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Abstract. Suppose that there are finitely many simple hypotheses about the unknown

arrival rate and mark distribution of a compound Poisson process, and that exactly one of

them is correct. The objective is to determine the correct hypothesis with minimal error

probability and as soon as possible after the observation of the process starts. This problem

is formulated in a Bayesian framework, and its solution is presented. Provably convergent

numerical methods and practical near-optimal strategies are described and illustrated on

various examples.

1. Introduction

Let X be a compound Poisson process defined as

Xt = X0 +
Nt∑
i=1

Yi, t ≥ 0,(1.1)

where N is a simple Poisson process with some arrival rate λ, and Y1, Y2, . . . are independent

Rd-valued random variables with some common distribution ν(·) such that ν({0}) = 0.

Suppose that the characteristics (λ, ν) of the process X are unknown, and exactly one of M

distinct hypotheses,

H1 : (λ, ν) = (λ1, ν1), H2 : (λ, ν) = (λ2, ν2), . . . , HM : (λ, ν) = (λM , νM),(1.2)

is correct. Let Θ be the index of correct hypothesis, and λ1 ≤ λ2 ≤ · · · ≤ λM without loss

of generality.

At time t = 0, the hypothesis Hi, i ∈ I , {1, . . . ,M} is correct with prior probability

P~π{Θ = i} = πi for some ~π ∈ E , {(π1, . . . , πM) ∈ [0, 1]M :
∑M

k=1 πk = 1}, and we start

observing the process X. The objective is to determine the correct hypothesis as quickly as

possible with minimal probability of making a wrong decision. We are allowed to observe

the process X before the final decision as long as we want. Postponing the final decision

improves the odds of its correctness but increases the sampling and lost opportunity costs.
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Therefore, a good strategy must resolve optimally the trade-off between the costs of waiting

and a wrong terminal decision.

A strategy (τ, d) consists of a sampling termination time τ and a terminal decision rule

d. At time τ , we stop observing the process X and select the hypothesis Hi on the event

{d = i} for i ∈ I. A strategy (τ, d) is admissible if τ is a stopping time of the process X,

and if the value of d is determined completely by the observations of X until time τ .

Suppose that aij ≥ 0, i, j ∈ I is the cost of deciding on Hi when Hj is correct, aii = 0 for

every i ∈ I. Moreover, ρ > 0 is a discount rate, and f : Rd 7→ R is a Borel function such

that its negative part f−(·) is νi-integrable for every i ∈ I; i.e.,
∫

Rd f−(y)νi(dy) < ∞, i ∈ I.

The compromise achieved by an admissible strategy (τ, d) between sampling cost and cost

of wrong terminal decision may be captured by one of three alternative Bayes risks,

R(~π, τ, d) , E~π

[
τ + 1{τ<∞}

M∑
i=1

M∑
j=1

aij · 1{d=i, Θ=j}

]
,(1.3)

R′(~π, τ, d) , E~π

[
Nτ + 1{τ<∞}

M∑
i=1

M∑
j=1

aij · 1{d=i, Θ=j}

]
,(1.4)

R′′(~π, τ, d) , E~π

[
Nτ∑
k=1

e−ρσkf(Yk) + e−ρτ

M∑
i=1

M∑
j=1

aij · 1{d=i, Θ=j}

]
,(1.5)

and our objective will be (i) to calculate the minimum Bayes risk

V (~π) , inf
(τ,d)∈A

R(~π, τ, d), ~π ∈ E, (similarly, V ′(·) and V ′′(·))(1.6)

over the collection A of all admissible strategies and (ii) to find an admissible decision rule

that attains the infimum for every ~π ∈ E, if such a rule exists.

The Bayes risk R penalizes the waiting time at a constant rate regardless of the true

identity of the system and is suitable if major running costs are wages and rents paid at the

same rates per unit time during the study. Bayes risks R′ and R′′ reflect the impact of the

unknown system identity on the waiting costs and account better for lost opportunity costs

in a business setting, for example, due to unknown volume of customer arrivals or unknown

amount of (discounted) cash flows brought by the same customers.

Sequential Bayesian hypothesis testing problems under Bayes risk R of (1.3) were stud-

ied by Wald and Wolfowitz (1950), Blackwell and Girshick (1954), Zacks (1971), Shiryaev

(1978). Peskir and Shiryaev (2000) solved this problem for testing two simple hypotheses

about the arrival rate of a simple Poisson process. For a compound Poisson process whose
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marks are exponentially distributed with mean the same as their arrival rate, Gapeev (2002)

derived under the same Bayes risk optimal sequential tests for two simple hypotheses about

both mark distribution and arrival rate. The solution for general mark distributions has

been obtained by Dayanik and Sezer (2005), who formulated the problem under an auxiliary

probability measure as the optimal stopping of an R+-valued likelihood ratio process. Un-

fortunately, that approach for M = 2 fails when M ≥ 3, since optimal continuation region

in the latter case is not always bounded, and good convergence results do not exist anymore.

In this paper, we solve the Bayesian sequential multi-hypothesis testing problems in (1.6)

for every M ≥ 2 without restrictions on the arrival rate and mark distribution of the com-

pound Poisson process. We describe an optimal admissible strategy (U0, d(U0)) in terms of

an E-valued Markov process Π(t) , (Π1(t), . . . , ΠM(t)), t ≥ 0, whose ith coordinate is the

posterior probability Πi(t) = P~π{Θ = i | Ft} that hypothesis Hi is correct given the past ob-

servations Ft = σ{Xs; 0 ≤ s ≤ t} of the process X. The stopping time U0 of the observable

filtration F = {Ft}t≥0 is the hitting time of the process Π(t) to some closed subset Γ∞ of E.

The stopping region Γ∞ can be partitioned into M closed convex sets Γ∞,1, . . . , Γ∞,M , and

d(U0) equals i ∈ I on the event {U0 < ∞, Π(U0) ∈ Γ∞,i}. Namely, the optimal admissible

strategy (U0, d(U0)) is fully determined by the collection of subsets Γ∞,1, . . . , Γ∞,M , and they

will depend of course on the choice of Bayes risks R, R′, and R′′.

In plain words, one observes the process X until the uncertainty about true system identity

is reduced to a low level beyond which waiting costs are no longer justified. At this time,

the observer stops collecting new information and selects the least-costly hypothesis.

The remainder of the paper is organized as follows. In Sections 2 through 5, we discuss

exclusively the problem with the first Bayes risk, R. We start with a precise problem de-

scription in Section 2 and show that (1.6) is equivalent to optimal stopping of the posterior

probability process Π. After the successive approximations of the latter problem are stud-

ied in Section 3, the solution is described in Section 4. A provably-convergent numerical

algorithm that gives nearly-optimal admissible strategies is also developed. The algorithm is

illustrated on several examples in Section 5. Finally, we mention in Section 6 the necessary

changes to previous arguments in order to obtain similar results for the alternative Bayes

risks R′ and R′′ in (1.4). Long derivations and proofs are deferred to the appendix.
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2. Problem description

Let (Ω,F) be a measurable space hosting a counting process N , a sequence of Rd-valued

random variables (Yn)n≥1, and a random variable Θ taking values in I , {1, . . . ,M}. Sup-

pose that P1, . . . , PM are probability measures on this space such that the process X in (1.1)

is a compound Poisson process with the characteristics (λi, νi(·)) under Pi, and

Pi{Θ = j} =

{
1, if j = i

0, if j 6= i

}
for every i ∈ I.

Then for every ~π ∈ E , {(π1, . . . , πM) ∈ [0, 1]M :
∑M

i=1 πi = 1 },

P~π(A) ,
M∑
i=1

πiPi(A), A ∈ F(2.1)

is a probability measure on (Ω,F), and for A = {Θ = i} we obtain P~π{Θ = i} = πi. Namely,

~π = (π1, . . . , πM) gives the prior probabilities of the hypotheses in (1.2), and Pi(A) becomes

the conditional probability P~π(A|Θ = i) of the event A ∈ F given that the correct hypothesis

is Θ = i for every i ∈ I.

Let F = {Ft}t≥0 be the natural filtration of the process X, and A be the collection of the

pairs (τ, d) of an F-stopping time τ and an I-valued Fτ -measurable random variable d. We

would like to calculate the minimum Bayes risk V (·) in (1.6) and find a strategy (τ, d) ∈ A
that has the smallest Bayes risk R(~π, τ, d) of (1.3) for every ~π ∈ E (Bayes risks R′ and R′′ in

(1.4) and (1.5) are discussed in Section 6). Next proposition, whose proof is in Appendix A,

identifies the form of the optimal terminal decision rule d and reduces the original problem

to the optimal stopping of the posterior probability process

Π(t) = (Π1(t), . . . , ΠM(t)), t ≥ 0, where Πi(t) = P~π{Θ = i|Ft}, i ∈ I.(2.2)

Proposition 2.1. The smallest Bayes risk V (·) of (1.6) becomes

V (~π) = inf
τ∈F

E~π
[
τ + 1{τ<∞}h (Π(τ))

]
, ~π = (π1, . . . , πM) ∈ E,(2.3)

where h : E 7→ R+ is the optimal terminal decision cost function given by

h(~π) , min
i∈I

hi(~π) and hi(~π) ,
M∑

j=1

aijπj.(2.4)

Let d(t) ∈ argmini∈I

∑M
j=1 aijΠj(t), t ≥ 0. If an F-stopping time τ ∗ solves the problem in

(2.3), then (τ ∗, d(τ ∗)) ∈ A is an optimal admissible strategy for V (·) in (1.6).
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Thus, the original Bayesian sequential multi-hypothesis testing simplifies to the optimal

stopping problem in (2.3). To solve it, we shall first study sample paths of the process Π.

For every i ∈ I, let pi(·) be the density of the probability distribution νi with respect

to some σ-finite measure µ on Rd with Borel σ-algebra B(Rd). For example, one can take

µ = ν1 + · · ·+ νM . In the appendix, we show that

Πi(t) =
πi e

−λit
∏Nt

k=1 λi pi(Yk)∑M
j=1 πj e−λjt

∏Nt

k=1 λj pj(Yk)
, t ≥ 0 P~π-almost surely, ~π ∈ E, i ∈ I.(2.5)

If we denote the jump times of the compound Poisson process X by

(2.6) σn , inf{t > σn−1 : Xt 6= Xt−}, n ≥ 1 (σ0 ≡ 0),

then Pi{σ1 ∈ dt1, . . . , σn ∈ dtn, σn+1 > t, Y1 ∈ dy1, . . . , Yn ∈ dyn} equals[
λie

−λit1dt1
]
· · ·
[
λie

−λi(tn−tn−1)dtn
] [

e−λi(t−tn)
] n∏

k=1

pi(yk)µ(dyk) = e−λit

n∏
k=1

λidtkpi(yk)µ(dyk)

for every n ≥ 0 and 0 < t1 ≤ . . . ≤ tn ≤ t. Therefore, Πi(t) of (2.5) is the relative likelihood

πi

[
λie

−λit1dt1
]
· · ·
[
λie

−λi(tn−tn−1)dtn
] [

e−λi(t−tn)
]∏n

k=1 pi(yk)µ(dyk)∑M
j=1 πj [λje−λjt1dt1] · · ·

[
λje−λj(tn−tn−1)dtn

] [
e−λj(t−tn)

]∏n
k=1 pj(yk)µ(dyk)

∣∣∣∣∣ n=Nt,
t1=σ1,...,tn=σn,
y1=Y1,...,yn=Yn

of the path X(s), 0 ≤ s ≤ t under hypothesis Hi as a result of Bayes rule. The explicit form

in (2.5) also gives the recursive dynamics of the process Π as in
Π(t) = x (t− σn−1, Π(σn−1)) , t ∈ [σn−1, σn)

Π(σn) =

(
λ1p1(Yn)Π1(σn−)∑M
j=1 λjpj(Yn)Πj(σn−)

, . . . ,
λMpM(Yn)ΠM(σn−)∑M

j=1 λjpj(Yn)Πj(σn−)

)
 , n ≥ 1(2.7)

in terms of the deterministic mapping x : R× E 7→ E defined by

x(t, ~π) ≡ (x1(t, ~π), . . . , xM(t, ~π)) ,

(
e−λ1t π1∑M
j=1 e−λjt πj

, . . . ,
e−λM t πM∑M
j=1 e−λjt πj

)
.(2.8)

This mapping satisfies the semi-group property x(t + s, ~π) = x(t, x(s, ~π)) for s, t ≥ 0. More-

over, Π is a piecewise-deterministic process by (2.7). The process Π follows the deterministic

curves t 7→ x(t, ~π), ~π ∈ E between arrival times of X and jumps from one curve to another

at the arrival times (σn)n≥1 of X; see Figure 1.

