1 Y2 . . . Ya

P =


P0 Q1 Q2 Qa

P1

P2 . . .
...

. . .

Pa


Y0

Y1

Y2

...

Ya

...

Y1

Y2

Ya
Y0

Y3

(2.1)

Since Y has finitely many states, it leaves the transient set Y0 eventually and is absorbed

into one of the closed sets Y1, . . . ,Ya almost surely. Let

T := min{t ≥ 0; Yt /∈ Y0} and A := arg{j = 1, . . . , a; YT ∈ Yj} on {T < ∞}

be the absorption time and the closed set that absorbs the Markov chain Y , respectively.

Let P(y, dx), y ∈ Y be probability measures on some common measurable space (X , X ).

They always admit density functions f(y, x), y ∈ Y with respect to some sigma-finite mea-

sure ν(dx) on (X , X ); for example, we can take ν(dx) =
∑

y∈Y P(y, dx). Let X = {Xt; t ≥
1} be a new stochastic process on the same probability space (Ω, F , P) such that

P{Y0 = y0, Y1 = y1, . . . , Yt = yt, X1 ∈ X1, . . . , Xt ∈ Xt} = η(y0)
t∏

n=1

P (yn−1, yn)P(yn,Xn)

for every t ≥ 1, y0, y1, . . . , yt ∈ Y , and X1, . . . ,Xt ∈ X . Namely, given Y1, . . . , Yt, the random

variables X1, . . . , Xt are independent with conditional distributions P(Y1, dx), . . . , P(Yt, dx)

on (X , X ), respectively; in other words, Y modulates the distribution of the process X.

However, the Markov chain Y is unobservable in general. The problem is to detect the

absorption time T of the hidden Markov chain Y into one of the closed sets Y1, . . . ,Ya as

soon as it happens and, at the same time, to identify the absorbing set A as accurately as

possible based only on the observations of the process X.

More precisely, if F = {Ft}t≥0 denotes the observation filtration with

F0 = {∅, Ω} and Ft = σ{X1, . . . , Xt}, t ≥ 1,(2.2)
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then a decision rule (τ, δ) is by definition a pair consisting of an F-stopping time τ that

indicates the absorption time and a {1, . . . , a}-valued Fτ -measurable random variable δ

that identifies the absorbing set. We denote by ∆ the collection of decision rules and define

the Bayes risk

u(τ, δ) := E

[
∞∑

t=0

c(Yt)1{t<τ} + 1{τ<∞}C(Yτ , δ)

]
for every (τ, δ) ∈ ∆(2.3)

as the sum of the expected detection delay cost E
[∑∞

t=0 c(Yt)1{t<τ}
]

and the expected iden-

tification cost E
[
1{τ<∞}C(Yτ , δ)

]
for some known penalty functions c : Y 7→ [0,∞) and

C : Y × {1, . . . , a} 7→ [0,∞). Then the objective is (i) to calculate the minimum Bayes risk

u∗ := inf
(τ,δ)∈∆

u(τ, δ),

and (ii) to find a decision rule (τ, δ) ∈ ∆ whose Bayes risk u(τ, δ) attains the minimum u∗,

if it exists.

Remark 1. Perhaps it is more natural to express the expected cost of delay in detecting

the time T that the Markov chain Y exits the set Y0 by E
[∑∞

t=0 c(Yt)1{T≤t<τ}
]
. However,

this follows easily from our definition E
[∑∞

t=0 c(Yt)1{t<τ}
]

of expected delay cost if we set

c(y) = 0 for every y ∈ Y0, because Yt ∈ Y0 on {t < T}. In fact, if

c(y) =

{
0, y ∈ Y0,

c, y ∈ Y \ Y0,
and C(y, j) =

{
1, y ∈ Y0, 1 ≤ j ≤ a,

C̃(i, j), y ∈ Yi, 1 ≤ i ≤ a, 1 ≤ j ≤ a

for some known constant c > 0 and function C̃ : {1, . . . , a} × {1, . . . , a} 7→ [0,∞) satisfying

C̃(i, i) = 0 for every i ∈ {1, . . . , a}, then the Bayes risk u(τ, δ) of every decision rule (τ, δ) ∈ ∆

simplifies to

P{τ < T}+ c E[(τ − T )+] + E
[
1{T≤τ<∞}C̃(A, δ)

]
,(2.4)

which can be regarded as a sum of expected false-alarm, detection-delay, and misdiagnosis

penalties, respectively.

Under this Bayes risk in (2.4), Dayanik et al. [9] study the joint detection and identification

of a disorder time with zero-modified geometric prior distribution and a disorder type with a

finite prior distribution independent of the disorder time. More precisely, they assume that

one of a alternatives, labeled 1, . . . , a, occur with probabilities α = (α1, . . . , αa) after a sudden

change at some unobservable time that is zero with some probability q and has otherwise

a geometric distribution with “success” parameter p independently of the alternative. This

change or disorder time is said to have zero-modified geometric distribution with parameters

q and p. In terms of the notation and Markov model of disorder above, Dayanik et al.

[9] have a hidden Markov chain Y on Y = {0, 1, . . . , a} with initial state distribution η =
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(1− q, qα1, . . . , qαa) and one-step transition function

P =


1− p pα1 . . . pαa

1
. . .

1

 ,

01− q

1

qα1 qα2

12 a

qαa

1· · ·

pαapα1

1

1− p

pα2

where T is the first time the chain enters into one of the closed sets Yi = {i}, i = 1, . . . , a,

while A = YT . It is easy to check that the disorder time T and disorder type A are inde-

pendent and have the prescribed distributions. Dayanik et al. [9] describe a solution for this

special case and Bayes risk in (2.4).

Unfortunately, the solution obtained by Dayanik et al. [9] does not extend when the

disorder time T and change type A are not statistically independent. For example, suppose

that the change type has distribution α on {1, . . . , a} as before, but for each i = 1, . . . , a,

the disorder time has conditionally zero-modified geometric distribution with parameters qi

and pi given that A = i. This example falls within the framework of the current paper: if Y

is the Markov chain on Y = {(1, 0), (2, 0), . . . , (a, 0), (1, 1), (2, 1), . . . , (a, 1)} with initial state

distribution

η = ((1− q1)α1, . . . , (1− qa)αa, q1α1, . . . , qaαa)

and one-step transition function

P =



1− p1 p1

. . . . . .

1− pa pa

1
. . .

1


,

1− pa

q1α1 qaαa

11

(1− q1)α1 (1− qa)αa

1− p1

· · ·

q2α2

1

1− p2

(1− q2)α2

(1, 0) (2, 0) (a, 0)

(1, 1) (2, 1) (a, 1)

p1 pap2

and if Y0 = {(i, 0) | 1 ≤ i ≤ a} and Yi = {(i, 1)} for i = 1, . . . , a, then T = min{t ≥ 0; Yt /∈
Y0} and A = YT have the prescribed joint distribution.

Various other examples are given below to illustrate further the versatility of the new

framework for detection and diagnosis of an unobservable change. Briefly, they illustrate (i)

how to work with phase-type distributions, which can approximate arbitrarily well any prior

distribution of a disorder time, (ii) how to model jointly a disorder time and its cause when

they are not statistically independent, (iii) how to incorporate cyclic shifts in the proneness

of a physical system to change, (iv) how to detect and diagnose the inception of a particular

regime when there are multiple serial regimes and/or several scenarios of regime succession,

(v) how to detect the onset of a gradual change, and (vi) how to detect a change in the
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transition matrix of a Markov chain, even with “noisy” observations. The solution of the

general problem will be presented in Section 3 after these motivational examples.

Example 1 (Phase-type distributed disorder times). Suppose that exactly one of the states

of the Markov chain Y is absorbing, and the others are transient. If a = 1, and Y1 contains

only the absorbing state, then Y0 = Y \ Y1 contains transient states, and T = min{t ≥
0; Yt /∈ Y0} is said to have a discrete phase-type distribution with representation (η0, P0),

where η0 is the restriction of the initial state distribution η of Y to the transient states in

Y0; see Neuts [23, 24], Latouche and Ramaswami [20], Bobbio et al. [5]. If we denote by

I, e, e1, e2, . . .(2.5)

an identity matrix, a column vector whose every entry is one, and unit column vectors, all

of whose dimensions will be clear from the context, then

P{T = 0} = 1− η0e and P{T = t} = η0P
t−1
0 Q1, t ≥ 1.(2.6)

The matrix I − P0 is invertible, and

∞∑
t=0

P t
0 = (I − P0)

−1, Q1 = e− P0e = (I − P0)e, and (I − P0)
−1Q1 = e;

see, for example, Çinlar [7, Chapter 6]. Therefore,

P{T < ∞} = 1− η0e +
∞∑

t=1

η0P
t−1
0 Q1 = 1− η0e + η0(I − P0)

−1Q1 = 1− η0e + η0e = 1,

P{T > t} = P{Yt ∈ Y0} = η0

∞∑
n=t+1

P n−1
0 Q1 = η0P

t
0(I − P0)

−1Q1 = η0P
t
0e, t ≥ 0,

ET =
∞∑

t=0

P{T > t} =
∞∑

t=0

η0P
t
0e = η0

∞∑
t=0

P t
0e = η0(I − P0)

−1e < ∞.

Every discrete distribution with finitely many atoms is a phase-type distribution. Sup-

pose, for example, that (p1, . . . , ps, p0) is a probability distribution on Y := {1, . . . , s, 0} for

some integer s ≥ 0. Let (Yt)t≥0 be a Markov chain on the state space Y with initial state

distribution η = (p1, . . . , ps, p0) and one-step transition matrix P all of whose entries are

zero except P (s, s− 1) = . . . = P (1, 0) = P (0, 0) = 1; see Figure 1. Then the first exit time

T = inf{n ≥ 0 : Yn /∈ Y0} of Y from Y0 := {1, . . . , s} has distribution (p1, . . . , ps, p0) on Y .

Such a distribution is a natural candidate as a prior distribution for the time of a disorder

in the arrival/demand process for services or products that have an expiration date, such as

the arrivals to motor vehicle service offices for the renewal of driver licenses expiring on a

fixed date or tax-software sales between its release time and April 15th of each year.

Example 2 (Statistically dependent disorder time and disorder cause). In many situations

it is natural to expect that the disorder time is determined partly by its cause. A typical
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ps−1

1 1 1 1
1s s− 1 s− 2 1 0· · ·

ps p1 p0ps−2

Figure 1. The state-diagram of the hidden Markov chain representing dis-

crete distribution (p1, . . . , ps, p0) on {1, . . . , s, 0} as a discrete phase-type dis-

tribution.

example in reliability is a mechanical system whose failure is a function of competing risks,

such as corrosion and random vibration. If failure occurs within a relatively short time,

then its cause may be most likely from random vibration. Indeed, it is reasonable to expect

that the tendency of failure due to random vibration stays constant over time whereas the

tendency of corrosion-based failure increases with age; hence, the failure time and its cause

are statistically dependent. We can incorporate such dependencies as follows.

Suppose that we are given the joint distribution

P{T = t, A = i}, t ≥ 0, i = 1, . . . , a

of the change time T and its cause A. We can construct the state-space Y =
⋃a

i=0 Yi, initial

state distribution η, and one-step transition matrix P of a Markov chain Y that models the

random variables T = min{t ≥ 0; Yt /∈ Y0} and A = arg{i = 1, . . . , a; YT ∈ Yi} as follows:

(i) Compute the marginal distribution of A; i.e.,

αi := P{A = i} =
∞∑

t=0

P{T = t, A = i}, i = 1, . . . , a.

(ii) Find a phase-type representation (η(i), P (i)) for the conditional change-time distri-

bution

P{T = t |A = i}, t ≥ 0 for each i = 1, . . . , a.

A phase-type distribution can be approximated to any distribution; see Johnson and

Taaffe [16] and Asmussen et al. [2]. See Horváth and Telek [15] for an algorithm de-

signed for fitting discrete phase-type distributions. See also Horton and Isensee [14]

for discussion of algorithms used in approximating discrete phase-type distributions.

