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Abstract: The quickest detection of the unknown and unobservable disorder time, when the arrival rate and mark
distribution of a compound Poisson process suddenly changes, is formulated in a Bayesian setting, where the detec-
tion delay penalty is a general smooth function of the detection delay time. Under suitable conditions, the problem is
shown to be equivalent to the optimal stopping of a finite-dimensional piecewise-deterministic strongly Markov suffi-
cient statistic. The solution of the optimal stopping problem is described in detail for the compound Poisson disorder
problem with polynomial detection delay penalty function of arbitrary but fixed degree. The results are illustrated for
the case of the quadratic detection delay penalty function.
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1. INTRODUCTION

Suppose that the arrival rate and mark distribution of a compound Poisson process changes at some unknown
and unobservable disorder time. We would like to detect the disorder time by a stopping rule which depends
only on the observations of the point process and which minimizes the total risk arising from frequent false
alarms and long detection delay times.

The disorder time is assumed to follow a zero-modified exponential distribution. The formulation of
the problem is Bayesian, and for each stopping time of point process observations the Bayes risk is the
expected sum the false alarm frequency and detection delay penalty, which is a general smooth function of
the detection delay time.

The compound Poisson disorder problems arise in homeland security to detect and analyze the abnormal
flow of passengers and commodities at the ports of entries, in computer network security to identify attempts
to gain unauthorized control of services from incoming packet flows to various communication ports of web
servers, in public health to determine the onset of an epidemic in a geographical area from the fluctuations
in the emergency room visits to the hospitals.

Several non-Bayesian formulations and solutions of the quickest change-detection problems have been
studied by Baron and Tartakovsky [1], Hadjiliadis [14], Hadjiliadis and Moustakides [15], Moustakides
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[19, 20], Shiryaev [28] in continuous time, and by Lorden [17], Moustakides [18], Pollak [23], Tartakovsky
[30], Tartakovsky and Veeravalli [31] in discrete time. Shiryaev [26] introduced and solved the Bayesian
formulation of quickest detection problem for general distributions in discrete time and for a change in the
drift of a Brownian motion in continuous time. Galchuk and Rozovskii [11] formulated simple Poisson
disorder problem and provided partial solution, which has been completed by Peskir and Shiryaev [22].
Gapeev [12] solved compound Poisson disorder problem with exponentially distributed jumps. The solution
for the general case was provided by Dayanik and Sezer [10]. Bayesian sequential detection of a change in
the local characteristics of a finite-activity Lévy process has been formulated and solved by Dayanik, Poor,
and Sezer [9]. Basseville and Nikiforov [2], Peskir and Shiryaev [21], and Poor and Hadjiliadis [25] give a
detailed review of the literature on both non-Bayesian and Bayesian sequential change detection problems.

Higher moments of detection delay time were shown by Baron and Tartakovsky [1] and Tartakovsky
and Veeravalli [31] to be asymptotically minimized by the Shiryaev’s procedure in Bayesian setting. The
solution of Bayesian sequential change detection problems with exponential detection delay penalties were
found by Poor [24] in discrete time, by Beibel [5] in detecting a change in the drift of a Brownian motion, by
Bayraktar and Dayanik [3] and Bayraktar, Dayanik, and Karatzas [4] in simple Poisson disorder problem,
and by Dayanik and Sezer [10] in compound Poisson disorder problem. Shiryaev [27, 29] derived the
sufficient statistics for sequential change detection problems with nonlinear detection delay penalty costs,
which include as special cases the higher moments and exponential functions of detection delay time.

We give the precise description of the compound Poisson disorder problem in Section 2, where we show
that for infinitely continuously differentiable detection delay penalty functions there are countably infinitely
many piecewise deterministic strongly Markov sufficient statistic for the problem. Our derivation is different
from that of Shiryaev [29] in that we use a suitable reference probability measure, change of measure, and
change-of-variable formula to systematically “complete” minimal sufficient statistic to a Markov sufficient
statistic. The detection delay penalty functions which are the solutions of homogeneous m + 1-st order
constant coefficient ordinary differential equations are shown to lead to an m-dimensional sufficient statis-
tic, which is a piecewise deterministic strong Markov process. Therefore, any penalty function which is a
linear combinations of products of exponential, polynomial, and sinusoidal functions is a solution of some
homogeneous constant coefficient ordinary differential equation and leads to a finite-dimensional sufficient
statistic which is a piecewise deterministic strongly Markov process. In the meantime, the disorder prob-
lem can be reduced to an optimal stopping problem, and with a finite-dimensional piecewise deterministic
strongly Markov process, one can solve it by using dynamic programming and successive approximations.

In Section 3, we explain the solution methodology in detail by specializing to polynomial disorder detec-
tion penalty function with arbitrary but fixed degree. By means of suitable dynamic programming operator,
the continuous-time optimal stopping problem is reduced to an essentially discrete-time optimal stopping
problem. This approach is based on the stochastic dynamic optimization theory for piecewise deterministic
Markov processes; see, for example, Gugerli [13] and Davis [8]. The dynamic programming operator maps
every bounded function to another bounded function, whose value at every point in the domain is obtained
as the solution of a straightforward deterministic optimization problem. The repeated applications of the
dynamic programming operator to constant zero mapping result in successive approximations of the key
optimal stopping problem’s value function, which turns out to be unique bounded fixed point of the dynamic
programming operator. In the meantime, the solutions of deterministic optimization problems naturally lead
to nearly-optimal detection alarm times. We show that optimal alarm time exists and can be characterized as
the first hitting time of the Markov sufficient statistic to a closed convex subset, which can be approximated
arbitrarily well by the zero sets of the successive approximations of the value function. We also show that
successive approximations converge to the value function over the entire state space uniformly and expo-
nentially fast, and the explicit error bound allows one to set the accuracy of nearly-optimal alarm times to
any desired level.

In Section 4, we illustrate some of the findings on the compound Poisson problem with quadratic de-
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tection delay penalty cost function. We described qualitatively, but quite explicitly, the form of optimal
stopping time of the auxiliary optimal stopping problem, which is also the optimal alarm time for the com-
pound Poisson disorder problem. Finally, the long proofs of selected results are deferred to the appendix.

2. PROBLEM DESCRIPTION

Let (Tn, Zn), n ≥ 1 be a compound Poisson process whose arrival rate λ and mark distribution ν on some
measurable space (E, E) changes from (λ0, ν0) to (λ1, ν1) at some unobservable disorder time Θ, which
has zero-modified exponential distribution

P{Θ = 0} = p and P{Θ > t} = (1− p)e−λt, t ≥ 0

for some known constants λ0 > 0, λ1 > 0, λ > 0, 0 ≤ p < 1, and known probability distributions ν0 and ν1

on (E, E). We want to detect the disorder time Θ by means of a stopping time τ of the observation filtration

Ft = σ{(Tn, Zn); n ≥ 1 such that Tn ≤ t}, t ≥ 0

so as to minimize the expected total risk of false alarms and detection delay time. For every (Ft)t≥0-stopping
time we define the Bayes risk as

Rτ (p) := E
[
1{τ<Θ} + f (τ −Θ) 1{τ≥Θ}

]
for some general sufficiently smooth penalty function f : R+ 7→ R of detection delay time (τ − Θ)+. We
would like to (i) calculate the smallest Bayes risk

inf
τ∈S

Rτ (p) for every 0 ≤ p < 1,

where the infimum is taken over the collection S of all (Ft)t≥0-stopping times, and (ii) find a stopping time
in S which attains the infimum, if one such stopping time exists.

It is always possible to construct a probability space (Ω,F ,P∞) with a reference probability measure
P∞ under which (i) (Tn, Zn)n≥1 is a compound Poisson process with arrival rate λ0 and mark distribution ν0

on (E, E), and Θ is an independent random variable with zero-modified exponential distribution. Suppose
that λ1 is a positive constant and ν1 is a probability distribution on (E, E) absolutely continuous with respect
to ν0, and either λ0 6= λ1 or ν0 6≡ ν1. Let

Gt := σ(Θ) ∨ Ft, t ≥ 0

be the filtration obtained by augmenting (Ft)t≥0 with the information about Θ and define the probability
measure P locally on (Ω,G∞) through the Radon-Nikodym derivatives

dP
dP∞

∣∣∣∣
Gt

= Zt := 1{t<Θ} + 1{t≥Θ}
Lt
LΘ

, t ≥ 0,

where

Lt := e−(λ1−λ0)t
∏

n:Tn≤t

(
λ1

λ0

dν1

dν0
(Zn)

)
= exp

{
−(λ1 − λ0)t+

∫ t

0

∫
E

(
log

λ1

λ0

ν1

ν0
(z)
)
N(ds, dz)

}
,

and N(ds, dz) is the Poisson random measure on (R+ × E,B(R+)× E) with mean measure λ0ds ν0(dz)
under P∞. Girsanov’s change-of-measure theorem guarantees that (Tn, Zn)n≥1 and Θ have jointly the same
statistical law under P as they are described in the introduction. Therefore, we will work in the remainder
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with P obtained by a change-of-measure from the reference probability measure P∞ on (Ω,G∞). The
change-of-variable formula gives the dynamics of process L = {Lt,Ft; t ≥ 0} as

L0 = 1 and dLt = Lt−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(dt,dz)− λ0dt ν0(dz)] , t ≥ 0. (2.1)

For every stopping time τ ∈ S, we have

E
[
f(τ −Θ)1{τ≥Θ}

]
− f(0)P{τ ≥ Θ} = E

[
(f(τ −Θ)− f(0)) 1{τ≥Θ}

]
= E

[
1{τ≥Θ}

∫ τ−Θ

0
f ′(t)dt

]
= E

[
1{τ≥Θ}

∫ τ

Θ
f ′(t−Θ)dt

]
= E

[
1{τ≥Θ}

∫ ∞
0

f ′(t−Θ)1{Θ≤t<τ}dt
]

= E
[∫ ∞

0
f ′(t−Θ)1{Θ≤t}1{τ>t}dt

]
.