Since under every Pi, i ∈ I marks and interarrival times of the process X are i.i.d., and the

latter are exponentially distributed, the process Π is a piecewise-deterministic (Pi, F)-Markov
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H1

(π1, π2)
H2

(1, 0) (0, 1)

Π(σ1)
Π(σ2)

Π(σ1)

Π(0) = (π1, π2, π3)

Π(σ2)

H1
H3

H2

(1,0,0) (0,0,1)

(0,1,0)

(a) (b)

H3

Π(σ1)Π(σ2)

Π(0)

H2

(1,0,0) (0,0,1)

(0,1,0)

H1

(0, 0, 1, 0)

(0, 1, 0, 0)

(1, 0, 0, 0)

H4

(0, 0, 0, 1)

H1

H3

H2

Π(σ1)

Π(σ2)
Π(0)

(c) (d)

Figure 1: Sample paths t 7→ Π(t) when M = 2 in (a), M = 3 in (b) and (c), and M = 4
in (d). Between arrival times σ1, σ2, . . . of X, the process Π follows the deterministic curves
t 7→ x(t, ~π), ~π ∈ E. At the arrival times, it switches from one curve to another. In (a), (b),
and (d), the arrival rates are different under hypotheses. In (c), λ1 = λ2 < λ3, and (2.8)
implies Π1(t)/Π2(t) = Π1(σn)/Π2(σn) for every t ∈ [σn, σn+1), n ≥ 1.

process for every i ∈ I. Therefore, as shown in the appendix,

E~π[g(Π(t + s))|Ft] =
M∑
i=1

Πi(t)Ei[g(Π(t + s))|Ft] =
M∑
i=1

Πi(t)Ei[g(Π(t + s))|Π(t)](2.9)

for every bounded Borel function g : E 7→ R, numbers s, t ≥ 0, and ~π ∈ E, and Π is also a

piecewise-deterministic (P~π, F)-Markov process for every ~π ∈ E. By (2.8), we have

∂xi(t, ~π)

∂t
= xi(t, ~π)

(
−λi +

M∑
j=1

λjxj(t, ~π)

)
, i ∈ I,(2.10)
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and Jensen’s inequality gives

M∑
i=1

λi
∂xi(t, ~π)

∂t
= −

M∑
i=1

λ2
i xi(t, ~π) +

(
M∑
i=1

λi xi(t, ~π)

)2

≤ 0.

Therefore, the sum on the right hand side of (2.10) decreases in t, and next remark follows.

Remark 2.2. For every i ∈ I, there exists ti(~π) ∈ [0,∞] such that the function xi(t, ~π) of

(2.8) is increasing in t on [0, ti(~π)] and decreasing on [ti(~π),∞) . Since λ1 ≤ λ2 ≤ · · · ≤ λM ,

(2.10) implies that ti(·) = ∞ for every i ∈ I such that λi = λ1. Similarly, ti(·) = 0 for every

i such that λi = λM . In other words, as long as no arrivals are observed, the process Π give

more and more weights on the hypotheses under which the arrival rate is the smallest.

On the other hand, if λ1 = · · · = λM , then x(t, ~π) = ~π for every t ≥ 0 and ~π ∈ E by (2.8).

Hence by (2.7), Π does not change between arrivals, and the relative likelihood of hypotheses

in (1.2) are updated only at arrival times according to the observed marks.

Finally, we conclude this section with the following lemma, which will be useful in describ-

ing a numerical algorithm in Section 4.2; see the appendix for its proof.

Lemma 2.3. Denote a “neighborhood of the corners” in E by

Ê(q1,...,qM ) ,
M⋃

j=1

{~π ∈ E : πj ≥ qj} for every (q1, . . . , qM) ∈ (0, 1)M .(2.11)

If λ1 < λ2 < · · · < λM in (1.2), then for every (q1, . . . , qM) ∈ (0, 1)M , the hitting time

inf{t ≥ 0 : x(t, ~π) ∈ Ê(q1,...,qM )} of the path t 7→ x(t, ~π) to the set Ê(q1,...,qM ) is bounded

uniformly in ~π ∈ E from above by some finite number s (q1, . . . , qM).

3. Successive approximations

By limiting the horizon of the problem in (2.3) to the nth arrival time σn of the process

X, we obtain the family of optimal stopping problems

Vn(π1, . . . , πM) , inf
τ∈F

E~π [τ ∧ σn + h (Π(τ ∧ σn))] , ~π ∈ E, n ≥ 0,(3.1)

where h(·) is the optimal terminal decision cost in (2.4). The functions Vn(·), n ≥ 1 and

V (·) are nonnegative and bounded since so is h(·). The sequence {Vn(·)}n≥1 is decreasing

and has pointwise limit. Next proposition shows that it converges to V (·) uniformly on E.

Remark 3.1. In the proof of Proposition 3.2 and elsewhere, it will be important to remember

that the infimum in (2.3) and (3.1) can be taken over stopping times whose P~π-expectation
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is bounded from above by
∑

i,j aij for every ~π ∈ E, since “immediate stopping” already gives

the upper bound h(·) ≤
∑

i,j aij < ∞ on the value functions V (·) and Vn(·), n ≥ 0.

Proposition 3.2. The sequence {Vn(·)}n≥1 converges to V (·) uniformly on E. In fact,

0 ≤ Vn(~π)− V (~π) ≤

(∑
i,j

aij

)3/2√
λM

n− 1
for every ~π ∈ E and n ≥ 1.(3.2)

Proof. By definition, we have Vn(·) ≥ V (·). For every F-stopping time τ , the expectation

E~π
[
τ + 1{τ<∞}h (Π(τ))

]
in (2.3) can be written as

E~π [τ ∧ σn + h (Π(τ ∧ σn))] + E~π
(
1{τ>σn} [τ − σn + h (Π(τ))− h (Π(σn))]

)
≥ E~π [τ ∧ σn + h (Π(τ ∧ σn))]−

∑
i,j

aij E~π 1{τ>σn}.

We have E~π 1{τ>σn} ≤ E~π
[
1{τ>σn} (τ/σn)1/2

]
≤
√

E~πτ E~π (1/σn) due to Cauchy-Schwartz

inequality, and E~π (1/σn) ≤ λM/(n− 1) by (2.1). If E~πτ ≤
∑

i,j aij, then we obtain

E~π
[
τ + 1{τ<∞}h (Π(τ))

]
≥ E~π [τ ∧ σn + h (Π(τ ∧ σn))]−

(∑
i,j

aij

)3/2√
λM

n− 1
,

and taking the infimum of both sides over the F-stopping times whose P~π-expectation is

bounded by
∑

i,j aij for every ~π ∈ E completes the proof by Remark 3.1. �

The dynamic programming principle suggests that the functions in (3.1) satisfy the relation

Vn+1 = J0Vn, n ≥ 0, where J0 is an operator acting on bounded functions w : E 7→ R by

J0w(~π) , inf
τ∈F

E~π
[
τ ∧ σ1 + 1{τ<σ1}h (Π(τ)) + 1{τ≥σ1}w (Π(σ1))

]
, ~π ∈ E.(3.3)

We show that (3.3) is in fact a minimization problem over deterministic times, by using the

next result about the characterization of stopping times of piecewise-deterministic Markov

processes; see Brémaud (1981, Theorem T33, p. 308), Davis (1993, Lemma A2.3, p. 261))

for its proof.

Lemma 3.3. For every F-stopping time τ and every n ≥ 0, there is an Fσn-measurable

random variable Rn : Ω 7→ [0,∞] such that τ ∧σn+1 = (σn +Rn)∧σn+1 P~π-a.s. on {τ ≥ σn}.
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Particularly, if τ is an F-stopping time, then there exists some constant t = t(~π) ∈ [0,∞]

such that τ ∧ σ1 = t ∧ σ1 holds P~π-a.s. Therefore, (3.3) becomes

J0w(~π) = inf
t∈[0,∞]

Jw(t, ~π) , E~π
[
t ∧ σ1 + 1{t<σ1}h (Π(t)) + 1{t≥σ1}w (Π(σ1))

]
.(3.4)

Since the first arrival time σ1 of the process X is distributed under P~π according to a mixture

of exponential distributions with rates λi, i ∈ I and weights πi, i ∈ I, the explicit dynamics

in (2.7) of the process Π gives

Jw(t, ~π) =

∫ t

0

M∑
i=1

πie
−λi u [1 + λi · (Siw)(x(u, ~π))] du +

(
M∑
i=1

πie
−λi t

)
· h (x(t, ~π)) ,(3.5)

where Si is an operator acting on bounded functions w : E 7→ R and is defined as

Siw(~π) ,
∫

Rd

w

(
λ1p1(y)π1∑M
j=1 λjpj(y)πj

, . . . ,
λMpM(y)πM∑M

j=1 λjpj(y)πj

)
pi(y)µ(dy), ~π ∈ E, i ∈ I.(3.6)

Hence, by (3.4) and (3.5) we conclude that the optimal stopping problem in (3.3) is essentially

a deterministic minimization problem. Using the operator J0, let us now define the sequence

v0(·) , h(·) and vn+1(·) , J0vn(·), n ≥ 0.(3.7)

One of the main results of this section is Proposition 3.7 below and shows that Vn = vn,

n ≥ 0. Therefore, the solutions (vn)n≥1 of deterministic minimization problems in (3.7) give

the successive approximations (Vn)n≥1 in (3.1) of the function V in (2.3) by Proposition 3.2.

That result hinges on certain properties of the operator J0 and sequence (vn)n≥1 summarized

by the next proposition, whose proof is in the appendix.

Proposition 3.4. For two bounded functions w1(·) ≤ w2(·) on E, we have Jw1(t, ·) ≤
Jw2(t, ·) for every t ≥ 0, and J0w1(·) ≤ J0w2(·) ≤ h(·). If w(·) is concave, so are Jw(t, ·),
t ≥ 0 and J0w(·). Finally, if w : E 7→ R+ is bounded and continuous, so are (t, ~π) 7→
J0w(t, ~π) and ~π 7→ J0w(~π).

Corollary 3.5. Each function vn(·), n ≥ 0 of (3.7) is continuous and concave on E. We

have h(·) ≡ v0(·) ≥ v1(·) ≥ . . . ≥ 0, and the pointwise limit v(·) , limn→∞ vn(·) exists and is

concave on E.

Proof. Since v0(·) ≡ h(·) and vn(·) = J0vn−1(·), the claim on concavity and continuity follows

directly from Proposition 3.4 by induction. To show the monotonicity, by construction we

have 0 ≤ v0(·) ≡ h(·), therefore 0 ≤ v1(·) ≤ v0(·) again by Remark 3.4. Assume now that
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0 ≤ vn(·) ≤ vn−1(·). Applying the operator J0 to both sides, we get 0 ≤ vn+1(·) = J0vn(·) ≤
J0vn−1(·) = vn(·). Hence the sequence is decreasing and the pointwise limit limn→∞ vn(·)
exists on E. Finally, since it is the lower envelop of concave functions vn’s, the function v is

also concave. �

Remark 3.6. For Jw(t, ·) given in (3.5) let us define

Jtw(~π) = inf
s∈[t,∞]

Jw(s, ~π),(3.8)

which agrees with (3.4) for t = 0. For every bounded continuous function w : E 7→ R+, the

mapping t 7→ Jw(t, ~π) is again bounded and continuous on [0,∞], and the infimum in (3.8)

attained for all t ∈ [0,∞].