(iii) Let the set Yi := {i} represent cause i, let the set Y(i)
0 consist of the states corre-

sponding to each phase-type representation (i.e., one state for each element of η(i))

for each i = 1, . . . , a, such that each of these sets are mutually disjoint, and define

the set Y0 := Y(1)
0 ∪ · · · ∪ Y(a)

0 .

(iv) Then form the initial state distribution and one-step transition matrix, respectively,

as

η = (α1η
(1), . . . , αaη

(a), α1(1− η(1)e), . . . , αa(1− η(a)e))

and
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Y(1)
0 · · · Y(a)

0 Y1 · · · Ya

P =



P (1) (I − P (1))e
. . . . . .

P (a) (I − P (a))e

1
. . .

1



Y(1)
0
...

Y(a)
0

Y1

...

Ya

.

Compare with the dependency formulation of Remark 1; see also Example 4 for an illus-

tration of this type of approach.

Example 3 (Cyclic disorder-time distributions). Cyclic disorder-time distributions arise in

many change-detection applications in which observations are modulated by regular cycles of

behavior. A basic example is machinery monitoring during daily peak and off-peak utilization

sub-periods, where the disorder tendency may be, for example, higher during peak sub-

periods.

Suppose that every period is divided into three sub-periods, labeled 1, 2, and 3. A disorder

may have happened already in the past with probability p0. Given that it has not happened

yet, it happens with probability θ ∈ [0, 1] some time in the next period. Conditionally on the

disorder happening in a given period, it happens in sub-period 1, 2, or 3 with probabilities

p1, p2, and p3, respectively, for some 0 ≤ p1, p2, p3 ≤ 1 such that p1 + p2 + p3 = 1. If time is

measured in the number of “sub-periods,” then the disorder time T has distribution

P{T = 0} = p0 and P{T = 3n + k} = (1− p0)(1− θ)nθpk, n ≥ 0, k = 1, 2, 3.(2.7)

This distribution is the same as that of the exit time of a suitable finite-state Markov

chain. More precisely, let (Yt)t≥0 be a Markov chain on the state space Y = {1, 2, 3, 0} with

initial state distribution η ≡ (1− p0, 0, 0, p0) and one-step transition matrix

P =


0 1− p̃1 0 p̃1

0 0 1− p̃2 p̃2

1− p̃3 0 0 p̃3

0 0 0 1

 , with P0 =

 0 1− p̃1 0

0 0 1− p̃2

1− p̃3 0 0

 , Q1 =

p̃1

p̃2

p̃3

 ,

whose entries are expressed in terms of the hazard probabilities

p̃1 := θp1, p̃2 :=
θp2

1− θp1

, p̃3 :=
θp3

1− θp1 − θp2

;

see also Figure 2(a). If Y0 := {1, 2, 3}, then the exit time T := inf{t ≥ 0 : Yt /∈ Y0} of the

Markov chain (Yt)t≥0 from Y0 is the same as its entrance time to the absorbing state 0, and

its distribution given by (2.6) can be shown to be the same as that in (2.7).
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1− p̃21− p̃3

p̃2

p̃3

p̃1

1

1− p̃1

0

2

3

1
1− η(0)

η(0)

0

0

2
0

1

p̃s

1

p̃i

00

p̃1

1− p̃11− p̃s

1− p̃2

1− p̃i−11− p̃i

p̃i+1 p̃i−1

i + 1

i

0

s

i− 1

1− p̃i+1

p̃2

0

0

η(0)

1− η(0)

(a) (b)

Figure 2. The state-diagrams of the Markov chain representing cyclic distri-

butions (a) in (2.7) and (b) in (2.8) as a discrete phase-type distributions.

In general, suppose that a period consists of s sub-periods, labeled 1, 2, . . . , s. A disorder

may happen in a given period with probability θ given that it has not yet happened. Con-

ditionally on that it has happened some time in a given period, it happens in sub-period

1, . . . , s respectively with probabilities p1, . . . , ps. If the probability that the disorder has

already happened in the past is p0, then the distribution of the disorder time T is

P{T = 0} = p0, P{T = sn + k} = (1− p0)(1− θ)nθpk, n ≥ 0, 1 ≤ k ≤ s,(2.8)

If Y := {1, 2, . . . , s, 0} and Y0 := {1, 2, . . . , s}, then this is the same as the distribution of

the exit time T := inf{t ≥ 0 : Yt /∈ Y0} from Y0 of a Markov chain (Yt)t≥0 with state space

Y , initial state distribution η = (1−p0, 0, . . . , 0, p0), and one-step transition matrix P whose

nonzero entries P (0, 0) = 1, P (s, 0) = 1 − P (s, 1) = p̃s, P (i, 0) = 1 − P (i, i + 1) = p̃i,

1 ≤ i ≤ s are expressed in terms of the hazard probabilities

p̃i :=
θpi

1− θ
∑i−1

k=1 pk

, 1 ≤ i ≤ s

of the distribution (p0, p1, . . . , ps) on {0, 1, . . . , s}; see Figure 2(b) for the state diagram. Note

that if s = 1, then we must have p1 = 1, and the distribution in (2.8) of the disorder time T

becomes the zero-modified geometric distribution with success probability θ and probability

mass p0 at 0.

Example 4 (Detection and diagnosis when there are multiple regime changes). The sequen-

tial change detection and hypothesis testing literature deals almost exclusively with random

sequences that undergo only one regime shift. Accordingly, the natural goal in these studies

is to detect this sole change. However, it is frequently the case in real applications that the
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random sequence of interest may actually be subject to several successive regime shifts, and

the goal is to detect the occurrence of a particular shift, especially the first or last shift. For

instance, more than one characteristic of the sequence may be subject to change and each

of these changes need not occur simultaneously. Moreover, the occurrence of a change in

one characteristic does not necessarily preclude the other characteristics from changing in

the future, resulting in additional changes to the distribution of the ensuing observations.

So, if we are interested in detecting when at least one change has occurred, then we must

take into account the potential time-inhomogeneity of the observation process beyond the

first change whenever our decision is delayed. That is, the law of observations may continue

to change beyond the first disorder while we are still waiting to raise the alarm. This is

especially relevant if we are also interested in diagnosing the cause of the first change since

the diagnosis task does not discourage waiting and is likely to take more observations than

the detection task alone. Likewise, similar considerations are needed if we are interested in

detecting the last change (e.g., when the random sequence reaches stationarity). The follow-

ing cases illustrate how this departure from the “standard” assumption of a single change

falls within the framework of the current paper.

Quickest detection of the kth out of n successive regime shifts. Consider an ob-

servation process X := {Xt; t ≥ 1} that progresses through a series of n different probability

regimes whose durations form an unobservable sequence of nonnegative a.s.-finite random

variables S1, S2, . . . , Sn. Following the nth regime change the sequence X enters its final

regime and remains there forever. Let the beginning of each regime epoch be denoted by

the times

T0 ≡ 0 and Ti := S1 + · · ·+ Si, i = 1, . . . , n.

Suppose that conditionally on the disorder times T1, T2, . . . , Tn, the random variables X1, X2, . . .

are independent and have a common probability density, one of f(0, ·), . . . , f(n, ·), that de-

pends on the index of the most recent disorder:

independent given T1,T2,...,Tn︷ ︸︸ ︷
X1, . . . , XT1−1︸ ︷︷ ︸

∼f(0,·)

, XT1 , . . . , XT2−1︸ ︷︷ ︸
∼f(1,·)

, . . . , XTn−1 , . . . , XTn−1︸ ︷︷ ︸
∼f(n−1,·)

, XTn , XTn+1, . . .︸ ︷︷ ︸
∼f(n,·)

For a fixed k in {1, . . . , n}, the objective is to detect the kth change out of the n successive

regime changes as quickly as possible with a low frequency of false alarm based only on

observations of the process X.

Specifically, suppose that the regime durations S1, . . . , Sn are independent random vari-

ables and that the duration Si of the ith regime has the zero-modified geometric distribution

with parameters qi and pi, i = 1, . . . , n. Let Y = {Yt; t ≥ 0} be the counting process

Yt :=
n∑

i=1

1[0,t](Ti), t ≥ 0,
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representing the regime the process X is in at time t. The process Y is unobservable and is

a Markov chain with state space Y := {0, 1, 2, . . . , n}, initial state distribution η given by

η(y) = (1− qy+1)
∏

1≤i≤y

qi, y ∈ Y

and one-step transition function P given by

P (y, y + k) =


0, if k < 0

1− py+1, if k = 0

py+1(1− qy+k+1)
∏

2≤i≤k

qy+i, if 1 ≤ k ≤ n− y

 , y ∈ Y ,

where qn+1 := pn+1 := 0 and
∏

i∈∅ ≡ 1.

If we partition Y into the sets Y0 := {0, 1, 2, . . . , k− 1} and Y1 := Y \Y0, then this model

fits the framework of the current paper, where the time of the kth change is given by

T := min{t ≥ 0 |Yt /∈ Y0} = Tk,

and index A equals 1 on {T < ∞}. Note that we can set

0 = c(0) = c(1) = · · · = c(k − 1) < c(k) < · · · < c(n) < ∞

to incorporate an increasing delay penalty for each successive regime encountered after the

kth change.

This multiple-change formulation is useful in a variety of applications. For example,

suppose that the observation process X consists of measurements of specific protein levels

present in a sequence of blood samples and that based on these samples we are to detect the

onset of a certain epoch in the progression of a disease in order to initiate an appropriate

treatment (or to discontinue treatment). As another example, suppose we monitor the

output of a deteriorating system with three working states denoted by “good=0,” “fair=1,”

and “poor=2,” and a failed state “fail=3.” In such a system, the tendency for the system

to deteriorate can often accelerate as the state of the system worsens. That is, starting with

a system in good condition, the durations S1, S2, and S3 could be stochastically decreasing;

i.e., p1 < p2 < p3. In this case the increasing tendency of occurrence of additional changes

beyond the first change can be a significant barrier to applying a “two-regime” model for

detecting when the system first falls below good condition.

Detection of the onset of a gradual change. Suppose that when the disorder happens

it does not completely manifest itself in the observation sequence but instead it gradually

works its way into the system. This can be seen as a special case of the multiple change

formulation above, where we are interested in the first change of many successive changes that

occur quickly but with gradual effects. For instance, in the example of quickest detection

of the kth out of n regime changes above, set p1 to a very small value and p2, . . . , pn to

relatively large values and set f(i − 1, ·) ≈ f(i, ·), 1 ≤ i ≤ n, but with relatively dissimilar
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f(0, ·) and f(n, ·), such that once the first change happens the second through nth changes

occur quickly thereafter but with only gradual changes to the distribution of observations

for each regime change.

Detection and diagnosis of drift and/or volatility changes in a random walk.

Consider a stochastic process Z := {Zt; t ≥ 0} that satisfies the recursive relationship

Zt = Zt−1 + µ + σWt, t ≥ 1,

where the stochastic process W = {Wt; t ≥ 1} is an i.i.d. mean-zero variance-one white noise

sequence with distribution w(·) independent of the random variable Z0. The process Z is

called a random walk with drift µ and volatility σ. Suppose that the drift µ is initially equal

to µ0 and then at some unobservable time T (µ) the drift changes to µ1. Similarly, suppose

that the volatility σ is initially equal to σ0 and then at some other unobservable time T (σ)

it changes to σ1. That is,

Zt − Zt−1 = (µ01{t<T (µ)} + µ11{t≥T (µ)}) + (σ01{t<T (σ)} + σ11{t≥T (σ)})Wt, t ≥ 1.

Accordingly, conditionally on the disorder times T (µ) and T (σ), the increments process X =

{Xt; t ≥ 1}, defined by Xt := Zt − Zt−1, t ≥ 1, forms a sequence of independent random

variables with conditional mean function µ(t) := E{Xt |T (µ), T (σ)} and conditional variance

function σ2(t) := Var{Xt |T (µ), T (σ)}, where

(µ(t), σ2(t)) =



(µ0, σ
2
0) on {t < T (µ) ∧ T (σ)}

(µ1, σ
2
0) on {T (µ) ≤ t < T (σ)}

(µ0, σ
2
1) on {T (σ) ≤ t < T (µ)}

(µ1, σ
2
1) on {T (µ) ∨ T (σ) ≤ t}


, t ≥ 1.