Because τ ∧Θ is P∞-a.s. finite stopping time of (Gt)t≥0 and ZΘ∧τ = ZΘ = 1 on {Θ ≤ τ}, we have

P{τ ≥ Θ} = E∞
[
Zτ∧Θ1{τ≥Θ}

]
= P∞{τ ≥ Θ} = p+ (1− p)E∞

[∫ τ

0
λe−λtdt

]
.

Since Zt1{Θ>t} = 1{Θ>t} for every t ≥ 0, the independence of Θ and Ft under P∞ implies that we have
E∞

[
Zt1{Θ>t} | Ft

]
= P∞{Θ > t} = (1− p)e−λt for every t ≥ 0, and

E
[∫ ∞

0
f ′(t−Θ)1{Θ≤t}1{τ>t}dt

]
= E∞

[∫ ∞
0

E∞
[
Ztf

′(t−Θ)1{Θ≤t} | Ft
]

1{τ>t}dt
]

= E∞

(∫ τ

0
E∞[Zt1{Θ>t} | Ft]

E∞
[
Ztf

′(t−Θ)1{Θ≤t} | Ft
]

E∞[Zt1{Θ>t} | Ft]
dt

)
= (1− p)E∞

[∫ τ

0
e−λtΦ(1)

t dt
]

in terms of the first element of the sequence of processes

Φ(n)
t :=

E∞
[
Ztf

(n)(t−Θ)1{Θ≤t} | Ft
]

E∞[Zt1{Θ>t} | Ft]
=

E
[
f (n)(t−Θ)1{Θ≤t} | Ft

]
P{Θ > t | Ft}

, t ≥ 0, n ≥ 1,

where we denote by f (n) the n-th derivative of f(·), and the last equality follows from Bayes formula.
Therefore, the Bayes risk of every stopping time τ ∈ S can be written as

Rτ (p) = P{τ < Θ}+ f(0)P{τ ≥ Θ}+ E
[∫ ∞

0
f ′(t−Θ)1{Θ≤t}1{τ>t}dt

]
= 1− p− (1− p)E∞

[∫ τ

0
λe−λtdt

]
+ f(0)

(
p+ (1− p)E∞

[∫ τ

0
λe−λtdt

])
+ (1− p)E∞

[∫ τ

0
e−λtΦ(1)

t dt
]

= 1− p+ pf(0) + (1− p)E∞
[∫ τ

0
e−λt

(
Φ(1)
t + λf(0)− λ

)
dt
]
.

Proposition 2.1. If the detection delay penalty function f(·) is continuously differentiable, then the Bayesian
sequential quickest detection problem is equivalent to solving

inf
τ∈S

Rτ (p) = 1− p+ pf(0) + (1− p) inf
τ∈S

E∞
[∫ τ

0
e−λt

(
Φ(1)
t + λf(0)− λ

)
dt
]
, 0 ≤ p < 1.

If the optimal stopping problem on the righthand side admits an optima (Ft)t≥0-stopping time, then it is
also a Bayes-optimal change-detection alarm time for the compound Poisson disorder problem. time.
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In the remainder, we will develop and use methods to solve the optimal stopping problem of Proposition
2.1 and identify optimal and nearly-optimal stopping times. The process Φ(1) = {Φ(1)

t ,Ft; t ≥ 0} is a
sufficient statistic for the quickest detection problem in the sense that {Φ(1)

s ; 0 ≤ s ≤ t} summarizes all
of the information contained in the observations Ft up to and including time t for a decision to be made at
time t between raising an alarm and waiting for at least some more infinitesimal amount of time. However,
Φ(1) is not in general a Markov process under P∞.

In general, if f(·) is (m + 1)-times continuously differentiable for some m ≥ 1, then the processes
Φ(n) = {Φ(n)

t ,Ft; t ≥ 0}, 1 ≤ n ≤ m follow the dynamics

Φ(n)
0 =

p

1− p
f (n)(0), 1 ≤ n ≤ m,

dΦ(n)
t =

[
λ(f (n)(0) + Φ(n)

t ) + Φ(n+1)
t

]
dt

+ Φ(n)
t−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(dt,dz)− λ0dt ν0(dz)] , t ≥ 0, 1 ≤ n ≤ m,

(2.2)

the derivation of which is included in the appendix. For every 1 ≤ n ≤ m, the drift of Φ(n) depends
on Φ(n+1), and the process {(Φ(1)

t , . . . ,Φ(m)
t ),Ft; t ≥ 0} is in general not a Markov process. If f(·)

is infinitely continuously differentiable, then under suitable conditions {(Φ(1)
t ,Φ(2)

t , . . .),Ft; t ≥ 0} will
be an infinite-dimensional Markov process. The finite system of stochastic differential equations in (2.2)
is “closable”, for example, if Φ(m+1) can be expressed in terms of Φ(1), . . . ,Φ(m), in which case the m-
dimensional process {(Φ(1)

t , . . . ,Φ(m)
t ),Ft; t ≥ 0} is a Markov sufficient statistic for the sequential change

detection problem.

Example 2.1. In each of the following examples, the system in (2.2) is closable, and the m-dimensional
process {(Φ(1)

t , . . . ,Φ(m)
t ),Ft; t ≥ 0} is a piecewise deterministic strong Markov process.

(i) Suppose that f(t) = a0+a1(t−b1)+a2(t−b2)2+. . .+am(t−bm)m for every t ≥ 0 for some constants
a0, b0, . . . , am, bm. Then f (m+1)(·) ≡ 0 and P∞-a.s. Φ(m+1)

t = 0 for every t ≥ 0. The simple Poisson
disorder problem (i.e., λ0 6= λ1 and ν1 ≡ ν0) with linear detection delay penalty function f(t) = t
was formulated and partially solved by Galchuk, Rozovskii [11]. The complete solution was later
given by Peskir and Shiryaev [22] by using method of variational inequalities. Later, Dayanik and
Sezer [10] described the solution of compound Poisson disorder problem with linear detection delay
penalty by first reducing the original problem to a discrete-time optimal stopping problem, which is
then solved with successive approximations.

(ii) Suppose that f(t) = aebt + c, t ≥ 0 for some constants a, b 6= 0, and c. Then f (1)(t) = abebt and
f (2)(t) = ab2ebt = bf (1)(t). Therefore, Φ(2)

t = bΦ(1)
t for every t ≥ 0, and m = 1 because

Φ(1)
0 =

abp

1− p
, dΦ(1)

t =
[
λ(Φ(1)

t + ab) + bΦ(1)
t

]
dt

+ Φ(1)
t

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(dt,dz)− λ0dt dz] , t ≥ 0

is autonomous, and the sufficient statistic {Φ(1)
t ,Ft; t ≥ 0} for the sequential change detection

problem is a one-dimensional piecewise deterministic strong Markov process. The simple Poisson
disorder problem with exponential detection delay penalty and a = −c = 1 was solved by Bayraktar
et al. [4] by the method of variational inequalities. The compound Poisson disorder problem with
the same exponential detection delay penalty function was later solved by Dayanik and Sezer [10]
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with successive approximations applied to an equivalent essentially discrete-time optimal stopping
problem.

(iii) Suppose that the detection delay penalty function f is (m+ 1)-times continuously differentiable, and
that f (1) solves m-th order constant coefficient homogeneous ordinary differential equation

0 = c1f
(1)(t) + c2f

(2)(t) + · · ·+ cmf
(m)(t) + f (m+1)(t) for every t ≥ 0.

Then we have P∞-a.s. Φ(m+1)
t = −

∑m
n=1 cnΦ(n)

t for all t ≥ 0, and the system ofm stochastic differ-
ential equations in (2.2) is autonomous. Hence, them-dimensional process {(Φ(1)

t , . . . ,Φ(m)
t ),Ft; t ≥

0} is a strong Markov sufficient statistic for the sequential change detection problem. The general so-
lution of the homogeneous constant coefficient ordinary differential equation is in the form of

f(t) =
m∑
n=1

(an cosαnt+ bn sinβnt) tγneρnt, t ≥ 0

for suitable constants ρn, an, αn, bn, βn, γn for 1 ≤ n ≤ m.

In the remainder, we will specialize to the detection delay penalty function f(t) = tm, t ≥ 0 for an
arbitrary but fixed m ≥ 1 and describe in detail the solution of compound Poisson disorder problem. The
method easily extends other cases with finite-dimensional Markov sufficient statistics. For every a > 0,

lim
m→∞

(
t

a

)m
=


0, if 0 ≤ t < a,

1, if t = a,

∞, if t > a,

and for large m, t 7→ (t/a)m is a reasonable penalty function for the sequential change detection problems,
where detection delay less than a is tolerable, but detection delay more that a is completely unacceptable.
For convenience, we take a = 1. Proposition 2.2 now follows from Proposition 2.1 and (2.2).

Proposition 2.2. Suppose that the detection delay penalty function is f(t) = tm for every t ≥ 0 for some
m ≥ 1. Then the minimum Bayes risk equals

inf
τ∈S

Rτ (p) = 1− p+ (1− p)V
(

0, . . . , 0,
pm!

1− p

)
, 0 ≤ p < 1

in terms of the value function of the discounted optimal stopping problem

V (φ) = inf
τ∈S

Eφ∞
[∫ τ

0
e−λtg(Φt)dt

]
, φ ∈ Rm

+ =

m-times︷ ︸︸ ︷
R+ × · · · × R+ (2.3)

with running cost function g : Rm
+ 7→ R defined by g(φ) = eT

1 φ − λ ≡ φ1 − λ for the m-dimensional
piecewise deterministic Markov process Φ = {Φt = (Φ(1)

t , . . . ,Φ(m)
t ),Ft; t ≥ 0}, whose dynamics are

dΦ(n)
t =

[
λΦ(n)

t + Φ(n+1)
t

]
dt+ Φ(n)

t−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(dt,dz)− λ0dt ν0(dz)] , t ≥ 0,

Φ(n)
0 =

p

1− p
f (n)(0) = 0 for every n = 1, . . . ,m− 1,

and

dΦ(m)
t = λ

(
Φ(m)
t +m!