Proposition 3.7. For every n ≥ 0, we have vn(·) = Vn(·) in (3.1) and (3.7). If for every

ε ≥ 0 we define

rε
n(~π) , inf

{
s ∈ (0,∞] : Jvn

(
s, ~π
)
≤ J0vn(~π) + ε

}
, n ≥ 0, ~π ∈ E,

Sε
1 , rε

0

(
Π(0)

)
∧ σ1, and Sε

n+1 ,

{
rε/2
n

(
Π(0)

)
, if σ1 > rε/2

n

(
Π(0)

)
σ1 + Sε/2

n ◦ θσ1 , if σ1 ≤ rε/2
n

(
Π(0)

)} , n ≥ 1,

where θs is the shift-operator on Ω; i.e., Xt ◦ θs = Xs+t, then

E~π [Sε
n + h(Π(Sε

n))] ≤ vn(~π) + ε, ∀ ε ≥ 0, n ≥ 1, ~π ∈ E.(3.9)

Corollary 3.8. Since vn(·) = Vn(·), n ≥ 0, we have v(·) = V (·) by Proposition 3.2. The

function V (·) is continuous and concave on E by Proposition 3.2 and Corollary 3.5.

Proposition 3.9. The value function V of (2.3) satisfies V = J0V , and it is the largest

bounded solution of U = J0U smaller than or equal to h.

Remark 3.10. If the arrival rates in (1.2) are identical, then x(t, ~π) = ~π for every t ≥ 0

and ~π ∈ E; see Remark 2.2. If moreover λ1 = · · · = λM = 1, then (3.4)-(3.5) reduce to

J0w(~π) = min

{
h(~π) , 1 +

M∑
i=1

πi · (Siw)(~π)

}
, ~π ∈ E(3.10)

for every bounded function w : E 7→ R. Blackwell and Girshick (1954, Chapter 9) show that

limn→∞ Jn
0 h ≡ limn→∞ J0(J

n−1
0 h) ≡ limn→∞ J0vn = v ≡ V gives the minimum Bayes risk

of (1.6) in the discrete-time sequential Bayesian hypothesis testing problem, where (i) the

expected sum of the number of samples Y1, Y2, . . . and terminal decision cost is minimized,
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and (ii) the unknown probability density function p of the Yk’s must be identified among the

alternatives p1, . . . , pM .

Proposition 3.11. For every bounded function w : E 7→ R+, we have

Jtw(~π) = Jw(t, ~π) +

(
M∑
i=1

πi e
−λit

)[
J0w

(
x(t, ~π)

)
− h
(
x(t, ~π)

)]
,(3.11)

where the operators J and Jt are defined in (3.5) and (3.8), respectively.

Proof. Let us fix a constant s ≥ t and ~π ∈ E. Using the operator J in (3.5) and the

semigroup property of x(t, ~π) in (2.8), Jw(s, ~π) can be written as

Jw(s, ~π) = Jw(t, ~π) +
M∑
i=1

πi e
−λi t

∫ s

t

M∑
i=1

xi(t, ~π) e−λi u [1 + λi · Siw(x(t + u, x(t, ~π)))] du

−

(
M∑
i=1

πi e
−λi t

)
· h (x(t, ~π)) +

(
M∑
i=1

πi e
−λi (u−t) e−λi t

)
· h
(
x
(
s− t, x(t, ~π)

))
= Jw(t, ~π) +

(
M∑
i=1

πi e
−λi t

)[
Jw
(
s− t, x(t, ~π)

)
− h
(
x(t, ~π)

)]
.

Taking the infimum above over s ∈ [t,∞] concludes the proof. �

Corollary 3.12. If

rn(~π) ≡ r(0)
n (~π) = inf {s ∈ (0,∞] : Jvn (s, ~π) = J0vn(~π)}(3.12)

and inf ∅ = ∞ as r
(ε)
n (~π) in Proposition 3.7 with ε = 0, then

rn(~π) = inf {t > 0 : vn+1 (x(t, ~π)) = h (x(t, ~π))} .(3.13)

Remark 3.13. Substituting w = vn in (3.11) gives the “dynamic programming equation”

for the sequence {vn(·)}n≥0

vn+1(~π) = Jvn(t, ~π) +

(
M∑
i=1

πi e
−λit

)[
vn+1 (x(t, ~π))− h (x(t, ~π))

]
, t ∈ [0, rn(~π)].

Moreover Corollary 3.8 and Proposition 3.11 give

JtV (~π) = JV (t, ~π) +

(
M∑
i=1

πi e
−λit

)
[V (x(t, ~π))− h (x(t, ~π))] , t ∈ R+.(3.14)
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Similar to (3.12), let us define

r(~π) , inf{t > 0 : JV (t, ~π) = J0V (~π)}.(3.15)

Then, similar arguments as in Corollary 3.12 lead to

r(~π) = inf{t > 0 : V (x(t, ~π)) = h (x(t, ~π))},(3.16)

and

V (~π) = JV (t, ~π) +

(
M∑
i=1

πi e
−λit

)
[V (x(t, ~π))− h (x(t, ~π))] , t ∈ [0, r(~π)].(3.17)

Remark 3.14. By Corollary 3.8, the function V (·) in (2.3) is continuous on E. Since

t 7→ x(t, ~π) of (2.8) is continuous, the mapping t → V (x(t, ~π)) is continuous. Moreover, the

paths t 7→ Π(t) follows the deterministic curves t 7→ x(t, ·) between two jumps. Hence the

process V (Π(t)) has right-continuous paths with left limits.

Let us define the F-stopping times

Uε , inf {t ≥ 0 : V (Π(t))− h (Π(t)) ≥ −ε} , ε ≥ 0.(3.18)

Then the regularity of the paths t 7→ Πi(t) implies that

V (Π(Uε))− h (Π(Uε)) ≥ −ε on the event {Uε < ∞} .(3.19)

Proposition 3.15. Let Mt , t + V (Π(t)), t ≥ 0. For every n ≥ 0 and ε ≥ 0, we have

E~π[M0] = E~π[MUε∧σn ]; i.e.,

V (~π) = E~π [Uε ∧ σn + V (Π(Uε ∧ σn))] .(3.20)

Proposition 3.16. The stopping time Uε in (3.18) and NUε have bounded P~π-expectations

for every ε ≥ 0 and ~π ∈ E. Moreover, it is ε-optimal for the problem in (2.3); i.e.,

E~π
[
Uε + 1{Uε<∞}h (Π(Uε))

]
≤ V (~π) + ε for every ~π ∈ E.

Proof. To show the first claim, note that by Proposition 3.5 and Corollary 3.8 we have∑
i,j aij ≥ h(~π) ≥ V (~π) ≥ 0. Using Proposition 3.15 above we have∑

i,j

aij ≥ V (~π) = E~π [Uε ∧ σn + V (Π(Uε ∧ σn))] ≥ E~π [Uε ∧ σn] ,

and by monotone convergence theorem it follows that
∑

i,j aij ≥ E~π [Uε].
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Also note that the process Nt−
∑M

i=1 Πi(t)(λit), t ≥ 0 is a P~π-martingale. Then using the

stopped martingale we obtain

E~π [NUε∧t] = E~π

[
M∑
i=1

Πi(Uε ∧ t) · λi · (Uε ∧ t)

]
≤ λM · E~πUε ≤ λM

∑
i,j

aij.

Letting t →∞ and applying monotone convergence theorem we get E~πNUε ≤ λM

∑
i,j aij.

Next, the almost-sure finiteness of Uε implies

V (~π) = lim
n→∞

E~π [Uε ∧ σn + V (Π(Uε ∧ σn))] = E~π [Uε + V (Π(Uε))] ,

by the monotone and bounded convergence theorems, and by Proposition 3.15. Since

V (Π(Uε))− h (Π(Uε)) ≥ −ε by (3.19) we have

V (~π) ≥ E~π [Uε + V (Π(Uε))− h (Π(Uε)) + h (Π(Uε))] ≥ E~π [Uε + h (Π(Uε))]− ε

and the proof is complete. �

Corollary 3.17. Taking ε = 0 in Proposition 3.16 implies that U0 is an optimal stopping

time for the problem in (2.3).

4. Solution

Let us introduce the stopping region Γ∞ , {~π ∈ E : V (φ) = h(φ)} and continuation

region C∞ , E \ Γ∞ for the problem in (2.3). Because h(~π) = mini∈I hi(~π), we have

Γ∞ = ∪i∈IΓ∞,i, where Γ∞,i , {~π ∈ E : V (~π) = hi(~π)}, i ∈ I.(4.1)

According to Proposition 2.1 and Corollary 3.17, an admissible strategy (U0, d(U0)) that

attains the minimum Bayes risk in (1.6) is (i) to observe X until the process Π of (2.7)-(2.8)

enters the stopping region Γ∞, and then (ii) to stop the observation and select hypothesis

Hi if d(U0) = i, equivalently, if Π(U0) is in Γ∞,i for some i ∈ I.

In order to implement this strategy one needs to calculate, at least approximately, the

subsets Γ∞,i, i ∈ I or the function V (·). In Sections 4.1 and 4.2 we describe numerical

methods that give strategies whose Bayes risks are within any given positive margin of the

minimum, and the following structural results and observations are needed along the way.

Because the functions V (·) and hi(·), i ∈ I are continuous by Corollary 3.8 and (2.4),

the sets Γ∞,i, i ∈ I are closed. They are also convex, since both V (·) is convex by the

same corollary, and h(·) is affine. Indeed, if we fix i ∈ I, ~π1, ~π2 ∈ Γ∞,i, and α ∈ [0, 1], then
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V (α~π1+(1−α)~π2) ≥ αV (~π1)+(1−α)V (~π2) = αhi(~π1)+ (1−α)hi(~π2) = hi(α~π1+(1−α)~π2) ≥
V (α~π1+(1−α)~π2). Hence, V (α~π1+(1−α)~π2) = hi(α~π1+(1−α)~π2) and α~π1+(1−α)~π2 ∈ Γ∞,i.

Proposition 3.9 and next proposition, whose proof is in the appendix, show that the

stopping region Γ∞ always includes a nonempty open neighborhood of every corner of the

(M − 1)-simplex E. However, some of the sets Γ∞,i, i ∈ I may be empty in general,

unless aij > 0 for every 1 ≤ i 6= j ≤ M , in which case for some pi < 1, i ∈ I we have

Γ∞,i ⊇ {~π ∈ E : πi ≥ pi} = ∅ for every i ∈ I.

Proposition 4.1. Let w : E 7→ R+ be a bounded function. For every i ∈ I, define

πi ,
[
1− 1/(2 λM max

k
aik)
]+

, and whenever λi > λ1(4.2)

π∗i , inf

{
π ∈ [πi, 1) :

π

λi(1− π)

[
1−

(
1− πi

πi

· π

1− π

)−λi/(λi−λ1)
]
≥ max

k
aik

}
.(4.3)

Then p , (maxi: λi=λ1 πi) ∨ (maxi: λi>λ1 π∗i ) < 1, and

{~π ∈ E : J0w(~π) = h(~π)} ⊇
M⋃
i=1

{~π ∈ E : πi ≥ p},(4.4)

and if aij > 0 for every 1 ≤ i 6= j ≤ M , then

{~π ∈ E : J0w(~π) = hi(~π)} ⊇
{

~π ∈ E : πi ≥ p ∨ maxk aik

(minj 6=i aji) + (maxk aik)

}
, i ∈ I.(4.5)

For the auxiliary problems in (3.1), let us define the stopping and continuation regions

as Γn , {~π ∈ E : Vn(φ) = h(φ)} and Cn , E \ Γn, respectively, for every n ≥ 0. Similar

arguments as above imply that

Γn =
M⋃
i=1

Γn,i, where Γn,i , {~π ∈ E : Vn(~π) = hi(~π)}, i ∈ I

are closed and convex subsets of E. Since V (·) ≤ . . . ≤ V1(·) ≤ V0(·) ≡ h(·), we have

M⋃
i=1

{~π ∈ E : πi ≥ π∗i } ⊆ Γ∞ ⊆ · · · ⊆ Γn ⊆ Γn−1 ⊆ . . . ⊆ Γ1 ⊆ Γ0 ≡ E,

{~π ∈ E : π1 < π∗1, . . . , πM < π∗M} ⊇ C ⊇ · · · ⊇ Cn ⊇ Cn−1 ⊇ · · · ⊇ C1 ⊇ C0 ≡ ∅.