The problem is to detect a change immediately and determine its cause based only on

sequential observations of the increments Zt − Zt−1 =: Xt, t ≥ 1.

The process X goes through three different regimes: in the first regime (possibly of zero

duration) neither the drift nor volatility parameter has changed, in the second regime (pos-

sibly of zero duration) exactly one of either the drift or volatility parameter has changed,

and in the final regime both parameters have changed. Let the durations of the first and

second regimes be denoted by

S1 := T (µ) ∧ T (σ) and S2 := (T (µ) ∨ T (σ))− S1,

respectively, and let the ordering of the parameter changes be captured by the index

A := 1{T (µ)<T (σ)} + 2 · 1{T (µ)>T (σ)} + 3 · 1{T (µ)=T (σ)},

where the events {A = 1}, {A = 2}, and {A = 3} mean, respectively, that the drift

parameter changes before the volatility parameter, the drift parameter changes after the

volatility parameter, and both the drift and volatility parameters change simultaneously.
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For example, suppose that given A the change times T (µ) and T (σ) are conditionally

independent zero-modified geometric random variables. Then, the durations S1 and S2 and

the index A are dependent random variables such that

P{A = i} = αi, i = 1, 2, 3, where α1 + α2 + α3 = 1,

and conditionally on the index A, the durations S1 and S2 are independent with distributions

S1 ∼ zmgeom(q1, p11) and S2 ∼ geom(p12) on {A = 1},

S1 ∼ zmgeom(q2, p21) and S2 ∼ geom(p22) on {A = 2},

S1 ∼ zmgeom(q3, p31) and S2 ≡ 0 on {A = 3},

where zmgeom(qi, pi1) and geom(pi2) denote, respectively, the zero-modified geometric and

geometric distribution, whose parameters are determined by the distributions of T (µ) and

T (σ). Define the stochastic process Y = {Yt; t ≥ 0} by the sequence of random triples

Yt := (1{t≥T (µ)}, 1{t≥T (σ)}, A), t ≥ 0,

where the first component of each triple denotes the index (0 or 1) of the drift parameter,

the second component corresponds to the index (0 or 1) of the volatility parameter, and the

third component indicates whether the drift changes first (1), the volatility changes first (2),

or both change at the same time (3). Then the process Y is a (hidden) Markov chain on the

state space

Y := {(0, 0, 1), (0, 0, 2), (0, 0, 3), (1, 0, 1), (1, 1, 1), (0, 1, 2), (1, 1, 2), (1, 1, 3)}

with initial distribution

η = (α1(1− q1), α2(1− q2), α3(1− q3), α1q1, 0, α2q2, 0, α3q3)

and one-step transition matrix

(0, 0, 1) (0, 0, 2) (0, 0, 3) (1, 0, 1) (1, 1, 1) (0, 1, 2) (1, 1, 2) (1, 1, 3)

P =



1− p11 p11

1− p21 p21

1− p31 p31

1− p12 p12

1

1− p22 p22

1

1



(0, 0, 1)

(0, 0, 2)

(0, 0, 3)

(1, 0, 1)

(1, 1, 1)

(0, 1, 2)

(1, 1, 2)

(0, 1, 3)

.

To fit the formulation to the aforementioned objective, let Y0 := {(0, 0, 1), (0, 0, 2), (0, 0, 3)},
Y1 := {(1, 0, 1), (1, 1, 1)}, Y2 := {(0, 1, 2), (1, 1, 2)}, and Y3 := {(1, 1, 3)}, and define

T := min{t ≥ 0 |Yt /∈ Y0} = T (µ) ∧ T (σ).
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Then the relation A = arg{i = 1, 2, 3; YT ∈ Yi} holds on {T < ∞}, which completes the

formulation.

Note that this formulation allows for an extended parameter structure such that the drift

parameter value after the change can also depend on whether it changes first or second (and

similarly for volatility). So, not only does this formulation handle multiple changes, but also

it incorporates dependencies between the change time and change type at the same time.

This generalization also carries over to the cost structure since the delay cost can depend on

the order of the changes as well.

Many other structural change detection and diagnosis models can be formulated within

this framework, such as shifts in the parameters governing an auto-regressive or moving-

average time series model or regression models with unobservable structural breaks. See

Hackl and Westlund [13] for an annotated bibliography of studies on statistical analysis and

detection of structural changes.

Example 5 (Quickest detection of an unobservable change in the distribution of a Markov

chain). Consider a finite-state Markov chain M = {Mt; t ≥ 0} whose initial distribution and

one-step transition matrix change suddenly at some unobservable time T . Suppose that,

conditionally on the disorder time T , the Markov chain M is time-homogeneous before time

T with initial distribution µ and one-step transition matrix Q and is time-homogeneous

thereafter with initial distribution ρ and one-step transition matrix R:

Markov chain under µ,Q︷ ︸︸ ︷
M1, M2, . . . ,MT−1, MT , and

Markov chain under ρ,R︷ ︸︸ ︷
MT , MT+1, . . .

For example, consider a communications channel where a digital signal is transmitted ac-

cording to a Markov chain M and the problem is to detect quickly when the underlying

one-step transition matrix has changed from Q to R based only on observations received

from the transmission.

Yakir [29] gives an optimal decision rule for the corresponding quickest detection problem

under Shiryaev’s Bayes risk in (2.4) with a zero-modified geometric prior distribution for

the change time. However, that result requires perfect state knowledge, and hence, it does

not extend when there are imperfect observations of the Markov chain; i.e., noisy channels,

which are present in virtually all real applications. Also, it does not extend when the disorder

time is not zero-modified geometric nor when the one-step transition matrix can undergo

multiple successive changes and/or have several alternative change types. In contrast, the

framework of the current paper allows for each of these considerations. We illustrate below

how to handle the situation of noisy observations.

Noisy channels. Consider a communications channel that carries bits (0 or 1) transmit-

ted according to the Markov chain M on the state space {0, 1} whose initial distribution µ

and one-step transition matrix Q changes abruptly to ρ and R, respectively, at disorder time
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T . Let the process X = {Xt; t ≥ 0} denote the sequence of observations received via this

channel.

In a binary symmetric channel the bits are transmitted accurately with probability 1− β

and are otherwise flipped (i.e., 1 becomes 0 and 0 becomes 1) with probability β. That is,

P{Xt = 0 |Mt = 0} = P{Xt = 1 |Mt = 1} = 1− β and

P{Xt = 1 |Mt = 0} = P{Xt = 0 |Mt = 1} = β

where β is the (symmetric) bit error rate.

Let us define the process Y by

Yt :=
(
Mt, 1[0,t](T )

)
, t ≥ 0

on the state space Y := {(0, 0), (1, 0), (0, 1), (1, 1)} with the partition Y0 := {(0, 0), (1, 0)} and

Y1 := {(0, 1), (1, 1)}. Suppose the disorder time T has zero-modified geometric distribution

with parameters θ0 and θ, and

P{M0 = m0, M1 = m1, . . . ,Mn = mn, T = t}

=


θ0 ρ(m0)

∏
1≤k≤n

R(mk−1, mk), t = 0

(1− θ0)(1− θ)t−1θ µ(m0)
∏

1≤k≤t−1

Q(mk−1, mk)
∏

t≤l≤n

R(ml−1, ml), t ≥ 1

 .

It can be shown that the process Y is a Markov chain with initial distribution η := ((1 −
θ0)µ, θ0ρ) and one-step transition matrix

Y0 Y1

P :=

[
(1− θ)Q θR

0 R

]
Y0

Y1

,

where Q and R are known transition matrices on the state space {0, 1} of the Markov chain

M . In terms of the hidden Markov chain Y the distribution of the modulated observation

process X follows

f(y, x) = (1− β) 1{y(1)=x} + β 1{y(1) 6=x}, y ∈ Y , x ∈ {0, 1}.

Setting c(y) = c 1{y(2)=1} for some constant c > 0 and using the Bayes risk in (2.4) gives

Shiryaev’s quickest detection formulation for the binary symmetric channel. When the bit

error rate β is zero the observation process X coincides with the underlying state of the

Markov chain M and we can reduce the state-space of the model to recover the state-

dependent solution presented by Yakir [29].

Note that with simple modifications of the conditional density functions of the process X,

the bit error rate can be asymmetric in general and allowed to take different values before
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and after the disorder time: for example,

f(y, x) = (1− βy) 1{y(1)=x} + βy 1{y(1) 6=x}, y ∈ Y , x ∈ {0, 1},

where βy ∈ [0, 1], y ∈ Y . A variety of other noisy channels can be accommodated. For

example, suppose we have a binary erasure channel in which the bits are either received

correctly or are converted to an erasure denoted by the symbol �. Again, we need only to

modify appropriately the conditional density functions of the observation process X on its

expanded range {0, 1, �}. See MacKay [22, Chapter 9] for background on communication

over a noisy channel.

3. Posterior analysis and solution

For every t ≥ 0, let Πt = (Πt(y), y ∈ Y) be the row vector of the posterior probabilities

Πt(y) := P{Yt = y | Ft}, y ∈ Y

that the hidden Markov chain Y is in state y ∈ Y at time t given the history Ft of the

observation process X. For every vector g = (g(y), y ∈ Y), we shall denote by diag(g) the

diagonal matrix on Y whose yth diagonal entry is g(y). For every f : Y ×X 7→ R, we define

diag(f)(x) at every x ∈ X by setting g(y) = f(y, x), y ∈ Y above.

Proposition 2. (i) If for every t ≥ 1 we define nt : X t × Y 7→ R+ by

nt(x1, . . . , xt, y) :=
∑

y0,y1,...,yt−1∈Y

(
η(y0)

t−1∏
k=1

P (yk−1, yk)f(yk, xk)

)
P (yt−1, y)f(y, xt),

then it is the joint probability density function of X1, . . . , Xt, Yt on (X t × Y , X t ⊗ 2Y) with

respect to the product of t copies of the measure ν on (X , X ) and the counting measure on

(Y , 2Y), and

Πt(y) =
nt(X1, . . . , Xt, y)∑

y′∈Y nt(X1, . . . , Xt, y′)
, y ∈ Y , t ≥ 1.(3.1)

(ii) For every nonnegative function w : X 7→ R+, we have

E[w(Xt+1) | Ft] =

∫
X

w(x) ΠtPf(x) ν(dx), t ≥ 0;(3.2)

namely, the conditional probability density function of Xt+1 given Ft = σ{X1, . . . , Xt} with

respect to the sigma-finite measure ν on (X , X ) is

ΠtPf(x) =
∑

y,y′∈Y

Πt(y)P (y, y′)f(y′, x), x ∈ X .

(iii) The process {Πt, Ft; t ≥ 0} is a Markov process on the state space P , {π ∈
[0, 1]|Y|;

∑
y∈Y π(y) = 1}, with dynamics

Πt+1 =
ΠtP diag(f)(Xt+1)

ΠtPf(Xt+1)
, t ≥ 0.(3.3)
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(iv) For every nonnegative function w : P 7→ R+, we have E[w(Πt+1) | Ft] = (Tw)(Πt),

t ≥ 0, where

(Tw)(π) :=

∫
X

w

(
πP diag(f)(x)

πPf(x)

)
πPf(x) ν(dx), π ∈ P .(3.4)

(v) We have E
∑

t≥0

∑
y∈Y0

Πt(y) = ET ≤
∑

y,y′∈Y0
(I − P0)

−1(y, y′) < ∞.

(vi) For every closed subset Y ⊂ Y, the process {
∑

y∈Y Πt(y), Ft; t ≥ 0} is a submartingale.

(vii) The process {
∑

y∈Y0
Πt(y), Ft; t ≥ 0} is a supermartingale.