)
dt+ Φ(m)

t−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(dt,dz)− λ0dt ν0(dz)] , t ≥ 0,
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Φ(m)
0 =

p

1− p
f (m)(0) =

pm!
1− p

,

where for every φ ∈ Rm
+ the expectation Eφ∞ is taken under P∞ such that P∞{Φ0 = φ} = 1.

The jumps and deterministic evolution between jumps of process Φ can be separated, and its dynamics
can be written compactly as

Φ0 =
pm!
1− p


0
...
0
1


m×1

, dΦt = (AΦt + b)dt+ Φt−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
N(dt,dz), t ≥ 0,

where

Φt =

Φ(1)
t
...

Φ(m)
t

 , A =



−λ̄ 1 0 0 · · · 0
0 −λ̄ 1 0 · · · 0
...

. . . . . . . . . · · ·
...

0 · · · −λ̄ 1 0
0 · · · 0 −λ̄ 1
0 · · · 0 0 −λ̄


m×m

, b =


0
...
0

λm!


m×1

, λ̄ = λ1 − λ0 − λ,

A = −Λ̄ +N, Λ̄ =


λ̄

λ̄
. . .

λ̄


m×m

, N =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
...

. . . . . . . . . · · ·
...

0 · · · 0 1 0
0 · · · 0 0 1
0 · · · 0 0 0


m×m

The matrix A is the sum of diagonal matrix −Λ̄, whose diagonal elements equal −λ̄, and matrix N , which
is nilpotent with index m. Therefore, for every t ≥ 0

eNt =
∞∑
k=0

Nk t
k

k!
=

m−1∑
k=0

Nk t
k

k!
=



1 t t2

2 · · · tm−1

(m−1)!

0 1 t · · · tm−2

(m−2)!
...

. . . . . . . . .
...

0 · · · . . . t
0 · · · · · · 1


and eAt = e−Λ̄teNt = e−λ̄teNt.

(2.4)

Between jump times Tn and Tn+1, the process Φ follows the integral curves of the system of m linear ordi-
nary differential equations dΦt = (AΦt + b)dt, t ∈ [Tn, Tn+1), which admits the solution (see Coddington
[7, Theorem 3.4])

Φt = eA(t−Tn)ΦTn +
∫ t

Tn

eA(t−s)bds = eA(t−Tn)ΦTn +
(∫ t−Tn

0
eAsds

)
b

= ϕ(t− Tn,ΦTn) for every t ∈ [Tn, Tn+1),

where we define

ϕ(t, φ) = eAtφ+
(∫ t

0
eAsds

)
b for every t ≥ 0 and φ ∈ Rm

+ .
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If λ̄ 6= 0, then A is invertible, and

A−1 = −



λ̄−1 λ̄−2 λ̄−3 · · · λ̄−m

0 λ̄−1 λ̄−2 · · · λ̄−m+1

...
. . . . . . . . .

...

0 · · · . . . . . . λ̄−2

0 · · · · · · λ̄−1


,

∫ t

0
eAsds = (eAt − I)A−1, t ≥ 0,

A−1b = −λm!


λ̄−m

...
λ̄−3

λ̄−2

λ̄−1

 , and
(2.5)

ϕ(t, φ) = eAtφ+ (eAt − I)A−1b = eAt(φ+A−1b)−A−1b, ∀ t ≥ 0, ∀φ ∈ Rm
+ .

If λ̄ > 0, then limt→∞ e
At = limt→∞ e

−λ̄teNt = 0 and limt→∞ ϕ(t, φ) = −A−1b for every φ ∈ Rm
+ . If

λ̄ < 0, then for every φ ∈ Rm
+ we have φ + A−1b 6= 0, and because dϕ(t, φ)/dt = Aϕ(t, φ) + b > 0, the

nth component ϕn(t, φ) of m-dimensional ϕ(t, φ) is strictly increasing in t ∈ R+ and increases to +∞ as
t→∞ for every n = 1, . . . ,m. Finally, if λ̄ = 0, then Λ̄ = 0 and A = −Λ̄ +N = N is not invertible, but
we can still directly calculate that

∫ t

0
eNsds =



t t2

2
t3

3! · · · tm

m!

0 t t2

2 · · · tm−1

(m−1)!
...

. . . . . . . . .
...

0 · · · . . . t2

2
0 · · · · · · t


, and ϕ(t, φ) = eNtφ+

(∫ t

0
eNsds

)
b,

∀ t ≥ 0, ∀φ ∈ Rm
+ ,

(2.6)

and obviously t 7→ ϕ(t, φ) is strictly increasing with limt→∞ ϕ(t, φ) = +∞ for every n = 1, . . . ,m and
φ ∈ Rm

+ . Proposition 2.3 summarizes the sample-path properties of process Φ described so far.

Proposition 2.3. The process Φ = {Φt = (Φ(1)
t , . . . ,Φ(m)

t ),Ft; t ≥ 0} is an m-dimensional piecewise
deterministic strong Markov process under P∞, and P∞-a.s. for every t ≥ 0

Φt =


ϕ(t− Tn,ΦTn), if t ∈ [Tn, Tn+1) for some n ≥ 0,

ϕ(Tn+1 − Tn,ΦTn)
λ1

λ0

dν1

dν0
(Zn+1), if t = Tn+1 for some n ≥ 0,

where T0 ≡ 0, and mapping (t, φ) 7→ ϕ(t, φ) = (ϕ1(t, φ), . . . , ϕm(t, φ)) : R+ × Rm
+ 7→ Rm

+ is defined by

ϕ(t, φ) =


eAt(φ+A−1b)−A−1b, if λ̄ 6= 0

eNtφ+
(∫ t

0
eNsds

)
b, if λ̄ = 0

 for every t ≥ 0 and φ ∈ Rm
+ ,

and eAt, A−1b, eNt, and
∫ t

0 e
Nsds can be calculated explicitly by (2.4), (2.5), (2.4), and (2.6), respectively.

If λ̄ > 0, then limt→∞ ϕ(t, φ) = −A−1b for every φ ∈ Rm
+ . If λ̄ ≤ 0, then t 7→ ϕn(t, φ) is strictly

increasing and limt→∞ ϕn(t, φ) = +∞ for every 1 ≤ n ≤ m and φ ∈ Rm
+ .

3. A DYNAMIC PROGRAMMING OPERATOR AND SOLUTION

Let us define for every bounded function w : Rm
+ 7→ R

(Kw)(φ) =
∫
E
w

(
φ
λ1

λ0

dν1

dν0
(z)
)
ν0(dz), φ ∈ Rm

+ , (3.1)
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(Jw)(φ, r) =
∫ r

0
e−(λ+λ0)t [g + λ0(Kw)] (ϕ(t, φ))dt, r ≥ 0, φ ∈ Rm

+ (3.2)

(Jtw)(φ) = inf
r≥t

(Jw)(φ, r), t ≥ 0, φ ∈ Rm
+ . (3.3)

Operators J and Jt naturally appear in the optimality equation satisfied by the value function of the optimal
stopping problem in (2.3). This important connection is the result of the special characterization of stopping
times τ ∈ S as described by Proposition 3.1, the proof of which is deferred to the appendix.

Proposition 3.1. For every τ ∈ S and n ≥ 0, there is an FTn-measurable nonnegative random variable Rn
such that P∞-a.s.

1{τ≥Tn}[τ ∧ Tn+1] = 1{τ≥Tn}[(Tn +Rn) ∧ Tn+1], (3.4)

{τ ≥ Tn} = {R0 ≥ T1, T1 +R1 ≥ T2, . . . , Tn−1 +Rn−1 ≥ Tn}, (3.5)

{Tn ≤ τ < Tn+1} = {R0 ≥ T1, T1 +R1 ≥ T2, . . . , Tn−1 +Rn−1 ≥ Tn, Tn +Rn < Tn+1}. (3.6)

Toward a solution of the optimal stopping problem in (2.3) with detection delay penalty function f(t) =
tm, t ≥ 0 for arbitrary but fixed m ≥ 1, let us consider the following policy: suppose that we agreed to stop
at some fixed stopping time τ ∈ S if τ < T1, namely, if no mark (and therefore no new information) has
arrived before the alarm time set by the stopping rule, and otherwise take optimal action at time T1 based on
the value ΦT1 of sufficient statistic, which will then incorporate new information contained in the mark just
arrived at time T1. The strong Markov property of process Φ at (Ft)t≥0-stopping time τ ∧ T1 suggests that
the expected value of this policy should equal

E∞
[∫ τ∧T1

0
e−λtg(Φt)dt+ 1{τ≥T1}e

−λT1V (ΦT1)
]
.

Let R0 ≡ R0(Φ0) be F0-measurable random variable such that P∞-a.s. τ ∧ T1 = R0 ∧ T1 and {τ ≥ T1} =
{R0 ≥ T1} as in the characterization of τ by Proposition 3.1. Because by Proposition 2.3

Φt = ϕ(t,Φ0) for t ∈ [0, T1) and ΦT1 = ϕ(T1,Φ0)
λ1

λ0

dν1

dν0
(Z1),

and since (Tn, Zn)n≥1 is a compound Poisson process with arrival rate λ0 and mark distribution ν0 on
(E, E), and since F0 and (T1, Z1) are independent due to independent increments of (Tn, Zn)n≥1 under
P∞, we can rewrite the expected value of the policy as

E∞
[∫ R0

0
1{T1≥t}e

−λtg(ϕ(t,Φ0))dt+ 1{R0≥T1}e
−λT1V

(
ϕ(T1,Φ0)

λ1

λ0

dν1

dν0
(Z1)

)]
=
∫ R0

0
e−(λ+λ0)tg(ϕ(t,Φ0))dt+

∫ R0

0
λ0e
−(λ+λ0)t

∫
E
V

(
ϕ(t,Φ0)

λ1

λ0

dν1

dν0
(z)
)
ν0(dz)dt

=
∫ R0

0
e−(λ+λ0)t[g + λ0(KV )](ϕ(t,Φ0))dt ≡ (JV )(Φ0, R0).