(4.6)

Remark 4.2. If J0h(·) = h(·), then (3.7) and Corollary 3.8 imply V (·) = h(·), and that it is

optimal to stop immediately and select the hypothesis that gives the smallest terminal cost.

A sufficient condition for this is that 1/λi ≥ maxk∈I aki for every i ∈ I; i.e., the expected

cost of (or waiting-time for) an additional observation is higher than the maximum cost of a
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wrong decision. Note that h(·) ≥ J0h(·) by definition of the operator J0 in (3.4), and since

h(·) ≥ 0, we have

J0h(~π) ≥ inf
t∈[0,∞]

[∫ t

0

M∑
i=1

πie
−λisds +

(
M∑
i=1

πie
−λis

)
h (x(t, ~π))

]

= inf
k,t

[∫ t

0

M∑
i=1

πie
−λisds +

(
M∑
i=1

πie
−λis

)
hk (x(t, ~π))

]
= inf

k,t

M∑
i=1

πi

[
1

λi

+

(
ak,i −

1

λi

)
e−λit

]
.

If 1/λi ≥ maxk aki for every i ∈ I, then last double minimization is attained when t = 0 and

becomes h(~π); therefore, we obtain h(·) ≥ J0h(·) ≥ h(·); i.e., immediate stopping is optimal.

4.1. Nearly-optimal strategies. In Section 3, the value function V (·) of (1.6) is approx-

imated by the sequence {Vn(·)}n≥1, whose elements can be obtained by applying the oper-

ator J0 successively to the function h(·) in (2.4); see (3.7) and Proposition 3.7. According

to Proposition 3.2, V (·) can be approximated this way within any desired positive level of

precision after finite number of iterations. More precisely, (3.2) implies that

N ≥ 1 +
λM

ε2

(∑
i,j

aij

)3

=⇒ ||VN − V || , sup
~π∈E

|VN(~π)− V (~π)| ≤ ε, ∀ ε > 0.(4.7)

In Section 4.2, we give a numerical algorithm to calculate the functions V1, V2, . . . successively.

By using those functions, we describe here two ε-optimal strategies.

Recall from Proposition 3.7 the ε-optimal stopping times Sε
n for the truncated problems

Vn(·), n ≥ 1 in (3.1). For a given ε > 0, if we fix N by (4.7) such that ||VN − V || ≤ ε/2,

then S
ε/2
N is ε-optimal for V (·) in the sense that

E~π
[
S

ε/2
N + h

(
Π(S

ε/2
N )
)]
≤ VN(~π) + ε/2 ≤ V (~π) + ε for every ~π ∈ E,

and
(
S

ε/2
N , d(S

ε/2
N )
)

is an ε-optimal Bayes strategy for the sequential hypothesis testing prob-

lem of (1.6); recall the definition of d(·) from Proposition 2.1.

As described by Proposition 3.7, the stopping rule S
ε/2
N requires that we wait until the

least of r
ε/4
N−1(~π) and first jump time σ1 of X. If r

ε/4
N−1(~π) comes first, then we stop and select

hypothesis Hi, i ∈ I that gives the smallest terminal cost hi

(
x
(
r

ε/4
N−1(~π), ~π

))
. Otherwise, we

update the posterior probabilities at the first jump time to Π(σ1) and wait until the least

of r
ε/4
N−2(Π(σ1)) and next jump time σ1 ◦ θσ1 of the process X. If r

ε/4
N−2(~π) comes first, then

we stop and select a hypothesis, or we wait as before. We stop at the Nth jump time of the

process X and select the best hypothesis if we have not stopped earlier.
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Let N again be an integer as in (4.7) with ε/2 instead of ε. Then
(
U

(N)
ε/2 , d(U

(N)
ε/2 )

)
is

another ε-optimal strategy, if we define

U
(N)
ε/2 , inf {t ≥ 0; h(Π(t)) ≤ VN(Π(t)) + ε/2} .(4.8)

Indeed, E~π
[
U

(N)
ε/2 + h

(
Π(U

(N)
ε/2 )

)]
≤ VN(~π)+ε/2 ≤ V (~π)+ε by the arguments similar in the

proof of Proposition 3.16. After we calculate VN(·) as in Section 4.2, this strategy requires

that we observe X until the process Π enters the region {~π ∈ E : VN(~π) − h(~π) ≥ −ε/2}
and then select the hypothesis with the smallest terminal cost as before.

4.2. Computing the successive approximations. For the implementation of the nearly-

optimal strategies described above, we need to compute V1(·), V2(·), . . . , VN(·) in (3.1) for any

given integer N ≥ 1.

If the arrival rates in (1.2) are distinct; i.e., λ1 < λ2 < . . . < λM , then by Lemma 2.3

the entrance time t~π(π∗1, . . . , π
∗
M) of the path t 7→ x(t, ~π) in (2.8) to the region ∪M

i=1{~π ∈
E : πi ≥ π∗i } defined in Proposition 4.1 is bounded uniformly in ~π ∈ E from above by

some finite number s(π∗1, . . . , π
∗
M). Therefore, the minimization in the problem Vn+1(~π) =

J0Vn(~π) = inft∈[0,∞] JVn(t, ~π) can be restricted to the compact interval [0, t~π(π∗1, . . . , π
∗
M)] ⊂

[0, s(π∗1, . . . , π
∗
M)] for every n ≥ 1 and ~π ∈ E, thanks to Corollary 3.12. On the other hand, if

the arrival rates λ1 = . . . = λM are the same, then this minimization problem over t ∈ [0,∞]

reduces to a simple comparison of two numbers as in (3.10) because of degenerate operator

J0; see Remark 3.10.

If some of the arrival rates are equal, then t~π(π∗1, . . . , π
∗
M) is not uniformly bounded in

~π ∈ E anymore; in fact, it can be infinite for some ~π ∈ E. Excluding the simple case

of identical arrival rates, one can still restrict the minimization in inft∈[0,∞] JVn((t, ~π) to

a compact interval independent of ~π ∈ E and still control the difference arising from

this. Note that the operator J defined in (3.5) satisfies sup~π∈E |Jw(t, ~π) − Jw(∞, ~π)| ≤
(1/λ1)e

−λ1t
[
1 + (λ1 + λM)

∑
i,j aij

]
for every t ≥ 0 and w : E 7→ R+ such that sup~π∈E w(~π) ≤∑

i,j aij; recall Remark 3.1. If we define

t(δ) , − 1

λ1

ln

(
(δ/2) λ1

1 + (λ1 + λM)
∑

i,j aij

)
for every δ > 0,(4.9)

J0,tw(~π) , inf
s∈[0,t]

Jw(s, ~π), for every bounded w : E 7→ R, t ≥ 0, ~π ∈ E,(4.10)

then for every δ > 0, t1, t2 ≥ t(δ) and ~π ∈ E, we have |Jw(t1, ~π)− Jw(t2, ~π)| ≤ |Jw(t1, ~π)−
Jw(∞, ~π)| + |Jw(∞, ~π) − Jw(t2, ~π)| ≤ δ/2 + δ/2 ≤ δ, and therefore, sup~π∈E

∣∣J0,t(δ)w(~π) −
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J0w(~π)
∣∣ < δ. Let us now define

Vδ,0(·) , h(·) and Vδ,n+1(·) , J0,t(δ)Vδ,n(·), n ≥ 1, δ > 0.(4.11)

Lemma 4.3. For every δ > 0 and n ≥ 0, we have Vn(·) ≤ Vδ,n(·) ≤ nδ + Vn(·)

Proof. The inequalities holds for n = 0, since Vδ,0(·) = V0(·) = h(·) by definition. Suppose

that they hold for some n ≥ 0. Then Vn+1(·) = J0Vn(·) ≤ J0Vδ,n(·) ≤ J0,t(δ)Vδ,n(·) = Vδ,n+1(·),
which proves the first inequality for n + 1. To prove the second inequality, note that Vδ,n(·)
is bounded from above by h(·) ≤

∑
i,j aij. Then by (4.10) we have for every ~π ∈ E that

Vδ,n+1(~π) = inf
t∈[0,t(δ)]

JVδ,n(t, ~π) ≤ inf
t∈[0,∞]

JVδ,n(t, ~π) + δ ≤ inf
t∈[0,∞]

JVn(t, ~π)

+

∫ t

0

M∑
i=1

πi e
−λiuλi nδ du+δ ≤ Vn+1(t, ~π)+

∫ ∞

0

M∑
i=1

πi e
−λiuλi nδ du+δ = Vn+1(~π)+(n+1)δ,

and the proof is complete by induction on n ≥ 0. �

If some (but not all) of the arrival rates are equal, then Lemma 4.3 lets us approximate

the function V (·) of (2.3) by the functions {Vδ,n(·)}δ>0,n≥1 in (4.11). In this case, there is

additional loss in precision due to truncation at δ, and this is compensated by increasing the

number of iterations. For example, for a every ε > 0 the choices of N and δ > 0 such that

N ≥ 1 +
1

ε2

1 +
√

λM

(∑
i,j

aij

)3/2
2

and δ ≤ 1

N
√

N − 1
imply that

||Vδ,N − V || ≤ ||Vδ,N − VN ||+ ||VN − V || ≤ Nδ +

(∑
i,j

aij

)3/2√
λM

N − 1
≤ ε

(4.12)

by (3.2) and Lemma 4.3. Hence, the function V (·) in (2.3) can be calculated at any desired

precision level ε > 0 after some finite N = N(ε) number of applications of the operator J0,t(δ)

in (4.10) for some δ = δ(N) > 0 to the function h(·) of (2.4), and one can choose

N(ε) , smallest integer greater than or equal to

[
1 +

√
λM

(∑
i,j

aij

)3/2
]2

,(4.13)

δ(N) ,
1

N
√

N − 1
for every ε > 0 and N > 1.(4.14)

If we set N = N(ε/2) and δ = δ(N), and define U
(δ,N)
ε/2 , inf

{
t ≥ 0; h(Π(t)) ≤ Vδ,N(Π(t)) +

ε/2
}
, then for every ~π ∈ E we have E~π

[
U

(δ,N)
ε/2 + h

(
Π(U

(δ,N)
ε/2 )

)]
≤ Vδ,N(~π)+ ε/2 ≤ V (~π)+ ε
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Initialization. To approximate V by VN or Vδ,N such that ||VN −V || ≤ ε or ||Vδ,N −V || ≤ ε
for some ε > 0, choose the number of iterations N and truncation parameter δ > 0 as follows:

• If λ1 < λ2 < · · · < λM or λ1 = · · · = λM , then take N ≥ 1 + (λM/ε2)(
∑

i,j aij)
3.

• Else take N ≥ 1 + (1/ε2)[1 +
√

λM(
∑

i,j aij)
3/2]2 and 0 < δ ≤ 1/(N

√
N − 1).

By using bisection search, find π∗i for i ∈ I by using (4.3). Set n = 0, V0(·) ≡ h(·) or
Vδ,0(·) ≡ h(·).
Repeat

• If λ1 < λ2 < · · · < λM , then calculate Vn+1(~π) = mint∈[0,t~π(π∗1 ,...,π∗M )] JVn(t, ~π) for
every ~π ∈ E, where t~π(π∗1, . . . , π

∗
M) is the hitting time of the path t 7→ x(t, ~π) in

(2.8) to the region Ê(π∗1 ,...,π∗M ) in (2.11).
• Else if λ1 = · · · = λM , calculate Vn+1(~π) = min {h(~π), (1/λ1) +

∑
i πi · (SiVn)(~π)} as

in (3.10) for every ~π ∈ E.
• Else, calculate Vδ,n+1(~π) = inft∈[0,t(δ)] JVδ,n(t, ~π) for every ~π ∈ E, where t(δ) is given

by (4.9).
• Increase n by one.

Until n ≥ N .