The proofs are given in the appendix. The next proposition shows that the original

problem reduces to an optimal stopping problem for the Markov process Π. It also identifies

an optimal terminal decision rule δ(·). It remains to calculate the minimum Bayes risk and

find an optimal alarm time, if it exists.

Proposition 3. If we define for every π ∈ P

g(π) :=
∑
y∈Y

π(y)c(y) ≡ πc, h(π) := min
1≤j≤a

~(π, j) :=
∑
y∈Y

π(y)C(y, j) ≡ (πC)(j),(3.5)

then the Bayes risk in (2.3) can be expressed as

u(τ, δ) = E

[
τ−1∑
t=0

g(Πt) + 1{τ<∞}~(Πτ , δ)

]
for every (τ, δ) ∈ ∆.(3.6)

If δ(t) is a {1, . . . , a}-valued random variable such that

δ(t) ∈ arg min {~(Πt, j); 1 ≤ j ≤ a} for every t ≥ 0,

then (τ, δ(τ)) ∈ ∆ for every a.s. finite F-stopping time τ , and u(τ, δ) ≥ u(τ, δ(τ)) for every

decision rule (τ, δ) ∈ ∆. Therefore, the minimum Bayes risk is u∗ = infτ∈F, τ<∞a.s. u(τ, δ(τ)) =

v(η), where

v(π) := inf
τ∈F,

τ<∞ a.s.

Eπ

[
τ−1∑
t=0

g(Πt) + 1{τ<∞}h(Πτ )

]
, π ∈ P(3.7)

is the value function of an optimal stopping problem for the posterior probability process Π

with running and terminal cost functions g(·) and h(·) in (3.5), respectively, and Eπ is the

expectation with respect to P given that Π0 = π.
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In the remainder of this section, we will try to solve the problem in (3.7) and identify an

optimal stopping time if it exists. Let us start by defining

Zt := −
t−1∑
n=0

g(Πn)− h(Πt), 0 ≤ t < ∞,

Cn := {τ ∈ F | n ≤ τ < ∞ a.s., and EZ−
τ < ∞}, n ≥ 0,

CN
n := {τ ∧N | τ ∈ Cn}, 0 ≤ n ≤ N, N ≥ 0,

γn := ess sup
τ∈Cn

E[Zτ | Fn], n ≥ 0,

γN
n := ess sup

τ∈CN
n

E[Zτ | Fn], 0 ≤ n ≤ N, N ≥ 0,

−vn := sup
τ∈Cn

EZτ , n ≥ 0,

−vN
n := sup

τ∈CN
n

EZτ , 0 ≤ n ≤ N, N ≥ 0.

(3.8)

Then for every a.s. finite F-stopping time τ , the expectation EZτ = −EZ−
τ exists, and

−u∗ = sup
τ∈F

τ<∞ a.s.

EZτ = sup
τ∈C0

EZτ ≡ −v0.(3.9)

The left-hand side of the second equality is greater than or equal to the right-hand side. For

the reverse inequality, it is enough to note that for every a.s. finite τ ∈ F, the F-stopping

time τ̃ := τ 1{Z0≤EZτ} belongs to C0 because

−EZ−
τ̃ = EZτ̃ = max{Z0, EZτ} ≥ Z0 = h(Π0) > −∞,

and EZτ ≤ max{Z0, EZτ} = EZτ̃ . Chow et al. [6, Theorems 3.2 and 4.1] show that

−vn = Eγn, n ≥ 0 and − vN
n = EγN

n , 0 ≤ n ≤ N, N ≥ 0;

the processes (γn)n≥0 and (γN
n )0≤n≤N for every N ≥ 0 satisfy

γn = max{Zn, E[γn+1 | Fn]}, n ≥ 0,

γN
N = ZN , γN

n = max{Zn, E[γN
n+1 | Fn]}, 0 ≤ n ≤ N − 1,

(3.10)

respectively. Because (CN
n )N≥n is increasing, so is (γN

n )N≥0. Therefore, limN→∞ γN
n exists

for every n ≥ 0, and by the next proposition, it coincides with γn.

Proposition 4. For every n ≥ 0, we have γn = limN→∞ γN
n almost surely.

This proposition and the monotone convergence theorem imply that v0 = limN→∞ vN
0 ;

namely, vN
0 is a “good” approximate solution of (3.9) for every large N . In the sequel, we

derive a bound on the error |v0− vN
0 | that gives a finite N that is large enough to attain any

specified level of accuracy.
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The next proposition shows that the successive approximations (γN
n )0≤n≤N , N ≥ 0 of

(γn)n≥0 can be calculated by using an operator M acting on the bounded functions w : P 7→ R
according to

(Mw)(π) := min{h(π), g(π) + (Tw)(π)} for every π ∈ P ,(3.11)

where T is given by (3.4). Because the function h is bounded, by (3.11) the function Mw from

P into R is also bounded, and M2w := M(Mw) is well-defined. Similarly, Mnw := Mn−1(Mw)

makes sense for every n ≥ 1, where we define M0w := w.

Proposition 5. We have γN
n = −

∑n−1
k=0 g(Πk)−(MN−nh)(Πn) for every 0 ≤ n ≤ N , N ≥ 0.

This proposition implies that the random variables

−vN
0 = EγN

0 = −(MNh)(Π0), N ≥ 0 and − v0 = lim
N→∞

EγN
0 = lim

N→∞
(MNh)(Π0)(3.12)

are in fact functions of the initial state Π0 of the posterior probability process Π. Let

(Ω, F , Pπ) be a probability space on which Π = {Πn; n ≥ 0} is by definition the Markov

process with transition semigroup T in (3.4) and Pπ{Π0 = π} = 1. Inspired by (3.12) let

vN
n : P 7→ R, 0 ≤ n ≤ N for every N ≥ 0 and vn : P 7→ R, n ≥ 0 be the functions

−vN
n (π) := sup

τ∈CN
n

EπZτ and − vn(π) := sup
τ∈Cn

EπZτ ,

respectively. Then by Proposition 5 we have

vN
0 (π) = (MNh)(π) and v0(π) = lim

N→∞
(MNh)(π) for every π ∈ P.(3.13)

Taking limits as N → ∞ of both sides in (MN+1h)(π) = M(MNh)(π) and applying the

monotone convergence theorem on the right-hand side prove that v0(·) satisfies the optimality

equation

v0(π) = (Mv0)(π) = min{h(π), g(π) + (Tv0)(π)} for every π ∈ P .(3.14)

Lemma 6. If w : P 7→ R is a bounded concave function, then so is (Tw)(·).

If w : P 7→ R is bounded and concave, then so is π 7→ (Mw)(π) = min{h(π), g(π) +

(Tw)(π)} because the mappings h(π) = min1≤j≤a(πC)(j), g(π) = πc, and (Tw)(π) are

concave by the previous lemma, and the pointwise minimum of concave functions is always

concave. Therefore, repeated applications of the operator M to a bounded concave function

also produce concave functions, and together with (3.13) this proves the next proposition.

Proposition 7. The mappings π 7→ vN
0 (π), N ≥ 0 and π 7→ v0(π) from P into R are

concave.

In the remainder, we suppose that

c(y) > 0 for every y ∈ Y \ Y0 ≡ Y1 ∪ · · · ∪ Ya,

C(y, j) = 0 for every y ∈ Yj, j = 1, . . . , a,
(3.15)



DETECTION AND IDENTIFICATION OF AN UNOBSERVABLE CHANGE 21

and we define

cp := min{c(y); y ∈ Y \ Y0} > 0,

which is positive by (3.15) and since the state-space Y of the hidden Markov chain Y is finite.

The next theorem hints a useful numerical method that can calculate the value function v0(·)
at any desired level of accuracy:

For any given ε > 0 one can choose N = N(ε) such that the rightmost bound in (3.16)

is less than ε, and then calculate vN
0 (·) on P by applying N times the operator M to the

function h(·). Then (3.16) guarantees that the difference between v0(π) and vN
0 (π) is less

than or equal to ε for every π ∈ P .

Recall from (v) of Proposition 2 that the bound on the right-hand side of (3.16) is always

finite. Here and elsewhere, ‖w‖ denotes supπ |w(π)| over the domain of the function w(·).

Theorem 8. The sequence (vN
0 (π))N≥0 converges to v0(π) as N →∞ uniformly in π ∈ P.

More precisely,

v0(π) ≤ vN
0 (π) ≤ v0(π) +

‖h‖
N

(
‖h‖
cp

+
∑

y,y′∈Y0

(I − P0)
−1(y, y′)

)
, π ∈ P , N ≥ 1.(3.16)

The next two results are needed in showing the existence of an optimal alarm time. The

continuity of the mapping π 7→ vN
0 (π) follows from the special form of the operator M,

whereas the continuity of v0(·) = limN→∞ vN
0 (·) is a corollary of Propositions 8 and 9.

Proposition 9. For every N ≥ 0, the function vN
0 : P 7→ R+ is continuous.

Corollary 10. The function v0 : P 7→ R is continuous.

Let us next show the existence of an optimal alarm time and describe its structure, as well

as, its relation to successive approximations (vN
0 )N≥0. We define

ΓN := {π ∈ P | vN
0 (π) = h(π)}, Γ

(j)
N := {π ∈ P | vN

0 (π) = ~(π, j)}, 1 ≤ j ≤ a, N ≥ 0,

Γ := {π ∈ P | v0(π) = h(π)}, Γ(j) := {π ∈ P | v0(π) = ~(π, j)}, 1 ≤ j ≤ a;

in Theorem 13 we will show that the first time the posterior probability process Π enters

the stopping region Γ gives an optimal alarm time. Therefore, the structure of the set Γ,

identified carefully by the next proposition, will be useful to implement the optimal terminal

decision rule and interpret the numerical results.

For example, Proposition 11 implies that upon entrance into the stopping region Γ, one

finds herself in one of a subregions, Γ(1), . . . , Γ(a), associated respectively with closed subsets

Y1, . . . ,Ya of the state-space Y of the hidden Markov chain Y ; moreover, upon stopping it

is optimal to declare that Y must have made in the past a transition into the associated

subset of its state-space. Because Γ is determined by v0(·), which is obtained approximately

with the sequence (vN
0 )N≥0, the next proposition also provides the relation between stopping

regions of the original and truncated problems.
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Proposition 11. For every 1 ≤ j ≤ a, (Γ
(j)
N )N≥0 is a decreasing sequence of non-empty

closed convex subsets of P, and

Γ
(j)
0 ⊇ Γ

(j)
1 ⊇ · · · ⊇ Γ(j) ⊇

{
π ∈ P | ~(π, j) ≤ min{h(π), g(π)}

}
⊇ {ey | y ∈ Yj},

Γ = ∩∞N=1ΓN = ∪a
j=1Γ

(j), ΓN = ∪a
j=1Γ

(j)
N , N ≥ 0, Γ(j) = ∩∞N=1Γ

(j)
N , 1 ≤ j ≤ a.

Therefore, P = Γ0 ⊇ Γ1 ⊇ · · · ⊇ Γ % {ey | y ∈ Y1 ∪ · · · ∪ YN}, and every Γ(j), 1 ≤ j ≤ a is

a nonempty closed convex subset of P.

The next lemma follows immediately from Proposition 5 and (3.13).

Lemma 12. For every n ≥ 0 and N ≥ n, we have γN
n = −

∑n−1
k=0 g(Πk) − vN−n

0 (Πn) and

γn = −
∑n−1

k=0 g(Πk)− v0(Πn).

Theorem 13. The F-stopping time σ := inf{t ≥ 0 | Πt ∈ Γ} solves optimally the problem

−v0(π) = supτ∈F EπZτ for every π ∈ P. The stopped process {γσ∧n, Fn; n ≥ 0} is a

martingale, and Eπσ < ∞ for every π ∈ P.