Therefore, the minimum expected total discounted cost should be given by

inf
τ∈S

E∞
[∫ τ∧T1

0
e−λtg(Φt)dt+ 1{τ≥T1}e

−λT1V (ΦT1)
]

= inf
r≥0

(JV )(Φ0, r) ≡ (J0V )(Φ0).

Because V (Φ0) is by definition the minimum expected total discounted cost, the optimality principle of dy-
namic programming suggests that V (Φ0) = (J0V )(Φ0) and that J0 can be seen as a dynamic programming
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operator. We later show that V (·) is indeed a solution of the optimality equation. In fact, V (·) is the unique
bounded fixed point of operator J0 and can be approximated successively by the elements of the sequence

v0(φ) = 0, φ ∈ Rm
+ and vn(φ) = (J0vn−1)(φ), φ ∈ Rm

+ , n ≥ 1. (3.7)

Let us first introduce the finite-horizon problems

Vn(φ) = inf
τ∈S

Eφ∞
[∫ τ∧Tn

0
e−λtg(Φt)dt

]
for every φ ∈ Rm

+ and n ≥ 0, (3.8)

obtained from the original problem in (2.3) by requiring a decision at or before the arrival time Tn of the
n-th mark. The next lemma shows that V (φ) can be approximated successively by the elements of sequence
(Vn(φ))n≥0 as n→∞, uniformly in φ ∈ Rm

+ .

Lemma 3.1. The sequence (Vn(φ))n≥0 decreases to V (φ) as n→∞ uniformly in φ ∈ Rm
+ . More precisely,

0 ≤ Vn(φ)− V (φ) ≤
(

λ

λ+ λ0

)n
for every φ ∈ Rm

+ and n ≥ 1.

Proof. Because τ ∧ Tn ∈ S for every τ ∈ S, we have V (φ) ≤ Eφ∞
[∫ τ∧Tn

0 e−λtg(Φt)dt
]

for every τ ∈ S ,
and taking the infimum of both sides over τ ∈ S gives the first inequality 0 ≤ Vn(φ)− V (φ). On the other
hand, because g(φ) ≥ −λ for every stopping time τ ∈ S, and under P∞ the random variable Tn has Erlang
distribution with parameters n and λ0, we have

Eφ∞
[∫ τ

0
e−λtg(Φt)dt

]
= Eφ∞

[∫ τ∧Tn

0
e−λtg(Φt)dt+ 1{τ≥Tn}

∫ τ

Tn

e−λtg(Φt)dt
]

≥ Eφ∞
[∫ τ∧Tn

0
e−λtg(Φt)dt

]
− Eφ∞

[∫ ∞
Tn

λe−λtdt
]
≥ Vn(φ)− Eφ∞

[
e−λTn

]
= Vn(φ)−

(
λ

λ+ λ0

)n
,

which proves the second inequality and completes the proof of the lemma.

Propositions 3.2 and 3.3 show that Vn(·) = vn(·) for every n ≥ 0. Namely, (Vn(·))n≥0 can be calculated
iteratively by successive applications of the dynamic programming operator J0 to function v0 ≡ 0. Since
each vn(·) is obtained as the solution of a straight-forward deterministic optimization problem, Lemma 3.1
and Propositions 3.2 and 3.3 suggest for the problem in (2.3) an effective numerical solution method, which
also turns out to be very useful to identifying the structural properties of the solution.

Proposition 3.2. For every n ≥ 0 and φ ∈ Rm
+ , we have Vn(φ) ≥ vn(φ).

Proposition 3.3. For every ε > 0, φ ∈ Rm
+ , and n ≥ 1, let rn,ε(φ) be a nonnegative number such that

(Jvn−1)(φ, rn,ε(φ)) ≤ ε+ (J0vn−1)(φ) ≡ ε+ vn(φ), and define

τ0,ε ≡ 0 and τn,ε =

{
rn,ε/2(Φ0), if rn,ε/2(Φ0) < T1,

T1 + τn−1,ε/2 ◦ θT1 , if rn,ε/2(Φ0) ≥ T1.

Then for every ε > 0 and n ≥ 1, we have τn,ε ∈ S, and

Eφ∞
[∫ τn,ε∧Tn

0
e−λtg(Φt)dt

]
≤ vn(φ) + ε.
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Corollary 3.1. For every n ≥ 0 and φ ∈ Rm
+ , we have Vn(φ) = vn(φ), and stopping time τn,ε is ε-optimal

for the problem in (3.8): Eφ∞
[∫ τn,ε∧Tn

0 e−λtg(Φt)dt
]
≤ Vn(φ) + ε for every φ ∈ Rm

+ , ε > 0, and n ≥ 1.

Proof. The last displayed equation of Proposition 3.3 implies Vn(·) ≤ vn(·) + ε for every ε > 0, and since
ε > 0 is arbitrary, we conclude that Vn(·) ≤ v(·). Since the opposite inequality is also true by Proposition
3.2, the equality Vn(φ) = vn(φ) holds for every φ ∈ Rm

+ . Replacing vn(φ) with Vn(φ) in the last displayed
equation of Proposition 3.3 now shows that τn,ε is ε-optimal for the problem in (3.8).

Lemma 3.2 describes an explicit decomposition for the stopping times τn,ε, which is consistent with the
general characterization of stopping times of (Ft)t≥0 described by Proposition 3.1.

Lemma 3.2. For every n ≥ 1 and ε > 0, let τn,ε be the stopping time in Proposition 3.3. If 0 ≤ k ≤ n, then

{τn,ε ≥ Tk} =
{
rn,ε/2(ΦT0) ≥ T1 − T0, rn−1,ε/4(ΦT1) ≥ T2 − T1, . . . ,

rn−k+1,ε/2k(ΦTk−1
) ≥ Tk − Tk−1

}
=

k−1⋂
`=0

{
rn−`,ε/2`+1(ΦT`

) ≥ T`+1 − T`
}
.

If 0 ≤ k ≤ n− 1, then

{Tk ≤ τn,ε < Tk+1} =

(
k−1⋂
`=0

{
rn−`,ε/2`+1(ΦT`

) ≥ T`+1 − T`
})⋂{

rn−k,ε/2k+1(ΦTk
) < Tk+1 − Tk

}
,

τn,ε1{Tk≤τn,ε<Tk+1} =
[
Tk + rn−k,ε/2k+1(ΦTk

)
]

1{Tk≤τn,ε<Tk+1},

(τn,ε ∧ Tk+1)1{τn,ε≥Tk} =
[
(Tk + rn−k,ε/2k+1(ΦTk

)) ∧ Tk+1

]
1{τn,ε≥Tk}.

Lemma 3.3 identifies important properties of the dynamic programming operator J0. Particularly, J0

preserves boundedness, concavity, and monotonicity. It may have at most one fixed point in the space of
bounded functions defined on Rm

+ . Corollary 3.2 below shows that J0 has one and only one bounded fixed
point, which is the value function V (·) of problem in (2.3).

Lemma 3.3. Ifw : Rm
+ 7→ R is concave and bounded between−1 and 0, then so is (J0w). Ifw1(·) ≤ w2(·),

then (J0w1)(·) ≤ (J0w2)(·). Moreover, J0 is a contraction mapping on the collection of bounded functions
defined on Rm

+ , and for every bounded w1(·) and w2(·), we have

‖J0w1 − J0w2‖ ≤
λ0

λ+ λ0
‖w1 − w2‖.

Corollary 3.2. The functions Vn(·), n ≥ 0 and V (·) are bounded between −1 and 0, concave, and contin-
uous on Rm

+ . Moreover, V (·) is the unique bounded fixed point of operator J0.

Proof. Because V0 ≡ 0 is bounded between−1 and 0 and concave on Rm
+ , an induction on n ≥ 1, Corollary

3.1, and Lemma 3.3 show that Vn = J0Vn−1, n ≥ 1 are bounded between −1 and 0 and concave. Since
they are concave on Rm

+ , they are also continuous on Rm
++. Because V (·) is the uniform pointwise limit of

(Vn(·))n≥0 by Lemma 3.1, V (·) is bounded between −1 and 0, concave on Rm
+ , and continuous on Rm

++.
Finally, Lemmas 3.3 and 3.1 imply that

‖J0Vn − J0V ‖ ≤
λ0

λ+ λ0
‖Vn − V ‖ ≤

λ0

λ+ λ0

(
λ

λ+ λ0

)n
→ 0 as n→∞.

Hence, (J0V )(φ) = limn→∞(J0Vn)(φ) = limn→∞ Vn+1(φ) = V (φ) for every φ ∈ Rm
+ by Corollary 3.1.

If Ṽ (·) is another bounded fixed point of J0, then ‖V − Ṽ ‖ = ‖J0V − J0Ṽ ‖ ≤ [λ0/(λ + λ0)]‖V − Ṽ ‖
implies that ‖V − Ṽ ‖ = 0; i.e., V (·) is the unique bounded fixed point of operator J0.
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The next major result is Theorem 3.1, which states that for every ε ≥ 0 the (Ft)t≥0-stopping time
τε := inf{t ≥ 0; V (Φt) ≥ −ε} is ε-optimal for the problem in (2.3). For its proof, we will need the next
few lemmas and their corollaries.

Lemma 3.4. For every bounded w : Rm
+ 7→ R, we have

(Jw)(φ, s) + e−(λ+λ0)s(J0w)(ϕ(s, φ)) = (Jsw)(φ) for every φ ∈ Rm
+ and s ≥ 0.

If (J0w)(ϕ(s, φ)) < 0 for every 0 ≤ s < t, then (Jsw)(φ) = (Jtw)(φ) for every 0 ≤ s ≤ t.

The second part of Corollary 3.3 implies that, as long as the value function V (·) of the optimal stopping
problem in (2.3) remains strictly negative along the path t 7→ ϕ(t, φ), postponing the stopping decision does
not cause any regrets. This is the crucial result needed for the proof of the optimality of the stopping time
τ0 = inf{t ≥ 0; V (Φt) = 0}.