Figure 2: Numerical algorithm that approximates the value function V (·) in (2.3).

as in the proof of Proposition 3.16. As in the case of (4.8), observing the process X until

the stopping time U
(δ,N)
ε/2 and then selecting a hypothesis with the smallest expected terminal

cost give an ε-optimal strategy for the V (·) in (1.6).

Figure 2 summarizes our discussion in the form of an algorithm that computes the ele-

ments of the sequence {Vn(·)}n≥1 or {Vδ,n(·)}n≥1 and approximates the function V (·) in (2.3)

numerically. This algorithm is used in the numerical examples of Section 5.

5. Examples

Here we solve several examples by using the numerical methods of previous section. We re-

strict ourselves to the problems with M = 3 and 4 alternative hypotheses since the drawings

of the value functions and stopping regions are then possible and help checking numeri-

cally Section 4’s theoretical conclusions on their structures; compare them also to Dayanik

and Sezer’s (2005) examples with M = 2 alternative hypotheses. In each example, an ap-

proximate value function is calculated by using the numerical algorithm in Figure 2 with a

negligible ε-value.

Figure 3 displays the results of two examples on testing unknown arrival rate of a simple

Poisson process. In both examples, the terminal decision costs aij = 2, i 6= j are the same

for wrong terminal decisions.
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Γ∞,2

H3

H2

H1

Γ∞,3
Γ∞,1

V (·)

Γ∞,2

H1

H3
H2

Γ∞,3

Γ∞,1

V (·)
H3

H1

H4

H2

Γ∞,1 −→
←− Γ∞,4

Γ∞,2 −→

Γ∞,3 −→

1

(a) (b)

Figure 3: Testing hypotheses H1 : λ = 5, H2 : λ = 10, H3 : λ = 15 in (a) and H1 : λ = 5,
H2 : λ = 10, H3 : λ = 15, H4 : 20 in (b) about the unknown arrival rate of a simple Poisson
process. Wrong terminal decision costs are aij = 2 for i 6= j in both examples. In (a),
the approximations of the function V (·) in (1.6)-(2.3) and stopping regions Γ∞,1, . . . , Γ∞,3

in (4.1) are displayed from two perspectives. In (b), the stopping regions Γ∞,1, . . . , Γ∞,4 are
displayed by the darker regions in 3-simplex E. Observe that in (b) π4 equals zero on the
upper left H1H2H3-face of the tetrahedron, and the stopping regions on that face coincide
with those of the example in (a) as expected.

In Figure 3 (a), three alternative hypotheses H1 : λ = 5, H2 : λ = 10, H3 : λ = 15 are

tested sequentially. The value function and boundaries between stopping and continuation

regions are drawn from two perspectives. As noted in Section 4, the stopping region consists

of convex and closed neighborhoods of the corners of 2-simplex E at the bottom of the figures

on the left. The value function above E looks concave and continuous in agreement with

Corollary 3.8. In Figure 3 (b), four hypotheses H1 : λ = 5, H2 : λ = 10, H3 : λ = 15, and

H4 : λ = 20 are tested sequentially and stopping regions Γ∞,1, . . . , Γ∞,4 are displayed on
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H1

H3

H2

V (3)(·)

V (2)(·)

V (1)(·)

H1

H3

H2

V (6)(·)

V (5)(·)

V (4)(·)

H3

H2H1

H3

H1 H2

(a) (b)

Figure 4: Impact on the minimum Bayes risk in (1.6) and on its stopping regions of differ-
ent alternative hypotheses in (1.2) about unknown characteristics of a compound Poisson
process. On the left, V (1), V (2), V (3) are the minimum Bayes risks when (i) alternative ar-
rival rates (λ1, λ2, λ3) are (1, 3, 5), (1, 3, 10), (0.1, 3, 10), respectively, and (ii) the alternative
mark distributions on {1, 2, 3, 4, 5} are given by (5.1). On the right, V (4), V (5), V (6) are the
minimum Bayes risks when (i) alternative arrival rates (λ1, λ2, λ3) ≡ (3, 3, 3) are the same,
and (ii) the marks are Gamma distributed random variables with common scale parameter
2 and unknown shape parameter alternatives (3, 6, 9), (1, 6, 9), (1, 6, 15), respectively.

the 3-simplex E. Note that the first three hypotheses are the same as those of the previous

example. Therefore, this problem reduces to the previous one if π4 = 0, and the intersection

of its stopping regions with the H1H2H3-face of the simplex E coincides with those stopping

regions of the previous problem.

Next we suppose that the marks of a compound Poisson process X take values in {1, 2, 3, 4, 5}
and their unknown common distribution ν(·) is one of the alternatives

ν1 =

{
1

15
,

2

15
,

3

15
,

4

15
,

5

15

}
, ν2 =

{
3

15
,

3

15
,

3

15
,

3

15
,

3

15

}
, ν3 =

{
5

15
,

4

15
,

3

15
,

2

15
,

1

15

}
.(5.1)
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For three different sets of alternative arrival rates (λ1, λ2, λ3) in (1.2); namely, (1, 3, 5),

(1, 3, 10), (0.1, 3, 10), we solve the problem (1.6) and calculate the corresponding minimum

Bayes risk functions V (1)(·), V (2)(·), V (3)(·), respectively. The terminal decision cost is the

same aij = 2 for every 1 ≤ i 6= j ≤ 3. In Figure 4(a), the functions V (1), V (2), V (3) and

stopping region boundaries are plotted. It suggests that V (1)(·) ≥ V (2)(·) ≥ V (3)(·) as

expected, since the wider the alternative arrival rates are stretched from each other, the

easier is to discriminate the correct rate.

Figure 4(b) displays the minimum Bayes risks V (4), V (5), V (6) and boundaries of stopping

regions of three more sequential hypothesis-testing problems with M = 3 alternative hy-

potheses. For each of those three problems, the alternative arrival rates (λ1, λ2, λ3) are the

same and equal (3, 3, 3), and the common mark distribution ν(·) is Gamma(2, β) with scale

parameter 2 and unknown shape parameter β. Alternative β-values under three hypotheses

are (3, 6, 9), (1, 6, 9), (1, 6, 15) for three problems V (4), V (5), V (6), respectively. Figure 4(b)

suggests that V (4)(·) ≥ V (5)(·) ≥ V (6)(·) as expected, since alternative Gamma distributions

are easier to distinguish as the shape parameters stretched out from each other.

Furthermore, the kinks of the functions V (4)(·), V (5)(·), V (6)(·) suggest that these are not

smooth; compare with V (1)(·), V (2)(·), V (3)(·) in Figure 4 (a). Dayanik and Sezer (2005)

show for M = 2 that the function V (·) in (1.6) may not be differentiable, even in the interior

of the continuation, if the alternative arrival rates are equal. This result applies to the above

example with M = 3, at least on the regions where one of the components of ~π equals zero

and the example reduces to a two-hypothesis testing problem.

6. Alternative Bayes risks

The key facts behind the analysis of the problem (1.6) were that (i) the Bayes risk R in

(1.3) is the expectation of a special functional of the piecewise-deterministic Markov process

Π in (2.2), (2.7)-(2.10), (ii) the stopping times of such processes are “predictable between

jump times” in the sense of Lemma 3.3, and (iii) the minimum Bayes risk V (·) in (1.6) and

(2.3) is approximated uniformly by the truncations Vn(·), n ≥ 1 in (3.1) of the same problem

at arrival times of observation process X. Fortunately, all of these facts remain valid for the

other two problems in (1.6),

V ′(~π) , inf
(τ,d)∈A

R′(~π, τ, d) and V ′′(~π) , inf
(τ,d)∈A

R′′(~π, τ, d),(6.1)
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of the alternative Bayes risks R′ and R′′ in (1.4) and (1.5), respectively. Minor changes to

the proof of Proposition 2.1 give that

V ′(~π) = inf
τ∈F

E~π
[
Nτ + 1{τ<∞}h(Π(τ))

]
, ~π ∈ E,

V ′′(~π) = inf
τ∈F

E~π

[
Nτ∑
k=1

e−ρσkf(Yk) + e−ρτh (Π(τ))

]
, ~π ∈ E

(6.2)

in terms of the minimum terminal decision cost function h(·) in (2.4). Moreover, for ev-

ery a.s.-finite optimal F-stopping times τ ′ and τ ′′ of the problems in (6.2) the admissible

strategies (τ ′, d(τ ′)) and (τ ′′, d(τ ′′)) attain the minimum Bayes risks V ′(·) and V ′′(·) in (6.1),

respectively, where the random variable d(t) ∈ argmini∈I

∑
j∈I aijΠi(t), t ≥ 0 is the same as

in Proposition 2.1. The sequence of functions

V ′
n(~π) , inf

τ∈F
E~π
[
n ∧Nτ + 1{τ<∞} h(Π(τ ∧ σn))

]
, n ≥ 0 and

V ′′
n (~π) , inf

τ∈F
E~π

[
n∧Nτ∑
k=1

e−ρσkf(Yk) + e−ρ(τ∧σn)h (Π(τ ∧ σn))

]
, n ≥ 0,

(6.3)

obtained from the problems in (6.2) by truncation at the nth arrival time σn (σ0 ≡ 0) of the

observation process X, approximate respectively the functions V ′(~π) and V ′′(~π) uniformly

in ~π ∈ E, and the error bounds are similar to (3.2); i.e.,

0 ≤ ||V ′
n − V ′|| , ||V ′′

n − V ′′|| ≤

(∑
i,j

aij

)3/2√
λM

n− 1
for every n ≥ 1.

Moreover, the sequences (V ′
n(·))n≥1 and (V ′′

n (·))n≥1 can be calculated successively as in

V ′
n+1(~π) = inf

t∈[0,∞]
J ′V ′

n(t, ~π), n ≥ 0 and V ′′
n+1(~π) = inf

t∈[0,∞]
J ′′V ′′

n (t, ~π), n ≥ 0

by using the operators J ′ and J ′′ acting on bounded functions w : E 7→ R according to

J ′w(t, ~π) ,
∫ t

0

M∑
i=1

πi e
−λiuλi [1 + (Siw)(x(u, ~π))] du +

M∑
i=1

πi e
−λith(x(t, ~π)),

J ′′w(t, ~π) ,
∫ t

0

M∑
i=1

πi e
−(ρ+λi)uλi [µi + (Siw)(x(u, ~π))] du +

M∑
i=1

πi e
−(ρ+λi)th(x(t, ~π))

(6.4)

for every t ≥ 0; here, Si, i ∈ I is the same operator in (3.6), and

µi , E•[f(Y1) | Θ = i] =

∫
Rd

f(y)νi(dy) ≡
∫

Rd

f(y)pi(y)µ(dy), i ∈ I



SEQUENTIAL MULTI-HYPOTHESIS TESTING FOR COMPOUND POISSON PROCESSES 23

is the conditional expectation of the random variable f(Y1) given that the correct hypothesis

is Θ = i. Recall from Section 1 that the negative part f−(·) of the Borel function f : Rd 7→ R
is νi-integrable for every i ∈ I; therefore, the expectation µi, i ∈ I exists.

As in Proposition 3.16 and Corollary 3.17 the F-stopping times

U ′
0 , inf

{
t ≥ 0; V ′(Π(t)

)
= h

(
Π(t)

)}
and U ′′

0 , inf
{

t ≥ 0; V ′′(Π(t)
)

= h
(
Π(t)

)}
are optimal for the problems V ′(·) and V ′′(·) in (6.2), respectively. The functions V ′(·) and

V ′′(·) are concave and continuous, and the nonempty stopping regions

Γ′∞ , {~π ∈ E : V ′(~π) = h(~π)} and Γ′′∞ , {~π ∈ E : V ′′(~π) = h(~π)}

are the union of closed and convex neighborhoods

Γ′∞,i , Γ′∞ ∩ {~π ∈ E : h(~π) = hi(~π)} and Γ′′∞,i , Γ′′∞ ∩ {~π ∈ E : h(~π) = hi(~π)}, i ∈ I

of M corners of the (M − 1)-simplex E. It is optimal to stop at time U ′
0 (respectively, U ′′

0 )

and select the hypothesis Hi, i ∈ I if Π(U ′
0) ∈ Γ′∞,i (respectively, Π(U ′′

0 ) ∈ Γ′′∞,i).