Relaxation of the positive-cost assumption. Let us now remove the condition “c(y) > 0

for every y ∈ Y \ Y0” in (3.15) and assume that c(y) ≥ 0 for every y ∈ Y instead. In

this generality, the stopping time σ of Theorem 13 is not always optimal. For example, if

c(·) ≡ 0, and hidden states of the Markov chain Y are identifiable from the observations,

then indefinitely long sampling does not cost and drives the terminal decision cost to zero;

therefore, there is no a.s. finite stopping rule in this case. However, the value function v0(·)
can always be calculated as the next theorem describes, and an a.s. finite nearly optimal

stopping rule can always be found. Let us define

cε := c(y) + ε for every y ∈ Y and ε > 0,

and denote by the Zn〈ε〉, Cn〈ε〉, CN
n 〈ε〉, γn〈ε〉, γN

n 〈ε〉, vn〈ε〉, vN
n 〈ε〉 the variables defined in

(3.8) after replacing c(·) with cε(·). Then Zn〈ε〉 = Zn − ε n for every n ≥ 0 and ε > 0, and

because cε(y) > 0 for every y ∈ Y \ Y0, all of the previous results apply to the solution of

the optimal stopping problem

−v0〈ε〉 = sup
τ∈C0〈ε〉

EZτ 〈ε〉 for every ε > 0.(3.17)

Theorem 14. For every n ≥ 0, we have γn = limε↘0 ↑ γn〈ε〉 almost surely, and vn =

limε↘0 ↑ vn〈ε〉.

As a consequence, if ε > 0 is sufficiently small, then the stopping time σ(ε) defined as in

Theorem 13 for (3.17) will be nearly optimal for the original problem.
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4. Numerical illustrations

In this section we extend the examples described in Section 2 by demonstrating numerically

and graphically the optimal solution developed in Section 3 for some particular parameter

values. Following the construction given in Dayanik et al. [9, Sections 5.3-5.4] we give

graphical representations of the simplex P and its resident features such as sample paths of

Π and optimal stopping region Γ for models with state space of size |Y| = 3 or |Y| = 4.

4.1. Second-order phase-type disorder time with two alternatives. Here we revisit

the basic independence/dependence examples that were introduced and compared in Remark

1 of Section 2. First we consider two simple cases in which the disorder time T and its

cause A are independent. In the first independence case, T has a zero-modified geometric

prior distribution with parameters q1 := 0.04 and p1 := 0.05, A has prior distribution

α := (0.5, 0.5), and A and T are independent. Plugging these values into the corresponding

formulation from Remark 1 we have initial distribution η := (0.96, 0.02, 0.02) and one-step

transition matrix

P :=

 0.95 0.025 0.025

0 1 0

0 0 1


for the Markov chain Y on state space Y := {0, 1, 2} with partition Yi := {i}, i = 0, 1, 2. To

complete the formulation we set the cost parameters and observation probability laws:

c :=

 0

1

1

 , C :=

 20 20

0 10

10 0

 , f :=

 0.25 0.25 0.25 0.25

0.40 0.30 0.20 0.10

0.10 0.20 0.30 0.40

 .

In words, the cost structure consists of a 1-unit penalty for each period of alarm delay, a

20-unit penalty for a false-alarm (of either type), and a 10-unit mis-diagnosis penalty for

an incorrect terminal decision. The observations can take one of four distinct values each

equally likely before the change occurs and then after the change the probabilities are skewed

either right or left determined by A = 1 or A = 2, respectively.

The optimal stopping region for this first case is displayed graphically in Figure 3(a).

The triangle represents a linear mapping from R3 into R2 of the simplex P = {π =

(π(0), π(1), π(2)) ∈ [0, 1]3 |π(0) + π(1) + π(2) = 1} with extreme points e0 = (1, 0, 0),

e1 = (0, 1, 0), and e2 = (0, 0, 1) forming its corners, where each point π in the triangle

represents a convex combination of the corners e0, e1, and e2 with weights proportional to

π’s (Euclidean) distances to the triangle edge opposite of each respective corner. On this

figure, the shaded regions comprise the stopping region. A sample path of (Πt)
σ
t=0 is shown

for a particular realization of Y and X, which shows how the optimal sequential decision

strategy can be implemented by tracking the path of Π with this representation and raising

an alarm as soon as it enters the stopping region for the first time. In this instance its
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entrance is into the subregion labeled by Γ(2), so the optimal terminal diagnosis decision is

that the second alternative has happened: δ = 2.

e0 e1

e2

Γ(1)

Γ(2)

1

(a)

e0 e1

e2

Γ(1)

Γ(2)

1

(b)

e(2,0)

e(1,0)

e(1,1)

e(2,1)

← Γ(1)

Γ(2) →

1

(c)

Figure 3. Graphical comparison of the optimal stopping regions Γ = Γ(1) ∪
Γ(2) when A and T are independent ((a), (b)) and when they are dependent

(c). Sample paths of (Πt)
σ
t=0 are shown for which (a) T = 6, A = 2, (b)

T = 13, A = 2, and (c) T = 8, A = 2.

In the second independence case, we keep all of the above parameters the same except for

T which instead has a zero-modified geometric prior distribution with parameters q2 := 0.04

and p2 := 0.15. The optimal stopping region for this second case is displayed graphically in

Figure 3(b). This figure is to be interpreted in the same way as Figure 3(a).

Next we consider a related dependence case such that T is conditionally zero-modified

geometric with parameters qi and pi given A = i, i = 1, 2, where q1 := 0.04, p1 := 0.05 and

q2 := 0.04, p2 := 0.15 are as above. Again A has distribution α := (0.5, 0.5), but here it is

not independent of T . Plugging these values into the dependence formulation from Remark
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1 we have initial distribution η := (0.48, 0.48, 0.02, 0.02) and one-step transition matrix

P :=


0.95 0 0.05 0

0 0.85 0 0.15

0 0 1 0

0 0 0 1



for the Markov chain Y on state space Y := {(1, 0), (2, 0), (1, 1), (2, 1)} with partition

Y0 := {(1, 0), (2, 0)}, Yi := {(i, 1)}, i = 1, 2. To complete the formulation we set the

cost parameters and observation probability laws in correspondence with the preceding in-

dependence examples:

c :=


0

0

1

1

 , C :=


20 20

20 20

0 10

10 0

 , f :=


0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.40 0.30 0.20 0.10

0.10 0.20 0.30 0.40

 .

The optimal stopping region for this dependence case is displayed graphically in Figure

3(c). The tetrahedron depicted in this figure represents a linear mapping from R4 into R3 of

the simplex P = {π = (π(1, 0), π(2, 0), π(1, 1), π(2, 1)) ∈ [0, 1]4 |π(1, 0) + π(2, 0) + π(1, 1) +

π(2, 1) = 1} with extreme points e(1,0) = (1, 0, 0, 0), e(2,0) = (0, 1, 0, 0), e(1,1) = (0, 0, 1, 0),

and e(2,1) = (0, 0, 0, 1) forming its corners. Again, the shaded regions comprise the stopping

region and a sample path of Π is shown for a particular realization of Y and X.

4.2. Two-sub-period cyclic model with two alternatives. Here we revisit the cyclic

model introduced in Example 3. In that example we assumed an ultimate i.i.d. sequence

upon disorder; i.e., that the cyclic nature of observations ceased. This was not required,

but was used only for clarity of exposition in that discussion. Here we examine the natural

case where cycles continue after the change with different laws. That is, suppose that we

collect observations during alternating peak and off-peak sub-periods, and that at some un-

observable disorder time T the distribution of observations changes to one of two alternative

regimes, but the cyclic peak/off-peak behavior persists. For example, take each period to be

a day and take daytime and nighttime as its sub-periods, where peak activity occurs during

the daytime.

In particular, we formulate the problem via a Markov chain Y with state space Y :=

{(0, 0), (1, 0), (0, 1), (1, 1), (0, 2), (1, 2)}, initial distribution η := (0, 0.99, 0, 0.005, 0, 0.005),
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and one-step transition matrix

(0, 0) (1, 0) (0, 1) (1, 1) (0, 2) (1, 2)

P :=



0 0.98 0 0.01 0 0.01

0.88 0 0.06 0 0.06 0

0 1

1 0

0 1

1 0



(0, 0)

(1, 0)

(0, 1)

(1, 1)

(0, 2)

(1, 2)

for the partition Yi := {(0, i), (1, i)}, i = 0, 1, 2, where first component of each state denotes

the time of day (0 for daytime and 1 for nighttime) and the second component of each state

indicates the regime (0 for the initial regime and 1, 2 for the alternative regimes). We set

the cost structure to reflect our belief that delays during peak sub-periods (e.g., daytime)

are more costly than in off-peak sub-periods (e.g., nighttime), together with asymmetric

penalties for misdiagnosis and observation probability laws given by

c :=



0

0

1

0.5

1

0.5


, C :=



20 20

20 20

0 3

0 3

5 0

5 0


, f :=



0.25 0.25 0.25 0.25

0.25 0.25 0.25 0.25

0.40 0.30 0.20 0.10

0.40 0.30 0.20 0.10

0.10 0.20 0.30 0.40

0.10 0.20 0.30 0.40


.

In words, the cost structure consists of a 1-unit penalty for each peak sub-period of alarm

delay, a 0.5-unit penalty for each off-peak sub-period of alarm delay, a 20-unit penalty for

a false-alarm (of either type), and 3-unit and 5-unit mis-diagnosis penalties for incorrect

terminal decisions, respectively. The observations can take one of four distinct values each

equally likely before the change occurs and then after the change the probabilities are skewed

either right or left determined by A = 1 or A = 2, respectively.

By construction, the underlying Markov chain Y cycles through peak/off-peak sub-periods

(beginning at off-peak): Yt ∈ {(0, i) | i = 1, 2, 3} if t is odd (peak), Yt ∈ {(1, i) | i = 1, 2, 3} if

t is even (off-peak). This special structure yields∑
y∈Y:y(1)=0

Πt(y) = 1 or
∑

y∈Y:y(1)=1

Πt(y) = 1, t ≥ 0.

Hence, the additional knowledge of the sub-period Y reduces the dimension of the state space

and we can consider a different stopping rule for peak and off-peak observation sub-periods

instead. Figure 4(a) and Figure 4(b) represent the optimal stopping regions for observations

during peak and off-peak sub-periods, respectively. The light-shaded regions of Figure 4(a)

correspond to the stopping region for peak observations (e.g., daytime measurements), while

the dark-shaded regions of Figure 4(b) correspond to the off-peak stopping region (e.g.,
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nighttime measurements). On each of these figures is the same sample path with alternating

dark and light shaded points representing whether that value is updated in an off-peak or

peak sub-period, respectively. Whenever a peak point enters a peak stopping region (light,

daytime) or an off-peak point enters an off-peak stopping region (dark, nighttime), it is

optimal to raise an alarm. This joint strategy is depicted in Figure 4(c) by merging the two

scenarios onto a single plot.

Figure 5 depicts similar scenarios with all parameters as above except with the following

changes to the off-peak misdiagnosis costs: C((1, 0), 1) = C((1, 0), 2) = 17, C((1, 1), 2) = 5,

and C((1, 2), 1) = 3.

e(0,0) e(0,1)

e(0,2)

Γ(1)

Γ(2)

1

(a)

e(1,0) e(1,1)

e(1,2)

Γ(1)

Γ(2)

1

(b)

e(·,0) e(·,1)

e(·,2)

Γ(1)

Γ(2)

1

(c)

Figure 4. Optimal stopping region Γ = Γ(1) ∪ Γ(2) for a cyclic model with

day/night cycles corresponding to (a) daytime measurements, (b) nighttime

measurements, and (c) composite stopping region formed by combining sub-

figures (a) and (b). A sample path of (Πt)
σ
t=0 is shown for which T = 11, A = 1.

e(0,0) e(0,1)

e(0,2)

Γ(1)

Γ(2)

1

(a)

e(1,0) e(1,1)

e(1,2)

Γ(1)

Γ(2)

1

(b)

e(·,0) e(·,1)

e(·,2)

Γ(1)

Γ(2)

1

(c)

Figure 5. Similar to Figure 4 but with different nighttime misdiagnosis

penalties. A sample of (Πt)
σ
t=0 is shown for which T = 9, A = 1.
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4.3. Quickest detection of one of two successive regime changes. Consider the fol-

lowing three-regime model. Let η := (0.96, 0.03, 0.01) and

P :=

 0.8 0.1 0.1

0 0.9 0.1

0 0 1

 , c :=

 0

1

3

 , C :=

 20

0

0

 , f :=

 0.75 0.25

0.5 0.5

0.25 0.75

 .