Corollary 3.3. If we take w = V in Lemma 3.4, then we have

(JV )(φ, s) + e−(λ+λ0)sV (ϕ(s, φ)) = (JsV )(φ) for every s ≥ 0 and φ ∈ Rm
+ ,

because V = J0V . If V (ϕ(s, φ)) < 0 for every 0 ≤ s < t, then V (φ) = (JsV )(φ) and

(JV )(φ, s) + e−(λ+λ0)sV (ϕ(s, φ)) = V (φ) for every 0 ≤ s ≤ t.

Lemma 3.5 gives the explicit decomposition of stopping times τε, ε ≥ 0, announced earlier by Proposi-
tion 3.1 for all stopping times of (Ft)t≥0.

Lemma 3.5. Let us define (Ft)t≥0-stopping time τε = inf{t ≥ 0; V (Φt) ≥ −ε} for every ε ≥ 0. Then

τε =

{
rε(Φ0), if rε(Φ0) < T1

T1 + τε ◦ θT1 , if rε(Φ0) ≥ T1

}
and

τε1{Tn≤τε<Tn+1} = [Tn + rε(ΦTn)]1{Tn≤τε<Tn+1}

for every ε ≥ 0 and n ≥ 0,

where rε(φ) = inf{t ≥ 0; V (ϕ(t, φ)) ≥ −ε} for every φ ∈ Rm
+ and ε ≥ 0.

Proposition 3.4 and Corollary 3.4 state that postponing the stopping decision until time τε does not cause
any regrets, and this observation almost immediately leads to the ε-optimality of τε for the problem in (2.3),
which is established by Theorem 3.1.

Proposition 3.4. Let us define Mt :=
∫ t

0 e
−λug(Φu)du + e−λtV (Φt) for every t ≥ 0. For every n ≥ 0,

(Ft)t≥0-stopping time τ , and φ ∈ Rm
+ , we have Eφ∞ [Mτ∧τε∧Tn ] = Eφ∞ [M0] = V (φ).

Corollary 3.4. The stopped process {Mt∧τε∧Tn ,Ft; t ≥ 0} is a uniformly integrable martingale under P∞
for every n ≥ 0.

Theorem 3.1. For every ε ≥ 0, the (Ft)t≥0-stopping time τε of Lemma 3.5 is ε-optimal for problem in (2.3).
Particularly, τ0 is an optimal (Ft)t≥0-stopping time for problem in (2.3).

Proof. By Proposition 3.4 for every ε ≥ 0, n ≥ 0, and τ ≡ Tn, we have

V (φ) = Eφ∞[Mτε∧Tn ] = Eφ∞
[∫ τε∧Tn

0
e−λtg(Φt)dt+ e−λ(τε∧Tn)V (Φτε∧Tn)

]
= Eφ∞

[∫ τε∧Tn

0
e−λtg(Φt)dt+ 1{τε<Tn}e

−λτεV (Φτε) + 1{τε≥Tn}e
−λTnV (ΦTn)

]
.
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On the one hand, on the event {τε <∞} ⊇ {τε < Tn}, we have V (Φτε) > −ε, because V (·) is continuous
by Corollary 3.2, and t 7→ V (Φt) is right-continuous. On the other hand, we always have V (·) ≥ −1 by
Corollary 3.2 as well. Therefore,

V (φ) ≥ Eφ∞
[∫ τε∧Tn

0
e−λtg(Φt)dt− ε1{τε<Tn}e

−λτε − 1{τε≥Tn}e
−λTn

]
≥ Eφ∞

[∫ τε∧Tn

0
e−λtg(Φt)dt

]
− ε− Eφ∞

[
e−λTn

]
The sequence of random variables

∫ τε∧Tn

0 e−λtg(Φt)dt, n ≥ 0 is bounded from below, since∫ τε∧Tn

0
e−λtg(Φt)dt ≥ −

∫ τε∧Tn

0
λe−λtdt ≥ −

∫ ∞
0

λe−λtdt = −1,

and limn→∞ E∞e−λTn = 0 by the bounded convergence theorem, because Tn ↑ +∞ as n → ∞. Then
taking the limit infimum and using the Fatou’s lemma give

V (φ) ≥ lim
k→∞

Eφ∞
[∫ τε∧Tn

0
e−λtg(Φt)dt

]
− ε ≥ Eφ∞

[∫ τε

0
e−λtg(Φt)dt

]
− ε,

which proves that τε is ε-optimal for problem in (2.3).

Because V (·) = limn→∞ Vn(·) can be calculated only in the limit, optimal stopping rule τ0 may not be
implementable. In practice, V (·) will be approximated by Vn(·) ≡ vn(·) for some sufficiently large n ≥ 0,
and the optimal performance of τ0 can be approximated arbitrarily closely by the stopping times σn,ε, ε > 0
of Theorem 3.2.

Theorem 3.2. Define σn,ε = inf{t ≥ 0; Vn(Φt) ≥ −ε} for every ε ≥ 0 and n ≥ 0. If

N(ε) := min
{
n ≥ 0;

(
λ

λ+ λ0

)n
≤ ε
}

=

⌊
log ε

log λ
λ+λ0

⌋
for every ε > 0,

then (Ft)t≥0-stopping times σN(ε/2),ε/2 and σN(ε),0 are ε-optimal for every ε > 0 for the problem in (2.3).

Proof. Because Vn(·) ≥ V (·), we have P∞-a.s. σn,ε ≤ τε, and Proposition 3.4 with τ ≡ σn,ε implies

Eφ∞[Mσn,ε∧Tk
] = Eφ∞

[
Mσn,ε∧τε∧Tk

]
= Eφ∞[M0] = V (φ) k ≥ 0.

Then as in the proof of Theorem 3.1, we can write

V (φ) = Eφ∞[Mσn,ε∧Tk
] = Eφ∞

[∫ σn,ε∧Tk

0
e−λtg(Φt)dt+ e−λ(σn,ε∧Tk)V (Φσn,ε∧Tk

)
]

= Eφ∞
[∫ σn,ε∧Tk

0
e−λtg(Φt)dt+ 1{σn,ε<Tk}e

−λσn,εV (Φσn,ε) + 1{σn,ε≥Tk}e
−λTkV (ΦTk

)
]

Lemma 3.1 gives 0 ≤ Vn(φ) − V (φ) ≤ [λ/(λ + λ0)]n for every φ ∈ Rm
+ and n ≥ 0, and Vn(·) ≥ −1 by

Corollary 3.2. Therefore, V (φ) is greater than or equal to

Eφ∞
[∫ σn,ε∧Tk

0
e−λtg(Φt)dt+ 1{σn,ε<Tk}e

−λσn,ε

(
Vn(Φσn,ε)−

(
λ

λ+ λ0

)n)
− 1{σn,ε≥Tk}e

−λTk

]
.
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On {σn,ε < ∞} ⊇ {σn,ε < Tk} we have Vn(Φσn,ε) ≥ −ε because Vn(·) is continuous by Corollary 3.2,
and t 7→ Vn(Φt) is right-continuous. Therefore,

V (φ) ≥ Eφ∞
[∫ σn,ε∧Tk

0
e−λtg(Φt)dt− 1{σn,ε<Tk}e

−λσn,ε

(
ε+

(
λ

λ+ λ0

)n)
− 1{σn,ε≥Tk}e

−λTk

]
≥ Eφ∞

[∫ σn,ε∧Tk

0
e−λtg(Φt)dt

]
−
(
ε+

(
λ

λ+ λ0

)n)
− Eφ∞

[
e−λTk

]
.

For every fixed n ≥ 0 and ε ≥ 0, the sequence
∫ σn,ε∧Tk

0 e−λtg(Φt)dt, k ≥ 0 is bounded from below since∫ σn,ε∧Tk

0
e−λtg(Φt)dt ≥ −

∫ σn,ε∧Tk

0
λe−λtdt ≥ −

∫ ∞
0

λe−λtdt = −1,

and limk→∞ E∞e−λTk = 0 by the bounded convergence theorem, because Tk ↑ +∞ as k → ∞. Then
taking the limit infimum and using the Fatou’s lemma give

V (φ) ≥ lim
k→∞

Eφ∞
[∫ σn,ε∧Tk

0
e−λtg(Φt)dt

]
− ε−

(
λ

λ+ λ0

)n
≥ Eφ∞

[∫ σn,ε

0
e−λtg(Φt)dt

]
− ε−

(
λ

λ+ λ0

)n
for every n ≥ 0 and ε ≥ 0.

The conclusion now immediately follows from the definition of N(ε).

We have seen that V (·) is the limit of Vn(·) as n → ∞. The final result of this section shows that
optimal stopping time τ0 is similarly P∞-a.s. limit of the sequence of increasingly accurate stopping rules
(σn,0)n≥0. This result is established by first observing that τ0 and σn,0, n ≥ 0 are the first hitting times of
the process Φ to the nested stopping regions Γ and Γn, n ≥ 0, respectively, which are defined as the subsets
of the state space Rm

+ where V (·) and Vn(·), n ≥ 0 vanish.

Theorem 3.3. Let us define stopping regions

Γ := {φ ∈ Rm
+ ; V (φ) = 0} and Γn := {φ ∈ Rm

+ ; Vn(φ) = 0}, n ≥ 1.

Then the sets Rm
+ = Γ0 ⊇ Γ1 ⊇ . . . ⊇ Γn ⊇ . . . ⊇ Γ are closed and convex, and ∩k≥0Γk = Γ. We have

that τ0 = inf{t ≥ 0; Φt ∈ Γ} and σn,0 = inf{t ≥ 0; Φt ∈ Γn} for every n ≥ 0. Moreover, the sequence
(σn,0)n≥0 increases P∞-a.s. to τ0 as n→∞.

Proof. Since Vn(·) decreases to V (·) as n → ∞, we have Γ0 ⊇ Γ1 ⊇ . . . ⊇ Γn ⊇ . . . ⊇ Γ, which are
closed and concave because Vn(·), n ≥ 0 and V (·) are continuous, concave, and nonpositive by Corollary
3.2. The stopping times τ0 and σn,0, n ≥ 0 of Theorems 3.1 and 3.2 are by definition the first hitting times
of process Φ to stopping sets Γ and Γn, n ≥ 0. Because the sets Γn, n ≥ 0 are decreasing, the hitting times
σn,0, n ≥ 0 are increasing with σ0 := limn→∞ σn,0 ≤ τ0.