The numerical algorithm in Figure 2 approximates V ′(·) in (6.2) with its outcome V ′
N(·)

or V ′
δ,N(·) if J , πi, π∗i are replaced with J ′ in (6.4),

π′i ,

{
1− λ1

2 λM (maxk aik)

}
∨ maxk aik

(minj 6=i aji) + (maxk aik)
,

π′i , inf

{
πi ∈ [π′i, 1] :

πi

(1− πi)

[
1−

(
1− πi

πi

· πi

1− πi

)−λi/(λi−λ1)
]
≥ max

k
aik

}
,

respectively, for every i ∈ I. Similarly, its outcome V ′′
N(·) or V ′′

δ,N(·) approximates the function

V ′′(·) in (6.2) if in Figure 2 J , πi, π∗i are replaced with J ′′ in (6.4),

π′′i ,

{
1− λ1

2 (λM + ρ) (maxk aik)

}
∨ maxk aik

(minj 6=i aji) + (maxk aik)
,

π′′i , inf

{
πi ∈ [π′′i , 1] :

πiλi

(λi + ρ)(1− πi)

[
1−

(
1− πi

πi

· πi

1− πi

)−(λi+ρ)/(λi−λ1)
]
≥ max

k
aik

}
,

respectively, for every i ∈ I. As in Section 4.1, these numerical solutions can be used to

obtain nearly-optimal strategies. For every ε > 0, if we fix N such that ||V ′
N − V ′|| ≤ ε/2

and define U ′
ε/2,N , inf {t ≥ 0; h(Π(t)) ≤ V ′

N(Π(t)) + ε/2}, then
(
U ′

ε/2,N , d(U ′
ε/2,N)

)
is an ε-

optimal admissible strategy for the minimum Bayes risk V ′(·) in (6.1). Similarly, if we fix N

such that ||V ′′
N −V ′′|| ≤ ε/2 and define U ′′

ε/2,N , inf {t ≥ 0; h(Π(t)) ≤ V ′′
N(Π(t)) + ε/2}, then(

U ′′
ε/2,N , d(U ′′

ε/2,N)
)

is an ε-optimal admissible strategy for the minimum Bayes risk V ′′(·) in
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H1

H3

H2

Γ∞,1

Γ∞,3

Γ∞,2

H1

H3

H2

H1

H3

H2

(a) V (·) (b) V ′(·) (c) V ′′(·) with ρ = 0.2

H1

H3

H2

H1

H3

H2

H1

H3

H2

(d) V ′′(·) with ρ = 0.4 (e) V ′′(·) with ρ = 0.6 (f) V ′′(·) with ρ = 0.8

Figure 5: The minimum Bayes risk functions V (·), V ′(·), and V ′′(·) corresponding to Bayes
risks R in (1.3), R′ in (1.4), and R′′ in (1.5) with discount rates ρ = 0.2, 0.4, 0.6, 0.8, re-
spectively, when three alternative hypotheses, H1 : λ = 1, H2 : λ = 2, and H3 : λ = 3,
about the arrival rate λ of a simple Poisson process are tested. In each figure, the stopping
regions Γ∞,1, Γ∞,2, and Γ∞,3 in the neighborhoods of the corners at H1, H2, and H3 are also
displayed. The terminal decision costs are aij = 10 for every 1 ≤ i 6= j ≤ 3.

(6.1). The proofs are omitted since they are similar to those discussed in detail for V (·) of

(1.6). However, beware that the Bayes risk R′ in (1.4) does not immediately reduce to R of

(1.3), since the (P~π, F)-compensator of the process Nt, t ≥ 0 is
∑M

i=1 Πi(t)λi, t ≥ 0.

Figure 5 compares the minimum Bayes risk functions and optimal stopping regions for a

three-hypothesis testing problem. Comparison of (a) and (b) confirms that the Bayes risks

R and R′ are different. Since the stopping regions in (b) are larger than those in (a), optimal

decision strategies arrive at a conclusion earlier under R′ than under R. As the discount

rate ρ decreases to zero, the minimum risk V ′′(·) and stopping regions become larger and

converge, apparently to V ′(·) and its stopping regions, respectively.
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Appendix: proofs of selected results

Proof of (2.5). The right hand side of (2.5) is Ft-measurable, and it is sufficient to show

E~π
[
1A · P~π(Θ = i | Ft)

]
= E~π

[
1A ·

πie
−λit

∏Nt

k=1 λi · pi(Yk)∑M
j=1 πje−λjt

∏Nt

k=1 λj · pj(Yk)

]
for sets of the form A , {Nt1 = m1, . . . , Ntk = mk, (Y1, . . . , Ymk

) ∈ Bmk
} for every k ≥ 1,

0 ≡ t0 ≤ t1 ≤ . . . ≤ tk = t, 0 ≡ m0 ≤ m1 ≤ . . . ≤ mk, and Borel subset Bmk
of Rmk×d. If A is

as above, then E~π
[
1A P~π(Θ = i | Ft)

]
= E~π

[
E~π(1A∩{Θ=i} | Ft)

]
= E~π

[
1A∩{Θ=i}

]
= πi Pi(A)

becomes

πi e
−λitk

k∏
n=1

(tn − tn−1)
mn−mn−1

(mn −mn−1)!

∫
Bmk

mk∏
`=1

pi(y`)µ(dy`)

=
k∏

n=1

(tn − tn−1)
mn−mn−1

(mn −mn−1)!

∫
Bmk

Li(tk, mk, y1, . . . , ymk
)

mk∏
`=1

µ(dy`)

in terms of Li(t,m, y1, . . . , ym) , πie
−λit

∏m
`=1 λipi(y`), i ∈ I. If L(t,m, y1, . . . , ym) ,∑M

i=1 Li(t,m, y1, . . . , ym), then E~π
[
1A P~π(Θ = i | Ft)

]
equals

k∏
n=1

(tn − tn−1)
mn−mn−1

(mn −mn−1)!

∫
Bmk

L(tk, mk, y1, . . . , ymk
) · Li(tk, mk, y1, . . . , ymk

)

L(tk, mk, y1, . . . , ymk
)

mk∏
`=1

µ(dy`)

=
M∑

j=1

πje
−λjtkλmk

j

k∏
n=1

(tn − tn−1)
mn−mn−1

(mn −mn−1)!

∫
Bmk

Li(tk, mk, y1, . . . , ymk
)

L(tk, mk, y1, . . . , ymk
)

mk∏
`=1

pj(y`)µ(dy`)

=
M∑

j=1

πjE~π

[
1A

Li(tk, Ntk , Y1, . . . , YNtk
)

L(tk, Ntk , Y1, . . . , YNtk
)

∣∣∣∣∣Θ = j

]
= E~π

[
1A

πie
−λitk

∏Ntk
`=1 λipi(Y`)∑M

j=1 πje−λjtk
∏Ntk

`=1 λjpj(Y`)

]
. �

Proof of (2.9). For every bounded Ft-measurable r.v. Z, we have

E~π[Z g(Π(t + s))] =
M∑
i=1

πi Ei[Z g(Π(t + s))] =
M∑
i=1

πi Ei[Z Ei[g(Π(t + s))|Ft]]

=
M∑
i=1

P~π{Θ = i}E~π[Z Ei[g(Π(t + s))|Ft] | Θ = i] =
M∑
i=1

E~π
[
Z 1{Θ=i}Ei[g(Π(t + s))|Ft]

]
=

M∑
i=1

E~π [Z Πi(t) Ei[g(Π(t + s))|Ft]] = E~π

[
Z

(
M∑
i=1

Πi(t) Ei[g(Π(t + s))|Ft]

)]
. �
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Proof of Proposition 2.1. Let τ be an F- stopping time taking countably many real values

(tn)n≥1. Then by monotone convergence theorem

(A.1) E~π

[
τ +

M∑
i=1

M∑
j=1

aij · 1{d=i, Θ=j}

]
=
∑

n

E~π1{τ=tn}

[
tn +

M∑
i=1

M∑
j=1

aij · 1{d=i, Θ=j}

]

=
∑

n

E~π1{τ=tn}

[
tn +

M∑
i=1

M∑
j=1

aij · 1{d=i}P~π{Θ = j |Ftn}

]

=
∑

n

E~π1{τ=tn}

[
tn +

M∑
i=1

M∑
j=1

aij · 1{d=i}Πj(tn)

]
= E~π

[
τ +

M∑
i=1

M∑
j=1

aij · 1{d=i,}Πj(τ)

]
.

Next take an arbitrary F-stopping time τ with finite expectation E~πτ . There is a decreasing

sequence (τk)k≥1 of F-stopping times converging to τ such that (i) every τk, k ≥ 1 takes

countably many values, and (ii) E~πτ1 is finite. (For example, if ϕk(t) , (j−1)k2−k whenever

t ∈ [(j − 1)k2−k, jk2−k) for some j ≥ 1, then τk , ϕk(τ), k ≥ 1 are F-stopping times taking

countably many real values and τk ≤ τ < τk +k2k for every k ≥ 1.) Therefore, d ∈ Fτ ⊂ Fτk

for every k ≥ 1. Then the right-continuity of the sample-paths of the process Πi in (2.2),

dominated convergence theorem, and (A.1) lead to

E~π

[
τ +

M∑
i=1

M∑
j=1

aij · 1{d=i, Θ=j}

]
= lim

k→∞
E~π

[
τk +

M∑
i=1

M∑
j=1

aij · 1{d=i, Θ=j}

]

= lim
k→∞

E~π

[
τk +

M∑
i=1

M∑
j=1

aij · 1{d=i}Πj(τk)

]
= E~π

[
τ +

M∑
i=1

M∑
j=1

aij · 1{d=i}Πj(τ)

]
.

The last expectation is minimized if we take d(τ) ∈ arg mini∈I

∑M
j=1 aij · Πj(τ). Hence,

inf
(τ,d)∈A

R(τ, d) ≥ inf
τ

E~π∈F

[
τ +

M∑
i=1

M∑
j=1

aij · 1{d=i}Πj(τ)

]
by Remark 3.1. Since d(τ) is Fτ -measurable, we also have the reverse inequality. �

The following result will be useful in establishing Lemma 2.3.

Lemma A.1. Suppose λ1 < λ2 < . . . < λM . Let Ê(q1,...,qM ) be as in (2.11) for some

0 < q1, . . . , qM < 1. For every fixed k ∈ {1, . . . ,M − 1} and arbitrary constant 0 < δk < 1,

there exists some εk ∈ (0, δk] such that starting at time t = 0 in the region

{~π ∈ E \ Ê(q1,...,qM ) : πj < εk ∀j < k and πk ≥ δk},
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the entrance time of the path t 7→ x(t, ~π), t ≥ 0 into Ê(q1,...,qM ) is bounded from above. More

precisely, there exists some finite tk(δk, qk) such that

xk (tk(δk, qk), ~π) ≥ qk for every ~π in the region above.

Proof. Let k = 1 and δ1 ∈ (0, 1) be fixed. The mapping t 7→ x1(t, ~π) is increasing, and

limt→∞ x1(t, ~π) = 1 on {~π ∈ E : π1 ≥ δ1}. Hence the given level 0 < q1 < 1 will eventually

be exceeded. Then the explicit form of x(t, ~π) in (2.8) implies that we can set

t1(δ1, q1) =
1

λ2 − λ1

ln

(
1− δ1

δ1

· q1

1− q1

)
.

For 1 < k < M − 1, let δk ∈ (0, 1) be a given constant. By (2.10), the mapping t 7→ xk(t, ~π)

is increasing on the region {~π ∈ E : πj ≤ ε̂k, for all j < k}, where

ε̂k , min

{
(1− qk)(λk+1 − λk)

(k − 1)(λk+1 − λk−1)
,
1− δk

k − 1

}
.