For Y := {0, 1, 2}, Y0 := {0}, and Y1 := {1, 2}, we are interested in detecting the first of

the two regime changes. This formulation not only penalizes for detection delay, but also

incorporates a greater delay penalty for each period of alarm delay after the second change.

The optimal stopping region for this problem is depicted in Figure 6(a).

Now consider a second related model with all parameters the same except for

c :=

 0

0

3

 and C :=

 20

10

0

 .

For Y := {0, 1, 2}, Y0 := {0, 1}, and Y1 := {2}, we are interested in detecting the second

of the two regime changes. This formulation not only penalizes for false-alarm, but also

penalizes more substantially if the first regime change has not yet happened upon alarm.

The optimal stopping region for this problem is depicted in Figure 6(b).

e0 e1

e2

Γ

1

(a)

e0 e1

e2

Γ

1

(b)

Figure 6. Optimal stopping region for the quickest detection of (a) the first

of two successive regime changes and (b) the last of two successive regime

changes. A sample path is shown on each sub-figure for which (a) T = 11 and

(b) T = 10.



DETECTION AND IDENTIFICATION OF AN UNOBSERVABLE CHANGE 29

4.4. Random walk simple disorder model. Here we continue with the random walk

disorder model introduced in Example 4. We assume that the white noise sequence has the

standard Normal distribution, and we consider the case where µ0 := 0, µ1 := 1, σ2
0 := 4,

and σ2
1 := 9. Hence, the increments process X has initially the N(0, 4) (Normal mean-zero,

variance-four) distribution, then the distribution changes to either N(1, 4) or N(0, 9) for

some random duration, and then finally it changes to N(1, 9). In terms of state space of the

model in Example 4, we have

f(y, x) =



(8π)−1/2e−x2/8, y ∈ {(0, 0, 1), (0, 0, 2), (0, 0, 3)}

(8π)−1/2e−(x−1)2/8, y = (1, 0, 1)

(18π)−1/2e−x2/18, y = (0, 1, 2)

(18π)−1/2e−(x−1)2/18, y ∈ {(1, 1, 1), (1, 1, 2), (1, 1, 3)}


.

Now, suppose that T (µ) and T (σ) are i.i.d. geom(0.1). Then, it can be shown that S1 ∼
geom(0.19), S2 ∼ geom(0.1), A has distribution α1 = α2 = 0.09/0.19 and α3 = 0.01/0.19,

and that A and T are independent. In terms of the formulation and parameters of Example

4 we have p11 = p21 = p31 = 0.19, p12 = p22 = 0.1, and q1 = q2 = q3 = 0. So, this completely

specifies the initial distribution η and one-step transition matrix P given in that example.

To complete the formulation, let us set the delay costs to

c(y) =



0, y ∈ {(0, 0, 1), (0, 0, 2), (0, 0, 3)}

1, y = (1, 0, 1)

1, y = (0, 1, 2)

2, y ∈ {(1, 1, 1), (1, 1, 2), (1, 1, 3)}


and the rows of the misdiagnosis cost matrix C to

C(y, ·) =



(20, 20, 20), y ∈ {(0, 0, 1), (0, 0, 2), (0, 0, 3)}

(0, 10, 15), y = (1, 0, 1)

(10, 0, 15), y = (0, 1, 2)

(15, 15, 0), y ∈ {(1, 1, 1), (1, 1, 2), (1, 1, 3)}


.

In words, we have a 1-unit penalty for each period of delay beyond the first change (of either

type), a 2-unit penalty for each period beyond the second change. A false alarm costs 20, a

misdiagnosis of the second regime costs 10, and a misdiagnosis of the final regime costs 15.

For this special scenario we can reduce the dimension of the state space from eight states

to four states as follows. Let (0, 0) represent the collection {(0, 0, 1), (0, 0, 2), (0, 0, 3)} and let

(1, 1) represent the collection {(1, 1, 1), (1, 1, 2), (1, 1, 3)}. Also, let (1, 0) denote (1, 0, 1) and

(0, 1) denote (0, 1, 2). Each element y in the collection (0, 0) has the same density function

f(y, x) and the same cost functions c(y) = 0 and C(y, j) = 20, 1 ≤ j ≤ 3. Similarly, each

element y in the collection (1, 1) has the same density function f(y, x) and the same cost
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functions c(y) = 2 and C(y, ·) = (15, 15, 0). Moreover, the transition probabilities in and

out of each collection of states (0, 0) and (1, 1) simplify to

(0, 0) (1, 0) (0, 1) (1, 1)

P :=


0.81 0.09 0.09 0.01

0.9 0.1

0.9 0.1

1


(0, 0)

(1, 0)

(0, 1)

(1, 1)

.

Since the running cost function g(π) and terminal cost functions ~(π, j), 1 ≤ j ≤ 3 are each

linear in π, the optimality equation remains valid if we take the collections (0, 0) and (1, 1)

as individual states since

Πt((0, 0)) = Πt((0, 0, 1)) + Πt((0, 0, 2)) + Πt((0, 0, 3))

and Πt((1, 1)) = Πt((1, 1, 1)) + Πt((1, 1, 2)) + Πt((1, 1, 3)), t ≥ 0.

That is, we can take the Markov chain Y on the state space Y := {(0, 0), (1, 0), (0, 1), (1, 1)}
with transition matrix P given above, initial distribution η := (1, 0, 0, 0), and partition

Y0 := {(0, 0)}, Y1 := {(1, 0)}, Y2 := {(0, 1)}, and Y3 := {(1, 1)}. The corresponding optimal

decision region is depicted in Figure 7(a).

4.5. Finite-state Markov channel disorder problem. Continuing Example 5 we solve

the problem of quickest detection of an unobservable change in the one-step transition matrix

of a binary Markov chain with initial distribution (0.5, 0.5) from Q to R, where

Q :=

[
0.5 0.5

0.5 0.5

]
and R :=

[
0.6 0.4

0.4 0.6

]
,

with a geometric (θ := 0.1) prior change time distribution. This corresponds to a scenario

where the successive zero and one bits are independent before the change but have a slight

tendency of “streaks” after the change. That is, after the change, each bit is 50% more

likely to be followed by a bit of the same type than by the other bit type. So let Y :=

{(0, 0), (1, 0), (0, 1), (1, 1)}, η := (0.5, 0.5, 0, 0), and

P :=


0.45 0.45 0.06 0.04

0.45 0.45 0.04 0.06

0 0 0.6 0.4

0 0 0.4 0.6

 ,

c :=


0

0

1

1

 , C :=


20

20

0

0

 , f :=


0.9 0.1

0.1 0.9

0.9 0.1

0.1 0.9

 .
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Hence, this is a simple binary symmetric channel with β := 0.1 both before and after the

change. See Figure 7(b) for a depiction of the optimal stopping region for this problem and

a sample path for a particular realization of Y and X. The edge of the tetrahedron from

e(0,0) to e(0,1) corresponds to transmission of a zero bit, while the edge from e(1,0) to e(1,1)

corresponds to transmission of a one bit. Hence, as each observation is collected, if it is a

zero then the sample path tends to “walk” along e(0,0) to e(0,1) as the probability that the

change has happened increases with time. The path moves along the edge but not exactly on

the edge due to the noise in each observation. Similarly, if the observation is a one, then the

sample path tends to “walk” along e(1,0) to e(1,1). This behavior is exhibited in the sample

path of Figure 7(b) as the first three observations are zeroes while the fourth and fifth are

ones and the last five observations are all zeroes. This final “streak” of zeroes is significant

enough in this instance to signal an alarm.

e(0,0)

e(1,0)

e(0,1)

e(1,1)

← Γ(2)

Γ(3) →

Γ(1) →

1

(a)

e(1,0)

e(0,0)

e(0,1)

e(1,1)

← Γ

1

(b)

Figure 7. Optimal stopping region for (a) a random walk simple disorder

model and (b) the quickest detection of an unobservable change in the tran-

sition matrix of a noisy Markov channel. A sample path is shown on each

sub-figure for which (a) T = 2, A = 1 and (b) T = 5.
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Appendix A. Proofs of selected results

Proof of Proposition 2. For every F = {(X1, . . . , Xt) ∈ B} ∈ Ft, because

P(F) =
∑

y0,y1,...,yt∈Y

P{Y0 = y0, Y1 = y1, . . . , Yt = yt, (X1, . . . , Xt) ∈ B}

=

∫
· · ·
∫
B

∑
y0,y1,...,yt∈Y

(
η(y0)

t∏
k=1

P (yk−1, yk)f(yk, xk)

)
ν(dx1) · · · ν(dxt),

we have for every y ∈ Y that

∫
F

Πt(y) dP = P{Yt = y, (X1, . . . , Xt) ∈ B}

=
∑

y0,y1,...,yt−1∈Y

P{Y0 = y0, Y1 = y1, . . . , Yt−1 = yt−1, Yt = y, (X1, . . . , Xt) ∈ B}

=

∫
· · ·
∫
B

∑
y0,y1,...,yt−1∈Y

(
η(y0)

t−1∏
k=1

P (yk−1, yk)f(yk, xk)

)
P (yt−1, y)f(y, xt) ν(dx1) · · · ν(dxt),

=

∫
· · ·
∫
B

∑
y0,y1,...,yt−1∈Y

(
η(y0)

∏t−1
k=1 P (yk−1, yk)f(yk, xk)

)
P (yt−1, y)f(y, xt)∑

y0,y1,...,yt∈Y η(y0)
∏t

k=1 P (yk−1, yk)f(yk, xk)∑
y0,y1,...,yt∈Y

(
η(y0)

t∏
k=1

P (yk−1, yk)f(yk, xk)

)
ν(dx1) · · · ν(dxt)

=

∫
F

nt(X1, . . . , Xt, y)∑
yt∈Y nt(X1, . . . , Xt, yt)

dP,

which completes the proof of (3.1). By using (3.1), we can write Πt+1(y) as

nt+1(X1, . . . , Xt+1, y)∑
y′∈Y nt+1(X1, . . . , Xt+1, y′)

=

∑
y′∈Y nt(X1, . . . , Xt, y

′)P (y′, y)f(y, Xt+1)∑
y′∈Y

∑
y′′∈Y nt(X1, . . . , Xt, y′′)P (y′′, y′)f(y′, Xt+1)

,

and dividing both numerator and denominator by
∑

y′′′∈Y nt(X1, . . . , Xt, y
′′′) gives

Πt+1(y) =

∑
y′∈Y Πt(y

′)P (y′, y)f(y, Xt+1)∑
y′∈Y

∑
y′′∈Y Πt(y′′)P (y′′, y′)f(y′, Xt+1)

=
(ΠtP )(y)f(y, Xt+1)∑

y′∈Y(ΠtP )(y′)f(y′, Xt+1)
,∀y ∈ Y ,
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which is the same as (3.3). On the other hand,∫
F

E[w(Xt+1) | Ft] dP =

∫
(X1,...,Xt)∈B

w(Xt+1) dP

=

∫
B×X

w(xt+1)
∑

y0,y1,...,yt+1∈Y

(
η(y0)

t+1∏
k=1

P (yk−1, yk)f(yk, xk)

)
ν(dx1) · · · ν(dxt+1)

=

∫
B×X

w(xt+1)
∑

yt+1∈Y

∑
yt∈Y

nt(x1, . . . , xt, yt)P (yt, yt+1)f(yt+1, xt+1) ν(dx1) · · · ν(dxt+1)

=

∫
B

∫
X

w(xt+1)
∑

yt+1∈Y

∑
yt∈Y

nt(x1, . . . , xt, yt)P (yt, yt+1)f(yt+1, xt+1)ν(dxt+1)ν(dx1) · · · ν(dxt)

=

∫
B

∫
X

w(xt+1)
∑

yt+1∈Y

∑
yt∈Y

nt(x1, . . . , xt, yt)∑
y∈Y nt(x1, . . . , xt, y)

P (yt, yt+1)f(yt+1, xt+1)ν(dxt+1)∑
y∈Y

nt(x1, . . . , xt, y) ν(dx1) · · · ν(dxt)

=

∫
F

∫
X

w(xt+1)
∑

yt+1∈Y

∑
yt∈Y

Πt(yt)P (yt, yt+1)f(yt+1, xt+1)ν(dxt+1)

 dP

=

∫
F

(∫
X

w(xt+1) ΠtPf(xt+1)ν(dxt+1)

)
dP,

which proves (3.2). Finally, for every nonnegative function w : P 7→ R+, we have

E[w(Πt+1) | Ft] = E
[
w

(
ΠtP diag(f)(Xt+1)

ΠtPf(Xt+1)

)∣∣∣∣Ft

]
=

∫
X

w

(
ΠtP diag(f)(xt+1)

ΠtPf(xt+1)

)
ΠtPf(xt+1) ν(dxt+1) ≡ (Tw)(Πt).