Because {Φt, t ≥ 0} has left-limits, the limit limn→∞Φσn,0 exists. Since jump times of process Φ are
totally unpredictable, P∞{σ0 = Tn for some n ≥ 1} = 0. Therefore, P∞-a.s. limn→∞Φσn,0 = Φσ0 .

On {σ0 = ∞}, we obviously have P∞-a.s. σ0 = τ0. On {σ0 < ∞}, we have σn,0 < ∞ for every
n ≥ 0 and Φσn,0 ∈ Γn ⊆ Γk for every n ≥ k because Γn, n ≥ 0 are closed and t 7→ Φt is right-continuous.
Therefore, Φσ0 = limn→∞Φσn,0 ∈ Γk for every k ≥ 0, equivalently Φσ0 ∈ ∩k≥0Γk on {σ0 < ∞}. Thus,
we will have proved that σ0 ≥ τ0 on {σ0 <∞} as well, if we show that ∩k≥0Γk = Γ.

We already know that ∩k≥0Γk ⊇ Γ. To prove the opposite inclusion, take any φ ∈ ∩k≥0Γk. Then
0 = Vk(φ) for every k ≥ 0. Therefore, V (φ) = limn→∞ Vk(φ) = 0 and φ ∈ Γ. Hence, ∩k≥0Γk ⊆ Γ.

Finally, Proposition 2.1 or the first part of Proposition 2.3 guarantee that τ0 is a Bayes-optimal alarm
time, and for every ε > 0, stopping time σN(ε),0 is an ε-optimal alarm time for the original compound
Poisson disorder problem.
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4. ILLUSTRATION

Consider the compound Poisson disorder problem with λ0 6= λ1, ν0 ≡ ν1, andm = 2; namely, the detection
delay penalty cost function is f(t) = t2. We shall use the results of Section 3 to identify as explicitly as
possible the structure of the optimal solution of the auxiliary optimal stopping problem in (2.3).

The sufficient statistic is the two-dimensional piecewise deterministic strong Markov process Φ =
{Φt = (Φ(1)

t ,Φ(2)
t ); t ≥ 0} which follows the dynamics

Φt =


ϕ(t− Tn,ΦTn), if t ∈ [Tn, Tn+1)

ϕ(Tn+1 − Tn,ΦTn)
λ1

λ0
, if t = Tn+1

 and
ϕ(t, φ) = eAtφ+

(∫ t

0
eA(t−s)ds

)
b

for every t ≥ 0, φ ∈ R2
+, and n ≥ 0,

where λ̄ = λ1 − λ0 − λ, and

A =
[
−λ̄ 1
0 −λ̄

]
, b =

[
0

2λ

]
, eAt = e−λ̄t

[
1 t
0 1

]
, A−1b = −

[
λ̄−1 λ̄−2

0 λ̄−1

] [
0

2λ

]
= −

[
2λλ̄−2

2λλ̄−1

]
if λ̄ 6= 0,

ϕ(t, φ) =



[
e−λ̄t(φ1 − 2λλ̄−2 + t(φ2 − 2λλ̄−1)) + 2λλ̄−2

e−λ̄t(φ2 − 2λλ̄−1) + 2λλ̄−1

]
, if λ̄ 6= 0[

φ1 + φ2t+ λt2

φ2 + 2λt

]
, if λ̄ = 0


for every t ≥ 0

and φ = (φ1, φ2) ∈ R2
+.

Depending on the relationships between the parameters of the problem, the sample paths of process
Φ can take one of two major forms, and each can further be divided into two subcases. We will describe
qualitatively the form of the optimal solution of the problem in (2.3) for each case. Note however that under
all circumstances it is never optimal to stop before the process Φ leaves the strip

C0 := {φ = (φ1, φ2) ∈ R2
+; φ1 < λ},

because the integrand in (2.3) remains negative until the first exit time τ0 := inf{t ≥ 0; Φt /∈ C0} =
inf{t ≥ 0; Φ(1)

t ≥ λ} of process Φ from C0.

4.1. Subsection: Case I: λ̄ > 0.

The solution x(t) = ϕ(t, φ) of the system of linear ordinary differential equations dx(t)/dt = Ax(t) + b
with initial condition x(0) = φ ∈ R2

+ has unique equilibrium point at−A−1b = [2λλ̄−2 2λλ̄−1]T. Because
λ̄ > 0, we also have λ1−λ0 > λ > 0 and λ1/λ0 > 1, in which case at each mark arrival time, the process Φ
jumps away from the origin along the ray emanating from the origin and passing through the position of Φ
before jump; see Figures 1 and 2. The structure of the optimal solution depends on the position of the root λ
of the running cost function g(φ) = φ1 − λ in (2.3) relative to the first coordinate 2λλ̄−2 of the equilibrium
point −A−1b.

Case I (a): λ̄ > 0 and λ < 2λλ̄−2 (equivalently, 0 < λ̄ <
√

2). Let φ1 = φ∗1 ≥ 0 be the unique number
such that λ equals the unique minimum of the mapping t 7→ ϕ1(t, (φ1, 0)), which it is attained at t = t∗(φ1).
Let us also denote by φ∗2 = ϕ2(t∗(φ∗1), (φ∗1, 0)) the second coordinate at time t∗(φ∗1), when the minimum
value of the first coordinate is attained and equals λ, starting initially at (φ∗1, 0) on the φ1-axis; see Figure 1.
For every fixed φ1 ≥ 0, taking the derivative of ϕ1(t, (φ1, 0)) = e−λ̄t(φ1−2λλ̄−2−2λλ̄−1t)+2λλ̄−2 with
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γ(·)

φ∗1φγ1

φ∗2

φ2 φ2

Γ (entire shaded region)

Region D (darker region)

2λλ̄−2 φ1

2λλ̄−1

0 λ φ10

2λλ̄−1

2λλ̄−2λ

Figure 1. Case I (a): λ̄ > 0 and λ < 2λλ̄−2 (equivalently, 0 < λ̄ <
√

2). The sufficient statistic Φ follows
the integral curves of a system of two linear ordinary differential equations, which have unique equilibrium
point. Moreover, since λ1 > λ0, at every arrival time of a mark, Φ jumps away from the origin. On the
lefthand side, integral curves and direction of jumps are drawn. On the righthand side, regionD and optimal
stopping region Γ are displayed.

respect to t gives ∂ϕ1(t, (φ1, 0))/∂t = e−λ̄t(−λ̄φ1 + λt), and equating it to zero and solving for t leads to
t∗(φ1) = λ̄λ−1φ1 for every φ1 ≥ 0. Therefore, λ = ϕ1 (t∗(φ∗1), (φ∗1, 0)) = 2λλ̄−2

[
1− e−(λ̄2/λ)φ∗1

]
gives

φ∗1 = −λλ̄−2 ln
(

1− λ̄2

2

)
and φ∗2 = λλ̄.

Since λ̄2/2 ∈ (0, 1), we have 0 < φ∗1 < ∞. Moreover, (i) φ∗1 ≤ 2λλ̄−2 if and only if λ̄ ≤
√

2(1− e−2),
(ii) φ∗2 < 2λλ̄−2, which is the second coordinate of the equilibrium point −A−1b. Let us define

D :=
{

(φ1, φ2) ∈ R2
+; φ1 = ϕ1(t, (φ∗1, 0)), φ2 ≥ ϕ2(t, (φ∗1, 0)), 0 ≤ t ≤ t∗(φ∗1)

}
∪ ([φ∗1,∞)× R+) ,

which is the dark shaded region in Figure 1. Because λ1/λ0 > 1 and the equilibrium point −A−1b belongs
to D, we have (λ1/λ0)D ⊆ D, and

Pφ∞ {Φt ∈ D for every t ≥ 0} = 1 for every φ ∈ D.

Since g(φ) − λ ≥ 0 for every φ ∈ D ⊂ R2
+ \ C0, we have Eφ∞

[∫ τ
0 e
−λtg(Φt)dt

]
≥ 0 for every τ ∈ S

and φ ∈ D. Therefore, V (φ) = 0 for every φ ∈ D, and D is a subset of the optimal stopping region
Γ = {φ ∈ R2

+; V (φ) = 0}. Because D ⊂ Γ ⊆ R2
+ \ C0 and Γ is closed and convex, the optimal stopping

boundary ∂Γ coincides with the infinite line segment {(λ, φ2); φ2 ≥ φ∗2} and with some nondecreasing
convex continuous curve γ : [λ, φ∗1] 7→ R such that γ(λ) = φ∗2. There is also some λ < φγ1 ≤ φ∗1 such that
γ(·) is strictly decreasing on [λ, φγ1 ] and equals zero on [φγ1 , φ

∗
1]; see Figure 1. All of those conclusions are

direct consequences of the convexity of the optimal stopping region region Γ.
In this subcase, starting initially at any Φ0 = φ on the vertical axis (namely, φ = (0, φ2) for any φ2 ≥ 0),

the process Φ never returns to C0 once it leaves that region. Therefore, the first exit time τ0 of Φ from C0 is
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optimal for the problem in (2.3) if Φ0 = (0, φ2) for some φ2 ≥ 0. Since by Proposition 2.2 the minimum
Bayes risk

inf
τ∈S

Rτ (p) = 1− p+ (1− p)V
(

0,
2p

1− p

)
, 0 ≤ p < 1

depends on V (φ) evaluated on {φ = (0, φ2); φ2 ≥ 0}, the (Ft)t≥0 stopping time τ0 is an optimal change-
detection alarm time if 0 < λ̄ ≤

√
2.

Case I (b): λ̄ > 0 and λ ≥ 2λλ̄−2 (equivalently, λ̄ ≥
√

2). We shall first state and prove a comparison
lemma for the sample paths of the process Φ.