Let us fix

εk , sup

{
0 ≤ πk ≤ δk ∧ ε̂k ∧

λM − λk

λM − λ1

: δk

(
1− qk

qk

)
≥

πk(k − 1)

(
ε̂k

1− ε̂k

· 1− πk

πk

)(λk−λ1)/(λM−λ1)

+

(
ε̂k

1− ε̂k

· 1− πk

πk

)(λk−λk+1)(λM−λ1)
}

.

The right hand side of the inequality above is 0 at πk = 0, and it is increasing on πk ∈
[0, (λM − λk)/(λM − λ1)]. Therefore, εk is well defined. Moreover, since εk ≤ ε̂k, for a point

~π on the subset {~π ∈ E : πj < εk for all j < k} we have by (2.8) for every j < k that

xj (t, ~π) ≤ ε̂k for every t ≤ 1

λM − λ1

ln

(
ε̂k

1− ε̂k

· 1− εk

εk

)
.

In other words, t 7→ xk(t, ~π) is increasing on t ∈
[
0, 1

λM−λ1
ln
(

ε̂k

1−ε̂k
· 1−εk

εk

)]
for every ~π in

the smaller set {~π ∈ E : πj < εk for all j < k}. Moreover,

δk

(
1− qk

qk

)
≥
∑
j<k

εk

(
ε̂k

1− ε̂k

· 1− εk

εk

) λk−λj
λM−λ1

+
∑
j>k

πj

(
ε̂k

1− ε̂k

· 1− εk

εk

) λk−λj
λM−λ1

.

For every ~π ∈ E such that πk ≥ δk and πj < εk for all j < k, rearranging this inequality and

using (2.8) give

xk

(
1

λM − λ1

ln

(
ε̂k

1− ε̂k

· 1− εk

εk

)
, ~π

)
≥ qk,
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which completes the proof for 1 < k < M − 1. �

Proof of Lemma 2.3. The claim is immediate if ~π ∈ Ê(q1,...,qM ). To prove it on E \
Ê(q1,...,qM ), with the notation in Lemma A.1, fix

δM−1 =
1− qM

M − 1
, and δi = εi+1 for i = M − 2, . . . , 1.

Then by Lemma A.1 we have δ1 ≤ . . . ≤ δM−1, and our choice of δM−1 implies that {~π ∈
E \ E∗ : πi < δi, i < M − 1} = ∅. By the same lemma, for every starting point ~π at time

t = 0 in the set

{~π ∈ E \ Ê(q1,...,qM ) : πi < δi, ∀i < M − 2, and πM−1 ≥ δM−1}

⊆ {~π ∈ E \ Ê(q1,...,qM ) : πi < δM−2, ∀i < M − 2, and πM−1 ≥ δM−1}

there exists tM−1(δM−1, qM−1) such that the exit time of the path t 7→ x(t, ~π) from E \
Ê(q1,...,qM ) is bounded from above by tM−1(δM−1, qM−1). Then the last two statements imply

that the same bound holds on {~π ∈ E \ Ê(q1,...,qM ) : πi < δi, for i < M − 2}.
Now assume that for some 1 ≤ n < M − 1 and for every ~π in the set

{~π ∈ E \ Ê(q1,...,qM ) : πi < δi, for i < n},

we have inf{t ≥ 0 : x(t, ~π) ∈ Ê(q1,...,qM )} ≤ maxk>n tk(δk, qk). Again by Lemma A.1 there

exists tn(δn, qn) < ∞ as the upper bound on the hitting time to Ê(q1,...,qM ) for all the points

in {~π ∈ E \ Ê(q1,...,qM ) : πi < δi, for i < n− 1, and πn ≥ δn}. Hence on {~π ∈ E \ Ê(q1,...,qM ) :

πi < δi, for i < n− 1} the new upper bound is maxk>n−1 tk(δk, qk). By induction, it follows

that s (q1, . . . , qM) can be taken as maxk≥1 tk(δk, qk). �

Proof of Proposition 3.4. Monotonicity of the operators Jw and J0w, and boundedness

of J0w(·) from above by h(·) follow from (3.4) and (3.5). The check the concavity, let w(·)
be a concave function on E. Then w(~π) = infk∈K βk

0 +
∑M

j=1 βk
j πj for some index set K and

some constants βk
j , k ∈ K, j ∈ I ∪ {0}. Then

∑M
i=1 πie

−λiuλi · (Siw)(x(u, ~π)) equals

M∑
i=1

λiπie
−λiu

∫
Rd

inf
k∈K

[
βk

0 +

∑M
j=1 βk

j λj xj(u, ~π) pj(y)∑M
j=1 λj xj(u, ~π) pj(y)

]
pi(y)µ(dy)

=

∫
Rd

inf
k∈K

[
βk

0

M∑
i=1

λiπie
−λiupi(y) +

M∑
i=1

βk
i λiπie

−λiupi(y)

]
µ(dy),
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where the last equality follows from the explicit form of x(u, ~π) given in (2.8). Hence, the

integrand and the integral in (3.5) are concave functions of ~π. Similarly, using (2.8) and (2.4)

we have
(∑M

i=1 πje
−λi t

)
h (x(t, ~π)) = infk∈I

∑M
j=1 ak,j πj e−λj t, and the second term in (3.5)

is concave. Being the sum of two concave functions, ~π 7→ Jw(t, ~π) is also concave. Finally,

since ~π 7→ J0w(~π) is the infimum of concave functions, it is concave.

Next, we take w : E 7→ R+ bounded and continuous, and we verify the continuity of

the mappings (t, ~π) 7→ Jw(t, ~π) and ~π 7→ J0(~π). To show that (t, ~π) 7→ Jw(t, ~π) of (3.5) is

continuous, we first note that the mappings

(t, ~π) 7→
∫ t

0

M∑
i=1

πie
−λi u du and (t, ~π) 7→

(
M∑
i=1

πie
−λi t

)
· h (x(t, ~π))

are jointly continuous. For a bounded and continuous function w(·) on E, the mapping ~π 7→
(Siw)(~π) is also bounded and continuous by bounded convergence theorem. Let (t(k), ~π(k))k≥1

be a sequence in R+ × E converging to (t, ~π). Then we have∣∣∣∣∣
∫ t

0

M∑
i=1

e−λi u λiπi · Siw(x(u, ~π))du−
∫ t(k)

0

M∑
i=1

e−λi u λiπ
(k)
i · Siw(x(u, ~π(k)))du

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

M∑
i=1

e−λi u λiπi · Siw(x(u, ~π))du−
∫ t(k)

0

M∑
i=1

e−λi u λiπi · Siw(x(u, ~π))du

∣∣∣∣∣
+

∣∣∣∣∣
∫ t(k)

0

M∑
i=1

e−λi u λiπi · Siw(x(u, ~π))du−
∫ t(k)

0

M∑
i=1

e−λi u λiπ
(k)
i · Siw(x(u, ~π(k)))du

∣∣∣∣∣
≤ λM ||w|| ·

∣∣t− t(k)
∣∣+ ∫ t(k)

0

M∑
i=1

e−λi u λi

∣∣∣πi · Siw(x(u, ~π))− π
(k)
i · Siw(x(u, ~π(k)))

∣∣∣ du

≤ λM ||w|| ·
∣∣t− t(k)

∣∣+ λM

∫ ∞

0

e−λ1 u

M∑
i=1

∣∣∣πi · Siw(x(u, ~π))− π
(k)
i · Siw(x(u, ~π(k)))

∣∣∣ du

where ||w|| , sup~π∈E |w(~π)| < ∞. Letting k →∞, the first term of the last line above goes

to 0. The second term also goes to 0 by the continuity of ~π 7→ Siw(x(u, ~π)) and dominated

convergence theorem. Therefore, Jw(t, ~π) is jointly continuous in (t, ~π).

To see the continuity of ~π 7→ J0w(~π), let us define the “truncated” operators

Jk
0 w(~π) , inf

t∈[0,k]
Jw(t, ~π), ~π ∈ E, k ≥ 1
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on bounded functions w : E 7→ R. Since (t, ~π) 7→ Jw(t, ~π) is uniformly continuous on

[0, k]× E, the mapping ~π 7→ Jk
0 w(~π) is also continuous on E. Also note that

Jw(t, ~π) = Jw(t ∧ k, ~π) +

∫ t

t∧k

M∑
i=1

e−λi u πi [1 + λi · Siw(x(u, ~π))] du

+
M∑
i=1

e−λi t πi · h (x(t, ~π))−
M∑
i=1

e−λi(t∧k) πi · h (x(t ∧ k, ~π))

≥ Jw(t ∧ k, ~π)− 1{t>k}

M∑
i=1

e−λi k πi · h (x(k, ~π))

≥ Jw(t ∧ k, ~π)−

(
M∑
i,j

aij

)
M∑
i=1

e−λi k πi ≥ Jw(t ∧ k, ~π)−

(
M∑
i,j

aij

)
e−λ1 k,

since 0 ≤ w(·) and 0 ≤ h(·) ≤
∑M

i,j aij. Taking the infimum over t ≥ 0 of both sides gives

Jk
0 w(~π) ≥ J0w(~π) ≥ Jk

0 w(~π)−

(
M∑
i,j

aij

)
e−λ1 k.

Hence, Jk
0 w(~π) → J0w(~π) as k →∞ uniformly in ~π ∈ E, and ~π 7→ J0w(~π) is continuous on

the compact set E. �

Proof of Proposition 3.7. Here, the dependence of r
ε/2
n on ~π is omitted for typographical

reasons. Let us first establish the inequality

E
[
τ ∧ σn + h

(
Π(τ ∧ σn)

)]
≥ vn(~π), τ ∈ F, ~π ∈ E,(A.2)

by proving inductively on k = 1, . . . , n + 1 that

(A.3) E~π [τ ∧ σn + h (Π(τ ∧ σn))]

≥ E~π
[
τ ∧ σn−k+1 + 1{τ≥σn−k+1}vk−1 (Π(σn−k+1)) + 1{τ<σn−k+1}h (Π(τ))

]
=: RHSk−1.

Note that (A.2) will follow from (A.3) when we set k = n + 1.

For k = 1, (A.3) is immediate since v0(·) ≡ h(·). Assume that it holds for some 1 ≤ k <

n + 1 and prove it for k + 1. Note that RHSk−1 defined in (A.3) can be decomposed as

RHSk−1 = RHS
(1)
k−1 + RHS

(2)
k−1(A.4)

where RHS
(1)
k−1 , E~π

[
τ ∧ σn−k + 1{τ<σn−k}h(Π(τ))

]
, and RHS

(2)
k−1 is defined by

E~π
[
1{τ≥σn−k}

{
τ ∧ σn−k+1 − σn−k + 1{τ≥σn−k+1}vk−1(Π(σn−k+1)) + 1{τ<σn−k+1}h(Π(τ))

}]
.
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By Lemma 3.3, there is an Fσn−k
-measurable random variable Rn−k such that τ ∧ σn−k+1 =

(σn−k + Rn−k) ∧ σn−k+1 on {τ ≥ σn−k}. Therefore, RHS
(2)
k−1 becomes

E~π
[
1{τ≥σn−k}

{
(σn−k + Rn−k) ∧ σn−k+1 − σn−k + 1{σn−k+Rn−k≥σn−k+1}vk−1(Π(σn−k+1))

+ 1{σn−k+Rn−k<σn−k+1}h(Π(σn−k + Rn−k))
}]

= E~π
[
1{τ≥σn−k}E

~π
{

(r ∧ σ1) ◦ θσn−k

∣∣
r=Rn−k

+ 1{Rn−k≥σn−k+1−σn−k}vk−1(Π(σn−k+1))

+ 1{Rn−k<σn−k+1−σn−k} h(Π(σn−k + Rn−k))| Fσn−k

}]
.