Since the right-hand side is a Borel function of Πt, this establishes E[w(Πt+1) | Ft] =

E[w(Πt+1) | Πt] = (Tw)(Πt) and the Markov property of the process {Πt, Ft; t ≥ 0}.
In part (v), E

∑
y′∈Y0

Πt(y
′) = E

∑
y′∈Y0

1{y′}(Yt) = P{T > t} =
∑

y,y′∈Y0
Π0(y)P t

0(y, y′) for

every t ≥ 0, and E
∑

t≥0

∑
y′∈Y0

Πt(y) = ET =
∑

y,y′∈Y0
Π0(y)

∑
t≥0 P t

0(y, y′), which equals∑
y,y′∈Y0

Π0(y)(I − P0)
−1(y, y′) ≤

∑
y,y′∈Y0

(I − P0)
−1(y, y′) < ∞, because Y0 is finite and

contains only transient states of Y ; see for example Çinlar [7, Chapter 6].

In part (vi), for every t ≥ 0, the sum
∑

y∈Y Πt(y) is bounded and Ft-measurable by

definition, and E[
∑

y∈Y Πt+1(y) |Ft] = E[ P{Yt+1 ∈ Y |Ft+1} |Ft] = P{Yt+1 ∈ Y |Ft} ≥
P{Yt ∈ Y |Ft} =

∑
y∈Y Πt(y), where the inequality follows since Y is closed; i.e., {Yt+1 ∈

Y} ⊃ {Yt ∈ Y}.
Part (vii) follows from application of part (vi) to the closed set Y \ Y0 and by the fact

that
∑

y∈Y0
Πt(y) = 1−

∑
y∈Y\Y0

Πt(y). �
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Proof of Proposition 3. For every t ≥ 0 and a.s. finite stopping time τ ∈ F, we have

E
[
c(Yt)1{t<τ}

]
=
∑
y∈Y

c(y)E
[
1{Yt=y}1{t<τ}

]
= E

[∑
y∈Y

Πt(y)c(y) 1{t<τ}

]
= E

[
g(Πt)1{t<τ}

]
.

Moreover, for every {1, . . . , a}-valued random variable δ ∈ Fτ , we get

E
[
1{τ<∞}C(Yτ , δ)

]
=

∞∑
t=0

E
[
1{τ=t}C(Yt, δ)

]
=

∞∑
t=0

∑
y∈Y

E[1{Yt=y}

∈Ft︷ ︸︸ ︷
1{τ=t}C(y, δ)]

=
∞∑

t=0

∑
y∈Y

E[Πt(y)1{τ=t}C(y, δ)] =
∞∑

t=0

E

[
1{τ=t}

∑
y∈Y

Πτ (y)C(y, δ)

]
= E

[
1{τ<∞}~(Πτ , δ)

]
.

This completes the proof of (3.6). Since δ(τ)1{τ=t} = δ(t)1{τ=t} ∈ Ft for every t ≥ 0, we

have (τ, δ(τ)) ∈ ∆ for every a.s. finite F-stopping time τ . Moreover, for every (τ, δ) ∈ ∆,

(3.6) implies

u(τ, δ) = E

[
τ−1∑
t=0

g(Πt) + 1{τ<∞}~(Πτ , δ)

]
≥ E

[
τ−1∑
t=0

g(Πt) + 1{τ<∞}h(Πτ )

]
= u(τ, δ(τ)),

and u∗ = inf(τ,δ)∈∆ u(τ, δ) = infτ∈F u(τ, δ(τ)) = v(η) in terms of the value function v(·) of

the optimal stopping problem in (3.7). �

Proof of Proposition 4. Let γ′n := limN→∞ γN
n . Since Zn is integrable, and γ′n ≥ γn

n = Zn,

taking the limit as N → ∞ in the third equation of (3.10) and the monotone conver-

gence theorem give γ′n = max{Zn, E[γ′n+1 | Fn]} for every n ≥ 0. Hence, (γ′n)n≥0 is an

F-supermartingale majorizing (Zn)n≥0. Because γN
n ≤ γn for every N ≥ n, we also have

γ′n ≤ γn. For the converse inequality, it is enough to prove that γ′n ≥ E[Zτ | Fn] for every

τ ∈ Cn. Fix τ ∈ Cn and F ∈ Fn. Then the F-supermartingale property of (γ′n)n≥0 implies∫
F

γ′ndP =

∫
F∩{τ=n}

γ′τdP +

∫
F∩{τ>n}

γ′ndP ≥
∫

F∩{τ=n}
γ′τdP +

∫
F∩{τ>n}

γ′n+1dP

=

∫
F∩{n≤τ≤n+1}

γ′τdP +

∫
F∩{τ>n+1}

γ′n+1dP ≥ · · · ≥
∫

F∩{n≤τ≤m}
γ′τdP +

∫
F∩{τ>m}

γ′mdP

for every m ≥ n. Because γ′k ≥ Zk for every k ≥ 0, we have γ′τ ≥ Zτ , γ′m ≥ −(γ′m)−, and∫
F

γ′ndP ≥
∫

F∩{n≤τ≤m}
ZτdP−

∫
F∩{τ>m}

(γ′)−mdP, m ≥ n.

However, γ′m ≥ Zm implies (γ′m)− ≤ Z−
m =

∑m−1
k=0 g(Πk)+h(Πm) ≤ Z−

τ +supπ∈P |h(π)| on the

event {τ > m}. Since τ is a.s. finite, and Z−
τ has finite expectation, we have

∫
{τ>m}(γ

′
m)−dP ≤∫

{τ>m}(Z
−
τ + supπ∈P |h(π)|)dP → 0 as m → ∞. Finally, limit as m → ∞ of the displayed

inequality and dominated convergence (Zτ = −Z−
τ is integrable) imply that

∫
F

γ′ndP ≥∫
F∩{n≤τ<∞} ZτdP =

∫
F

ZτdP, and this completes the proof. �
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Proof of Proposition 5. Fix any N ≥ 0. The equality is true for n = N . Suppose it holds

for some 1 ≤ n ≤ N . Then γN
n−1 = max{Zn−1, E[γN

n | Fn−1]} equals

max

{
−

n−2∑
k=0

g(Πk)− h(Πn−1), E

[
−

n−1∑
k=0

g(Πk)− (MN−nh)(Πn)

∣∣∣∣∣Fn−1

]}

= −
n−2∑
k=0

g(Πk)−min
{
h(Πn), g(Πn−1) + T(MN−nh)(Πn−1)

}
= −

n−2∑
k=0

g(Πk)−M(MN−nh)(Πn−1) = −
n−2∑
k=0

g(Πk)− (MN−n+1h)(Πn−1),

where the second equality follows from (iv) of Proposition 2, and this completes the proof. �

Proof of Lemma 6. Fix π, π̄ ∈ P , λ ∈ [0, 1], and λ̄ := 1− λ. Then

(Tw)(λπ + λ̄π̄) =

∫
X

w

(
(λπ + λ̄π̄)P diag(f)(x)

(λπ + λ̄π̄)Pf(x)

)
(λπ + λ̄π̄)Pf(x)ν(dx)

=

∫
X

w

(
λ

(λπ + λ̄π̄)Pf(x)
πP diag(f)(x) +

λ̄

(λπ + λ̄π̄)Pf(x)
π̄P diag(f)(x)

)
(λπ + λ̄π̄)Pf(x)ν(dx)

=

∫
X

w

(
λπPf(x)

(λπ + λ̄π̄)Pf(x)
· πP diag(f)(x)

πPf(x)
+

λ̄π̄Pf(x)

(λπ + λ̄π̄)Pf(x)
· π̄P diag(f)(x)

π̄Pf(x)

)
(λπ + λ̄π̄)Pf(x)ν(dx)

≥
∫
X

[
λπPf(x)

(λπ + λ̄π̄)Pf(x)
· w
(

πP diag(f)(x)

πPf(x)

)
+

λ̄π̄Pf(x)

(λπ + λ̄π̄)Pf(x)
· w
(

π̄P diag(f)(x)

π̄Pf(x)

)]
(λπ + λ̄π̄)Pf(x)ν(dx)

= λ

∫
X

w

(
πP diag(f)(x)

πPf(x)

)
πPf(x)ν(dx) + λ̄

∫
X

w

(
π̄P diag(f)(x)

π̄Pf(x)

)
π̄Pf(x)ν(dx)

= λ(Tw)(π) + λ̄(Tw)(π̄),

which proves the concavity of π 7→ (Tw)(π). �

Proof of Theorem 8. Let us fix an arbitrary π ∈ P. It is enough to prove the displayed

inequalities. Because C0 ⊇ CN
0 , we have v0(π) = − supτ∈C0

EπZτ ≤ − supτ∈CN
0

EπZτ =

vN
0 (π), which is the first inequality. Let us prove the second inequality. Because 0 ≥
−v0(π) ≥ −h(π) > −∞, for every ε > 0 there exists some stopping time τε ≡ τε(π) ∈ C0
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such that

−v0(π)− ε ≤ Eπ

[
−

τε−1∑
k=0

g(Πk)− h(Πτε)

]
≤

− (τε∧N)−1∑
k=0

g(Πk)− h(Πτε∧N)


+ Eπ[h(Πτε∧N)− h(Πτε)] ≤ −vN

0 (π) + Eπ[1{τε>N}(h(Πτε∧N)− h(Πτε))]

≤ −vN
0 (π) + ‖h‖Pπ{τε > N} ≤ −vN

0 (π) +
‖h‖
N

Eπτε.(A.1)

From the first inequality, it also follows that

−‖h‖ − ε ≤ −v0(π)− ε ≤ Eπ

[
−

τε−1∑
k=0

g(Πk)− h(Πτε)

]
≤ −Eπ

τε−1∑
k=0

∑
y∈Y

Πk(y)c(y)

≤ −Eπ

τε−1∑
k=0

∑
y∈Y\Y0

Πk(y)c(y) ≤ −cp Eπ

τε−1∑
k=0

(
1−

∑
y∈Y0

Πk(y)

)

= −cp Eπτε + cp Eπ

τε−1∑
k=0

∑
y∈Y0

Πk(y) ≤ −cp Eπτε + cp Eπ

∞∑
k=0

∑
y∈Y0

Πk(y)

≤ −cp Eπτε + cp

∑
y,y′∈Y0

(I − P0)
−1(y, y′)

because of (v) of Proposition 2, and we obtain Eπτε ≤ [(‖h‖+ε)/cp]+
∑

y,y′∈Y0
(I−P0)

−1(y, y′).