Lemma 4.1. For every i = 1, 2, we have P∞-a.s. Φ(i)
t ≥ ϕi(t,Φ0) for every t ≥ 0.

Proof. Clearly, Φ(i)
t = ϕi(t,Φ0) for every 0 ≤ t < T1 and i = 1, 2. Suppose that for some n ≥ 1, we have

P∞-a.s. Φ(i)
t ≥ ϕi(t,Φ0) for every 0 ≤ t < Tn and i = 1, 2. Let us prove that the same inequality also

holds P∞-a.s. for Tn ≤ t < Tn+1, and hence for 0 ≤ t < Tn+1, which will then complete the proof of the
lemma since P∞-a.s. Tn ↑ ∞ as n→∞.

It is clear from the explicit form of ϕ(·, ·) in (2.2) that, if x = (x1, x2) and y = (y1, y2) are in R2
+ such

that x1 ≤ y1 and x2 ≤ y2, then ϕi(t, x) ≤ ϕi(t, y) for every t ≥ 0 and i = 1, 2. Because λ1/λ0 > 1, we
have Φ(i)

Tn
= (λ1/λ0)Φ(i)

Tn− ≥ Φ(i)
Tn− for i = 1, 2, and

Φ(i)
t = ϕi(t− Tn,ΦTn) = ϕi

(
t− Tn,

λ1

λ0
ΦTn−

)
≥ ϕi (t− Tn,ΦTn−) , Tn ≤ t < Tn+1, i = 1, 2.

Since Φ(i)
Tn− ≥ ϕi(Tn,Φ0) for every i = 1, 2 by the induction hypothesis, we can now write

Φ(i)
t ≥ ϕi (t− Tn,ΦTn−) ≥ ϕi (t− Tn, ϕi(Tn,Φ0)) = ϕi (t− Tn + Tn,Φ0) = φi(t,Φ)

for every Tn ≤ t < Tn+1 and i = 1, 2, which completes the proof of the induction step.

Lemma 4.1 implies that

V (φ) = inf
τ∈S

Eφ∞
[∫ τ

0
e−λtg(Φt)dt

]
= inf

τ∈S
Eφ∞

[∫ τ

0
e−λt(Φ(1)

t − λ)dt
]

≥ inf
τ∈S

Eφ∞
[∫ τ

0
e−λt(ϕ1(t,Φ0)− λ)dt

]
= inf

r≥0

∫ r

0
e−λt(ϕ1(t, φ)− λ)dt =: h(φ), φ ∈ R2

+.

Therefore, {φ ∈ R2
+; h(φ) = 0} ⊆ {φ ∈ R2

+; V (φ) = 0} ≡ Γ. On the other hand, for every φ =
(φ1, φ2) ∈ R2

+ such that φ1 ≥ λ, we have h(φ) = min{0,
∫∞

0 e−λt(ϕ1(t, φ)− λ)dt}, and h(φ) = 0 if

0 ≤
∫ ∞

0
e−λt(ϕ1(t, φ)− λ)dt =

∫ ∞
0

e−λt
[
e−λ̄t

(
φ1 − 2λλ̄−2 + t

(
φ2 − 2λλ̄−1

))
+ 2λλ̄−2 − λ

]
dt

=
∫ ∞

0
e−(λ1−λ0)t

(
φ1 − 2λλ̄−2 + t(φ2 − 2λλ̄−1)

)
dt+ 2λ̄−2 − 1

=
φ1 − 2λλ̄−2

λ1 − λ0
+
φ2 − 2λλ̄−1

(λ1 − λ0)2
+ 2λ̄−2 − 1

=
φ1

λ1 − λ0
+

φ2

(λ1 − λ0)2
− 2λλ̄−2

λ1 − λ0
− 2λλ̄−1

(λ1 − λ0)2
+ 2λ̄−2 − 1,
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2λλ̄−1

Γ (entire shaded region)

φ∗2
φγ2

Region D (darker region)

φ∗1

2λλ̄−1

γ(·)

φγ1φ1

φ2

λ0 2λλ̄−2 φ1

φ2

0 2λλ̄−2 λ

Figure 2. Case I (b): λ̄ > 0 and λ ≥ 2λλ̄−2 (equivalently, λ̄ ≥
√

2). As in Case I (a), the sufficient
statistic Φ follows the integral curves of a system of two linear ordinary differential equations, which have
unique equilibrium point, and since λ1 > λ0, at every arrival time of a mark, Φ jumps away from the origin.
On the lefthand side, integral curves and direction of jumps are drawn. On the righthand side, region D and
optimal stopping region Γ are displayed.

and after multiplying both sides by (λ1 − λ0)2 and rearranging the terms we obtain

φ2 ≥ γ̄(φ1) := −(λ1 − λ0)φ1 + 2λλ̄−2(λ1 − λ0) + 2λλ̄−1 + (1− 2λ̄−2)(λ1 − λ0)2.

Hence, we have

D :=
{

(φ1, φ2) ∈ R2
+; φ1 ≥ λ, φ2 ≥ γ̄(φ1)

}
⊆ {φ ∈ R2

+; h(φ) = 0} ⊆ {φ ∈ R2
+; V (φ) = 0} = Γ.

Lemma 4.2. Let φ1 = φ∗1 be the root of γ̄(φ1) = 0 and define φ∗2 := γ̄(λ). Then

φ∗1 = λ+
φ∗2

λ1 − λ0
> λ and φ∗2 = 2λλ̄−1 + (1− 2λ̄−2)(λ1 − λ0)λ̄ > 2λλ̄−1.

Proof. Direct calculation gives

φ∗2 = γ̄(λ) = −λ(λ1 − λ0) + 2λλ̄−2(λ1 − λ0) + 2λλ̄−1 + (1− 2λ̄−2)(λ1 − λ0)2

= 2λλ̄−1 + (1− 2λ̄−2)(λ1 − λ0)2 − (1− 2λ̄−2)λ(λ1 − λ0)

= 2λλ̄−1 + (1− 2λ̄−2)(λ1 − λ0)(λ1 − λ0 − λ) = 2λλ̄−1 + (1− 2λ̄−2)(λ1 − λ0)λ̄ > 2λλ̄−1,

because λ̄ ≥
√

2 implies that 1 − 2λ̄−2 > 0, λ1 − λ0 > λ > 0, and λ̄ > 0. Because φ1 → γ̄(φ1) is a
straight line slope −(λ1 − λ0), we have (0− φ∗2)/(φ∗1 − λ) = −(λ1 − λ0), which completes the proof.

Because optimal stopping region Γ is closed and convex, and D ⊆ Γ ⊆ R2
+ \ C0, there exist some

2λλ̄−1 < φγ2 < φ∗2, λ < φγ1 ≤ φ∗1, and some nondecreasing convex continuous curve γ : [λ, φ∗1] 7→ R such
that optimal stopping boundary ∂Γ coincides with the infinite line segment {(λ, φ2); φ2 ≥ φγ2} and with
{(φ1, γ(φ1)); λ ≤ φ1 ≤ φ∗1}. Moreover, φ1 7→ γ(φ1) is strictly decreasing on φ1 ∈ [λ, φγ1 ] and equals zero
on φ1 ∈ [φγ1 , φ

∗
1]; see Figure 2.
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Γ

φγ1

γ(·)

φ2 φ2

C0

Γ

φ1

(a) λ̄ ≤ 0, λ1 > λ0

0 φ1λ

(b) λ̄ ≤ 0, λ1 < λ0

λ + λ00 λ

Figure 3. Case II: λ̄ ≤ 0. The process Φ follows integral curves, both coordinates of which are strictly
increasing. It jumps away from the origin in Case II (a): λ1 > λ0 and toward the origin in Case II (b):
λ1 < λ0.

4.2. Subsection: Case II: λ̄ < 0.

Both components of t 7→ ϕ(t, φ) are strictly increasing for every φ ∈ R2
+. Both λ1 > λ0 and λ1 < λ0 are

possible.

Case II (a): λ̄ < 0 and λ1 > λ0. The process Φ runs away from the origin both at and between jump
times. It never returns to regionC0 once it leaves that region. Therefore, optimal stopping region Γ coincides
with R+ \C0, optimal stopping boundary ∂Γ is the straight line φ1 = λ, and the first exit time τ0 of process
Φ from region C0 is optimal for the problem in (2.3) and an optimal alarm time for the compound Poisson
disorder problem; see Figure 3(a).

Case II (b): λ̄ < 0 and λ1 < λ0. The process Φ is driven away from the origin between jump times,
but is pulled back toward the origin at every jump. Therefore, Φ may return to region C0 after a jump with
positive probability; see Figure 3(b). Since V (·) ≥ −1, we have

V (φ) = (J0V )(φ) = inf
r≥0

∫ r

0
e−(λ+λ0)t[g + λ(KV )](ϕ(t, φ))dt

≥ inf
r≥0

∫ r

0
e−(λ+λ0)t[ϕ1(t, φ)− λ− λ0]dt = 0 for every φ ∈ [λ+ λ0,∞)× R+,

which implies that [λ + λ0,∞) × R+ ⊆ Γ. Because the optimal stopping region Γ ⊆ R+ \ C0 is closed
and convex, there exist some λ < φγ1 ≤ λ + λ0 and some nonincreasing convex continuous curve γ :
[λ, λ+λ0] 7→ R such that the optimal stopping boundary ∂Γ coincides with γ(·), which is strictly decreasing
on [λ, φγ1 ] and vanishes on [φγ1 , λ+ λ0].
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A. APPENDIX: PROOFS OF SELECTED RESULTS

The Derivation of the Dynamics of Process Φ in (2.2). Because Zt1{Θ≤t} = (Lt/LΘ)1{Θ≤t}, Zt1{Θ>t} =
1{Θ>t} for every t ≥ 0, and Θ and Ft are independent under P∞, we have

Φ(n)
t =

E∞
[
Ztf

(n)(t−Θ)1{Θ≤t} | Ft
]

E∞
[
Zt1{Θ>t} | Ft

] =
E∞

[
(Lt/LΘ)f (n)(t−Θ)1{Θ≤t} | Ft

]
P∞{Θ > t}

=
pLtf

(n)(t) + (1− p)
∫ t

0 λe
−λs(Lt/Ls)f (n)(t− s)ds

(1− p)e−λt

= Lt

[
p

1− p
eλtf (n)(t) + eλt

∫ t

0
λe−λs

1
Ls
f (n)(t− s)ds

]
for every n ≥ 1.