Since Π has the strong Markov property and the same jump times σk, k ≥ 1 as the process

X, the last expression for RHS
(2)
k−1 can be rewritten as

RHS
(2)
k−1 = E~π

[
1{τ≥σn−k} fn−k(Rn−k, Π(σn−k))

]
,

where fn−k(r, ~π) , E~π
[
r ∧ σ1 + 1{r>σ1}vk−1(Π(σ1)) + 1{r≤σ1}h(Π(r))

]
≡ Jvk−1(r, ~π). Thus,

fn−k(r, ~π) ≥ J0vk−1(~π) = vk(~π), and RHS
(2)
k−1 ≥ E

[
1{τ>σn−k} vk(Π(σn−k))

]
. Using this

inequality with (A.3) and (A.4) we get

E~π [τ ∧ σn + h (Π(τ ∧ σn))] ≥ RHSk−1

≥ E~π
[
τ ∧ σn−k + 1{τ<σn−k}h (Π(τ)) + 1{τ≥σn−k}vk (Π(τ))

]
= RHSk.

This proves (A.3) for k+1 instead of k, and (A.2) follows after induction for k = n+1. Taking

the infimum on the left-hand side of (A.2) over all F-stopping times τ gives Vn(·) ≥ vn(·).
To prove the reverse inequality Vn(·) ≥ vn(·), it is enough to show (3.9) since by construc-

tion Sε
n is an F-stopping time. We will prove (3.9) also inductively. For n = 1, the left hand

side of (3.9) reduces to

E~π [rε
0 ∧ σ1 + h (Π(rε

0 ∧ σ1))] = Jv0(r
ε
0, ~π) ≤ J0v0(~π) + ε,

where the inequality follows from Remark 3.6, and the inequality in (3.9) holds with n = 1.
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Suppose now that (3.9) holds for some n ≥ 1. By definition, Sε
n+1 ∧ σ1 = r

ε/2
n ∧ σ1, and

E~π
[
Sε

n+1 + h
(
Π(Sε

n+1)
)]

= E~π

[
Sε

n+1 ∧ σ1 + (Sε
n+1 − σ1)1{Sε

n+1≥σ1} + h
(
Π(Sε

n+1)
) ]

= E~π

[
rε/2
n ∧ σ1 +

(
Sε/2

n ◦ θσ1 + h
(
Π(σ1 + Sε/2

n ◦ θσ1)
))

1{rε/2
n ≥σ1}

+ 1{rε/2
n <σ1}

h
(
Π(rε/2

n )
) ]

= E~π

[
rε/2
n ∧ σ1 + 1{rε/2

n <σ1}
h
(
Π(rε/2

n )
)

+ 1{rε/2
n ≥σ1}

E~π
[(

Sε/2
n + h(Π(Sε/2

n ))
)
◦ θσ1

∣∣Fσ1

] ]

≤ E~π

[
rε/2
n ∧ σ1 + 1{rε/2

n <σ1}
h
(
Π(rε/2

n )
)

+ 1{rε/2
n ≥σ1}

vn (Πσ1)

]
+

ε

2
= Jvn(rε/2

n , ~π) +
ε

2
,

where the inequality follows from the induction hypothesis and strong Markov property.

Hence, E~π
[
Sε

n+1 + h
(
Π(Sε

n+1)
)]
≤ vn(~π) + ε by Remark 3.6, and (3.9) holds for n + 1. �

Proof of Proposition 3.9. Note that the sequence {vn}n≥1 is decreasing. Therefore,

V (~π) = v(~π) = inf
n≥1

vn(~π) = inf
n≥1

J0vn−1(~π) = inf
n≥1

inf
t≥0

Jvn−1(t, ~π) = inf
t≥0

inf
n≥1

Jvn−1(t, ~π)

= inf
t≥0

inf
n≥1

[∫ t

0

M∑
i=1

πie
−λi u [1 + λiSivn−1(x(u, ~π))] du +

M∑
i=1

e−λi t πih (x(t, ~π))

]

= inf
t≥0

[∫ t

0

M∑
i=1

πie
−λi u [1 + λiSiv(x(u, ~π))] du +

M∑
i=1

e−λi t πih (x(t, ~π))

]
= J0v(~π) = J0V (~π),

where the seventh equality follows from the bounded convergence theorem since 0 ≤ v(·) ≤
vn(·) ≤ h(·) ≤

∑
i,j aij. Thus, V satisfies V = J0V .

Next, let U(·) ≤ h(·) be a bounded solution of U = J0U . Proposition 3.4 implies that

U = J0U ≤ J0h = v1. Suppose that U ≤ vn for some n ≥ 0. Then U = J0U ≤ J0vn = vn+1,

and by induction we have U ≤ vn for all n ≥ 1. This implies U ≤ limn→∞ vn = V . �

Proof of Corollary 3.12. For typographical reasons, we will again omit the dependence

of rn(~π) on ~π. By Remark 3.6, Jvn(rn, ~π) = J0vn(~π) = Jrnvn(~π). Let us first assume that

rn < ∞. Taking t = rn and w = vn in (3.11) gives

Jvn(rn, ~π) = Jrnvn(~π) = Jvn(rn, ~π) +
M∑
i=1

πi e
−λirn

[
vn+1(x(rn, ~π))− h

(
x(rn, ~π)

)]
.
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Therefore, vn+1 (x(rn, ~π)) < h (x(rn, ~π)). If 0 < t < rn, then Jvn(t, ~π) > J0vn(~π) =

Jrnvn(~π) = Jtvn(~π). Using (3.11) once again with w = vn and t ∈ (0, rn) yields

J0vn(~π) = Jtvn(~π) = Jvn(t, ~π) +
M∑
i=1

πi e
−λit
[
vn+1(x(t, ~π))− h

(
x(t, ~π)

)]
.

Hence vn+1 (x(t, ~π)) < h (x(t, ~π)) for t ∈ (0, rn). If rn = ∞, then the same argument as

above implies that vn+1 (x(t, ~π)) < h (x(t, ~π)) for t ∈ [0,∞], and (3.13) still holds since

inf ∅ ≡ ∞. �

Proof of Proposition 3.15. We will prove (3.20) inductively. For n = 1, by Lemma 3.3

there exists a constant u ∈ [0,∞] such that Uε ∧ σ1 = u ∧ σ1. Then

(A.5) E~π[MUε∧σ1 ] = E~π [u ∧ σ1 + V (Π(u ∧ σ1))]

= E~π
[
u ∧ σ1 + 1{u≥σ1}V (Π(σ1)) + 1{u<σ1}h (Π(u))

]
+ E~π

[
1{u<σ1} [V (Π(u))− h (Π(u))]

]
= JV (u, ~π) +

M∑
i=1

πi e
−λiu

[
V
(
x(u, ~π)

)
− h
(
x(u, ~π)

)]
= JuV (~π)

because of the delay equation in (3.14). Fix any t ∈ [0, u). Same equation implies that

JV (t, ~π) = JtV (~π)−
∑M

i=1 πi e
−λit
[
V (x(t, ~π))− h

(
x(t, ~π)

)]
is less than or equal to

J0V (~π)−
M∑
i=1

πi e
−λit
[
V (x(t, ~π))−h

(
x(t, ~π)

)]
= J0V (~π)−E~π

[
1{σ1>t}

[
V (Π(t))− h(Π(t))

]]
.

On {σ1 > t}, we have Uε > t (otherwise, Uε ≤ t < σ1 would imply Uε = u ≤ t, which

contradicts with our initial choice of t < u). Thus, V (Π(t))−h(Π(t)) < −ε on {σ1 > t}, and

JV (t, ~π) ≥ J0V (~π) + ε E~π
[
1{σ1>t}

]
≥ J0V (~π) + ε

M∑
i=1

πi e
−λit for every t ∈ [0, u).

Therefore, J0V (~π) = JuV (~π), and (A.5) implies E~π[MUε∧σ1 ] = JuV (~π) = J0V (~π) = V (~π) =

E~π[M0]. This completes the proof of (3.20) for n = 1. Now assume that (3.20) holds for

some n ≥ 1. Note that E~π[MUε∧σn+1 ] = E~π[1{Uε<σ1}MUε ] + E~π[1{Uε≥σ1}MUε∧σn+1 ] equals

E~π[1{Uε<σ1}MUε ] + E~π
[
1{Uε≥σ1} {σ1 + Uε ∧ σn+1 − σ1 + V (Π(Uε ∧ σn+1))}

]
.

Since Uε ∧ σn+1 = σ1 + [(Uε ∧ σn) ◦ θσ1 ] on the event {Uε ≥ σ1}, the strong Markov property

of Π implies that E~π[MUε∧σn+1 ] equals

E~π[1{Uε<σ1}MUε ] + E~π[1{Uε≥σ1}σ1] + E~π
[
1{Uε≥σ1}EΠ(σ1) [Uε ∧ σn + V (Π(Uε ∧ σn))]

]
.
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By the induction hypothesis the inner expectation equals V (Π(σ1)), and

E~π[MUε∧σn+1 ] = E~π[1{Uε<σ1}MUε ] + E~π
[
1{Uε≥σ1} (σ1 + V (Π(σ1)))

]
= E~π[MUε∧σ1 ] = E~π[M0],

where the last inequality follows from the above proof for n = 1. Hence, E~π[MUε∧σn+1 ] =

E~π[M0], and the proof is complete by induction. �

Proof of Proposition 4.1. By Proposition 3.4 we have 0 ≤ J0w(·) ≤ h(·) for every bounded

and positive function w(·). To prove (4.4), it is therefore enough to show that h(·) ≤ J0w(·)
on {~π ∈ E : πi ≥ p} for p defined in the lemma. Since w(·) ≥ 0, we have J0w(~π) =

inft≥0 Jw(t, ~π) ≥ inft≥0 infi∈I Ki(t, ~π), where

Ki(t, ~π) ,
∫ t

0

M∑
j=1

πje
−λju du +

M∑
j=1

e−λjthi(x(t, ~π)),

with the partial derivative

(A.6)
∂Ki(t, ~π)

∂t
=

M∑
j=1

πje
−λjt

{
1−

M∑
k=1

(λj + λk) aik xk(t, ~π)

+

(
M∑

k=1

aik xk(t, ~π)

)(
M∑

k=1

λk xk(t, ~π)

)}
≥

M∑
j=1

πje
−λjt

{
1− 2 λM (max

k
aik)(1− xi(t, ~π))

}
.

Note that if λi = λ1, then t 7→ xi(t, ~π) is non-decreasing. Hence ∂Ki(t, ~π)/∂t ≥ 0 for all

t ≥ 0 and πi ≥ πi , (1− 1/(2 λM maxk ai,k))
+. Hence on {~π ∈ E : πi ≥ πi}, we get

h(~π) ≥ J0w(~π) ≥ inft≥0 infi Ki(t, ~π) = infi inft≥0 Ki(t, ~π) = infi Ki(0, ~π) = infi hi(~π) = h(~π).

Now assume λi > λ1, and let Ti(~π, m) , inf{t ≥ 0 : xi(t, ~π) ≤ m} be the the first time

t 7→ xi(t, ~π) reaches [0, m]. For t ≥ Ti(~π, πi), the definition of Ki(t, ~π) implies

Ki(t, ~π) ≥ πi

∫ Ti(~π,πi)

0

e−λiudu ≥ πi

λi

[
1−

(
1− πi

πi

· πi

1− πi

)−λi/(λi−λ1)
]

,

where the last inequality follows from the explicit form of x(t, ~π) given in (2.8). The last

expression above is 0 at πi = πi, and it is increasing on πi ∈ [πi, 1) and increases to the limit

1/λi as πi → 1. For πi ≥ π∗i in (4.3), we have

πi

λi

[
1−

(
1− πi

πi

· πi

1− πi

)−λi/(λi−λ1)
]
≥ (max

k
aik)(1− πi),

and the inequality holds with an equality at πi = π∗i . Hence, we have Ki(t, ~π) ≥ hi(~π)

for t ≥ Ti(~π, πi), and for πi ≥ π∗i . Since t 7→ Ki(t, ~π) is increasing on [0, Ti(~π, πi)], we get
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h(~π) ≥ J0w(~π) ≥ infi inft≥0 Ki(t, ~π) = infi hi(~π) = h(~π) on {~π ∈ E : πi ≥ π∗i }, and (4.4)

follows. Finally, if aij > 0 for every i 6= j, then (4.5) follows from (4.4) since h(~π) = hi(~π)

on {~π ∈ E : πi ≥ maxk aik/[(minj 6=i aji) + (maxk aik)]} for every i ∈ I. �
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