Using this bound in (A.1) gives

vN
0 (π) ≤ v0(π) + ε +

‖h‖
N

Eπτε ≤ v0(π) + ε +
‖h‖
N

(
‖h‖+ ε

cp

+
∑

y,y′∈Y0

(I − P0)
−1(y, y′)

)
,

and because ε > 0 is arbitrary, the second inequality in (3.16) follows. �

Proof of Proposition 9. Recall that vN
0 (·) = MNh(·), and h(·) is continuous. Therefore, it

is enough to prove that M preserves continuity, which is immediate if T does, where T is

defined by (3.4). Note that the mappings π 7→ (πP diag(f)(x))/πPf(x) and π 7→ πPf(x)

from P into R+ are continuous for every x ∈ X , and that

0 ≤ πPf(x) =
∑

y,y′∈Y

π(y)P (y, y′)f(y′, x) ≤
∑

y,y′∈Y

π(y)f(y′, x) =
∑
y′∈Y

f(y′, x).

Since
∑

y′∈Y f(y′, x) is ν(dx)-integrable, the dominated convergence theorem yields that T
preserves continuity. �

Proof of Corollary 10. For every N ≥ 0, the mapping vN
0 : P 7→ R is continuous, and

(vN
0 )N≥0 converges to v0 uniformly as N →∞. �

Proof of Proposition 11. Fix 1 ≤ j ≤ a. Recall that ~(·, j) ≥ vN
0 (·) ≥ vN+1

0 (·). If π ∈ Γ
(j)
N+1,

then vN+1
0 (π) = ~(π, j), and therefore, vN

0 (π) = ~(π, j) and π ∈ Γ
(j)
N . Hence, Γ

(j)
N+1 ⊆ Γ

(j)
N
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for every N ≥ 0. Because v0(·) = limN→∞ ↓ vN
0 (·), we have Γ(j) ⊆ Γ

(j)
N , N ≥ 0 by a similar

argument. Now suppose that ~(π, j) ≤ min{h(π), g(π)} for some π ∈ P . Then

~(π, j) ≥ v0(π) = min{h(π), g(π) + (Tv0)(π)} ≥ min{h(π), g(π)} ≥ ~(π, j)

implies v0(π) = ~(π, j) and π ∈ Γ(j). Finally, for every y ∈ Yj we have ~(ey, j) = (eyC)(j) =

C(y, j) = 0 ≤ min{h(ey), g(ey)}, and
{
π ∈ P | ~(π, j) ≤ min{h(π), g(π)}

}
⊇ {ey | y ∈ Yj}.

Because the functions vN
0 (·), v0(·), and ~(·, j) for every N ≥ 0 and 1 ≤ j ≤ a are

continuous, the sets Γ
(j)
N , N ≥ 0 are closed. To prove that Γ

(j)
N is convex, take π, π̄ ∈ Γ

(j)
N ,

λ ∈ [0, 1], and set λ̄ := 1−λ. Because vN
0 (·) is concave, and π 7→ ~(π, j) = (πC)(j) is a linear

mapping, we have λvN
0 (π) + λ̄vN

0 (π̄) ≤ vN
0 (λπ + λ̄π̄) ≤ ~(λπ + λ̄π̄, j) = λ~(π, j) + λ̄~(π̄, j) =

λvN
0 (π) + λ̄vN

0 (π̄), which implies that λπ + λ̄π̄ ∈ Γ
(j)
N ; i.e., Γ

(j)
N is convex.

Clearly, Γ(j) ⊆ ∩∞N=1Γ
(j)
N . To show the reverse inequality, take any π ∈ ∩∞N=1Γ

(j)
N . Then

vN
0 (π) = ~(π, j) for every N ≥ 0, and the limit as N → ∞ gives v0(π) = ~(π, j); i.e.,

π ∈ Γ(j). The proof of Γ = ∩∞N=1ΓN is similar; and Γ = ∪a
j=1Γ

(j) and ΓN = ∪a
j=1Γ

(j)
N are

obvious, which also imply that Γ0 ⊇ Γ1 ⊇ · · · ⊇ Γ.

Earlier we proved that Γ(j) ⊇ {ey | y ∈ Yj} for every 1 ≤ j ≤ a. Therefore, Γ = ∪a
j=1Γ

(j) ⊇
{ey | y ∈ Y1 ∪ · · · ∪ Ya}. Now we shall prove that the set on the left is strictly larger. Fix

any 1 ≤ j ≤ a, y ∈ Yj, and y′ ∈ Y \ {y}. Let us define

πλ := λey′ + (λ̄)ey for every λ ∈
(

0,
c(y)

C(y′, j) + c(y)

)
.

Because c(y′′) > 0 for every y′′ ∈ Y1 ∪ · · · ∪ Ya, the interval above is non-empty, and every λ

in that interval satisfies (1− λ)c(y) ≥ λC(y′, j) = λC(y′, j) + (λ̄)C(y, j) = ~(πλ, j). Hence,

we have h(πλ) ≤ ~(πλ, j) ≤ (λ̄)c(y) ≤ λc(y′)+(λ̄)c(y) = g(πλ) ≤ g(πλ)+(Tv0)(πλ). Because

v0(·) satisfies thet optimality equation in (3.14), this implies that v0(πλ) = h(πλ). Therefore,

Γ 3 πλ /∈ {ey | y ∈ Y1 ∪ · · · ∪ Ya}. �

Proof of Theorem 13. Because on the event {σ > n}, we have Πn /∈ Γ; i.e., v0(Πn) < h(Πn),

and γn = −
∑n−1

k=0 g(Πk) − v0(Πn) > −
∑n−1

k=0 g(Πk) − h(Πn) = Zn by Lemma 12. Then

the dynamic programming equation in (3.10) implies that γn = E[γn+1 | Fn] on {σ > n}.
Therefore, for every n ≥ 0, we have

E[γσ∧(n+1) | Fn] = E[γσ1{σ≤n} | Fn] + E[γn+11{σ>n} | Fn]

= γσ1{σ≤n} + E[γn+1 | Fn]1{σ>n} = γσ1{σ≤n} + γn1{σ>n} = γσ∧n,

which proves that {γσ∧n, Fn; n ≥ 0} is a martingale. Therefore, −v0 = Eγ0 = Eγσ∧n =

Eγσ1{σ≤n} + Eγn1{γ>n} = EZσ1{σ≤n} + Eγn1{γ>n} for every n ≥ 0. Because γn ≤ 0 for every

n ≥ 0, taking limits supremum as n →∞ of both sides and Fatou’s lemma imply that

−v0 ≤ EZσ1{σ<∞} + E(lim sup
n→∞

γn)1{σ=∞}.(A.2)
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Observe that

γn = −
n−1∑
k=0

g(Πk)− v0(Πn) ≤ −
n−1∑
k=0

∑
y∈Y

Πk(y)c(y) ≤ −
n−1∑
k=0

∑
y∈Y\Y0

Πk(y)c(y)

≤ −cp

n−1∑
k=0

∑
y∈Y\Y0

Πk(y) = −cp

n−1∑
k=0

(
1−

∑
y∈Y0

Πk(y)

)
= −cp n +

n−1∑
k=0

∑
y∈Y0

Πk(y),

and because
∑∞

k=0

∑
y∈Y0

Πk(y) < ∞ by (v) of Proposition 2, taking limit supremum as

n → ∞ of both sides gives that lim supn→∞ γn = −∞ almost surely. Using this in (A.2)

and the fact that −∞ < −‖h‖ ≤ −v0 imply that σ < ∞ almost surely, and −∞ < −v0 ≤
EZσ = −EZ−

σ . Therefore, σ ∈ C0, and −v0 ≤ EZσ ≤ supτ∈C0
EZτ = −v0; i.e., EZσ = −v0,

which proves the optimality of σ in C0. Finally,

∞ > EZ−
σ = E

[
σ−1∑
k=0

g(Πk) + h(Πσ)

]
≥ E

σ−1∑
k=0

∑
y∈Y

Πk(y)c(y) ≥ E
σ−1∑
k=0

∑
y∈Y\Y0

Πk(y)c(y)

≥ cp E
σ−1∑
k=0

∑
y∈Y\Y0

Πk(y) = cp E
σ−1∑
k=0

(
1−

∑
y∈Y0

Πk(y)

)
= cp Eσ − cpE

σ−1∑
k=0

∑
y∈Y0

Πk(y)

≥ cp Eσ − cpE
∞∑

k=0

∑
y∈Y0

Πk(y),

where the second term is finite by (v) of Proposition 2 (which also justifies the split of the

expectation in passing to the second equality), and therefore, Eσ < ∞. �

Proof of Theorem 14. Because cε(y) > 0 for every y ∈ Y\Y0, all of the previous results apply

to the solution of the problem −v0〈ε〉 = supτ∈C0〈ε〉 EZτ 〈ε〉 for every ε > 0. Particularly,

γn〈ε〉 = max{Zn〈ε〉, E[γn+1〈ε〉 | Fn]}, n ≥ 0.(A.3)

Clearly, (γn〈ε〉)ε>0 is decreasing, and the limit

γn := lim
ε↘0

↑ γn〈ε〉 for every n ≥ 0

exists. Because γn〈ε〉 ≥ Zn〈ε〉−ε n, and Zn is integrable, the monotone convergence theorem

after taking limit as ε ↘ 0 in (A.3) gives

γn = max{Zn, E[γn+1 | Fn]}, n ≥ 0.(A.4)

If τ ∈ Cn〈ε〉, then τ is an F-stopping time such that (i) n ≤ τ < ∞ almost surely, and (ii)

∞ > E(Zτ 〈ε〉)− = EZ−
τ + εEτ ≥ EZ−

τ ; therefore, τ also belongs to Cn, and

γn〈ε〉 = ess sup
τ∈Cn〈ε〉

E[Zτ 〈ε〉 | Fn] ≤ ess sup
τ∈Cn〈ε〉

E[Zτ | Fn] ≤ ess sup
τ∈Cn

E[Zτ | Fn] = γn, n ≥ 0;

taking limit as ε ↘ 0 gives γn ≤ γn almost surely for every n ≥ 0. For the proof of the

reverse inequality, it is enough to show that γn ≥ E[Zτ | Fn] for every τ ∈ Cn.
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Note that, by (A.4) the process (γk)k≥0 is an F-supermartingale dominating (Zk)k≥0.

Therefore, for every τ ∈ Cn, F ∈ Fn, and m ≥ n, we have

(A.5)

∫
F

γndP =

∫
F∩{τ=n}

γτdP +

∫
F∩{τ>n}

γndP ≥
∫

F∩{τ=n}
γτdP +

∫
F∩{τ>n}

γn+1dP

=

∫
F∩{n≤τ≤n+1}

γτdP +

∫
F∩{τ>n+1}

γn+1dP ≥ · · · ≥
∫

F∩{n≤τ≤m}
γτdP +

∫
F∩{τ>m}

γmdP

≥
∫

F∩{n≤τ≤m}
ZτdP +

∫
F∩{τ>m}

(γm)−dP.

Because τ ∈ Cn, we have τ < ∞ almost surely, and E|Zτ | = −EZ−
τ < ∞. Therefore,

limm→∞
∫

F∩{n≤τ≤m} ZτdP =
∫

F∩{n≤τ<∞} ZτdP =
∫

F
ZτdP. Moreover, since γm ≥ Zm,

(γm)− ≤ Z−
m =

m−1∑
k=0

g(Πk) + h(Πm) ≤
τ−1∑
k=0

g(Πk) + h(Πm) ≤
τ−1∑
k=0

g(Πτ )− h(Πτ ) + h(Πm)

≤ Z−
τ + ‖h‖ on the event {τ > m},

and lim infm→∞
∫
{τ>m}(γm)−dP ≤ lim infm→∞

(∫
{τ>m} Z−

τ dP + ‖h‖P{τ > m}
)

= 0. Then

taking limit infimum as m → ∞ in (A.5) gives
∫

F
γndP ≥

∫
F

ZτdP, which implies that

γn ≥ E[Zτ | Fn] almost surely and completes the proof of γn = γn ≡ limε↘0 ↑ γn〈ε〉.
Finally, −v0 = Eγ0 = limε↘0 Eγ0〈ε〉 = limε↘0 ↑ vn〈ε〉 follows from the monotone convergence

theorem. �
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