Applying change-of-variable formula and using the dynamics of process L in (2.1) give

dΦ(n)
t = Φ(n)

t−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(ds, dz)− λ0dt ν0(dz)]

+ Lt

[
λ

p

1− p
eλtf (n)(t) + λeλt

∫ t

0
λe−λs

1
Ls
f (n)(t− s)ds+

p

1− p
eλtf (n+1)(t)

+eλtλe−λt
1
Lt
f (n)(0) + eλt

∫ t

0
λe−λs

1
Ls
f (n+1)(t− s)ds

]
dt

= Φ(n)
t−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(ds, dz)− λ0dt ν0(dz)]

+
[
λf (n)(0) + λLt

(
p

1− p
eλtf (n)(t) + λeλt

∫ t

0
λe−λs

1
Ls
f (n)(t− s)ds

)
+Lt

(
p

1− p
eλtf (n+1)(t) + eλt

∫ t

0
λe−λs

1
Ls
f (n+1)(t− s)ds

)]
dt

= Φ(n)
t−

∫
E

(
λ1

λ0

dν1

dν0
(z)− 1

)
[N(ds, dz)− λ0dt ν0(dz)] +

[
λf (n)(0) + λΦ(n)

t + Φ(n+1)
t

]
dt,

which leads to (2.2) after a rearrangement of the terms on the righthand side. Finally,

Φ(n)
0 =

E[f (n)(t−Θ)1{Θ≤t} | Ft]
P{Θ > t | Ft}

∣∣∣∣∣
t=0

=
P{Θ = 0}f (n)(0)

P{Θ > 0}
=

p

1− p
f (n)(0).

Proof of Proposition 3.1. The existence of FTn-measurable nonnegative random variables Rn satisfying
(3.4) for n ≥ 0 is proved, for example, by Brémaud [6], Davis [8], and Liptser and Shiryaev [16]. We can
prove (3.5) by induction. Let us first show that P∞-a.s. {τ ≥ T1} = {R0 ≥ T1}. Because {τ ≥ T0} ⊇
{τ ≥ T1}, we have

R01{τ≥T1}∩{R0<T1} = (R0 ∧ T1)1{τ≥T1}∩{R0<T1} = (τ ∧ T1)1{τ≥T1}∩{R0<T1} = T11{τ≥T1}∩{R0<T1},

which implies that P∞({τ ≥ T1} ∩ {R0 < T1}) = 0 and

{τ ≥ T1} = {τ ≥ T1, R0 < T1} ∪ {τ ≥ T1, R0 ≥ T1} = {τ ≥ T1, R0 ≥ T1}, P∞-a.s. (A.1)

On the other hand, τ1{R0≥T1}∩{τ<T1} = (R0 ∧ T1)1{R0≥T1}∩{τ<T1} = T11{R0≥T1}∩{τ<T1} implies that
P∞({R0 ≥ T1} ∩ {τ < T1}) = 0, and

{R0 ≥ T1} = {R0 ≥ T1, τ < T1} ∪ {R0 ≥ T1, τ ≥ T1} = {R0 ≥ T1, τ ≥ T1}, P∞-a.s.,
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which leads together with (A.1) to P∞-a.s. {τ ≥ T1} = {R0 ≥ T1}. Now suppose that (3.5) holds for some
n ≥ 1. Let us show that it must also hold if n is replaced with n + 1. Because {τ ≥ Tn+1} ⊆ {τ ≥ Tn},
by (3.4) we have

(Tn +Rn)1{τ≥Tn+1,Tn+Rn<Tn+1} = [(Tn +Rn) ∧ Tn+1]1{τ≥Tn+1,Tn+Rn<Tn+1}

= (τ ∧ Tn+1)1{τ≥Tn+1,Tn+Rn<Tn+1} = Tn+11{τ≥Tn+1,Tn+Rn<Tn+1},

which implies that P∞({τ ≥ Tn+1, Tn +Rn < Tn+1}) = 0, and

{τ ≥ Tn+1}
P∞-a.s.= {τ ≥ Tn+1, Tn +Rn ≥ Tn+1} ⊆ {τ ≥ Tn, Tn +Rn ≥ Tn+1}. (A.2)

On the other hand,

τ1{Tn+Rn≥Tn+1,Tn≤τ<Tn+1} = (τ ∧ Tn+1)1{Tn+Rn≥Tn+1,Tn≤τ<Tn+1}

= [(Tn +Rn) ∧ Tn+1]1{Tn+Rn≥Tn+1,Tn≤τ<Tn+1} = Tn+11{Tn+Rn≥Tn+1,Tn≤τ<Tn+1}

implies that P∞{Tn +Rn ≥ Tn+1, Tn ≤ τ < Tn+1} = 0 and

{τ ≥ Tn, Tn +Rn ≥ Tn+1} = {Tn +Rn ≥ Tn+1, Tn ≤ τ < Tn+1} ∪ {Tn +Rn ≥ Tn+1, τ ≥ Tn+1}
P∞-a.s.= {Tn +Rn ≥ Tn+1, τ ≥ Tn+1} ⊆ {τ ≥ Tn+1},

which in combination with (A.2) gives that

{τ ≥ Tn+1}
P∞-a.s.= {τ ≥ Tn, Tn +Rn ≥ Tn+1} = {τ ≥ Tn} ∩ {Tn +Rn ≥ Tn+1}
P∞-a.s.= {R0 ≥ T1, T1 +R1 ≥ T2, . . . , Tn−1 +Rn−1 ≥ Tn} ∩ {Tn +Rn ≥ Tn+1}

= {R0 ≥ T1, T1 +R1 ≥ T2, . . . , Tn +Rn ≥ Tn+1},

where the third equality follows from the induction hypothesis. This completes the proof of (3.5). Finally,

{Tn ≤ τ < Tn+1} = {τ ≥ Tn} \ {τ ≥ Tn+1} = {R0 ≥ T1, T1 +R1 ≥ T2, . . . , Tn−1 +Rn−1 ≥ Tn}\
({R0 ≥ T1, T1 +R1 ≥ T2, . . . , Tn−1 +Rn−1 ≥ Tn} ∩ {Tn +Rn ≥ Tn+1})

= {R0 ≥ T1, T1 +R1 ≥ T2, . . . , Tn−1 +Rn−1 ≥ Tn, Tn +Rn < Tn+1}

proves (3.6) and completes the proof of Proposition 3.1.

Proof of Proposition 3.2. From the definitions we immediately have V0(φ) = v0(φ) = 0 for every φ ∈ Rm
+ .

For every n ≥ 1 and τ ∈ S we shall prove that

Eφ∞
[∫ τ∧Tk

0
e−λtg(Φt)dt+ 1{τ≥Tk}e

−λTkvn−k(ΦTk
)
]

≥ Eφ∞
[∫ τ∧Tk−1

0
e−λtg(Φt)dt+ 1{τ≥Tk−1}e

−λTk−1vn−k+1(ΦTk−1
)
]

for every 1 ≤ k ≤ n, (A.3)

which will then imply that

Eφ∞
[∫ τ∧Tn

0
e−λtg(Φt)dt

]
= Eφ∞

[∫ τ∧Tn

0
e−λtg(Φt)dt+ 1{τ≥Tn}e

−λTnv0(ΦTn)
]
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≥ Eφ∞
[∫ τ∧Tn−1

0
e−λtg(Φt)dt+ 1{τ≥Tn−1}e

−λTn−1v1(ΦTn−1)
]
≥ · · ·

≥ Eφ∞
[∫ τ∧T0

0
e−λtg(Φt)dt+ 1{τ≥T0}e

−λT0vn(ΦT0)
]

= vn(φ),

and taking the infimum of both sides over all τ ∈ S gives Vn(φ) = infτ∈S Eφ∞
[∫ τ∧Tn

0 e−λtg(Φt)dt
]
≥

vn(φ) for every φ ∈ Rm
+ , which is the conclusion of the proposition. Let us fix any n ≥ 1, τ ∈ S and prove

(A.3). For every 1 ≤ k ≤ n, by Proposition 3.1, there is a nonnegative FTk−1
-measurable random variable

Rk−1 such that

1{τ≥Tk−1}(τ ∧ Tk) = 1{τ≥Tk−1}[(Tk−1 +Rk−1) ∧ Tk],
{τ ≥ Tk} = {τ ≥ Tk−1, Tk−1 +Rk−1 ≥ Tk},

and we have

Eφ∞
[∫ τ∧Tk

0
e−λtg(Φt)dt+ 1{τ≥Tk}e

−λTkvn−k(ΦTk
)
]

= Eφ∞

[∫ τ∧Tk−1

0
e−λtg(Φt)dt+ 1{τ≥Tk−1}

∫ τ∧Tk

Tk−1

e−λtg(Φt)dt+ 1{τ≥Tk}e
−λTkvn−k(ΦTk

)

]

= Eφ∞
[∫ τ∧Tk−1

0
e−λtg(Φt)dt

+ 1{τ≥Tk−1}e
−λTk−1

{∫ (Tk−1+Rk−1)∧Tk

Tk−1

e−λ(t−Tk−1)g(ϕ(t− Tk−1,ΦTk−1
))dt

+1{Tk−1+Rk−1≥Tk}e
−λ(Tk−Tk−1)vn−k

(
ϕ
(
Tk − Tk−1,ΦTk−1

) λ1

λ0

dν1

dν0
(Zk)

)}]
= Eφ∞

[∫ τ∧Tk−1

0
e−λtg(Φt)dt+ 1{τ≥Tk−1}e

−λTk−1Eφ∞

{∫ Rk−1∧(Tk−Tk−1)

0
e−λtg(ϕ(t,ΦTk−1

))dt

+1{Rk−1≥Tk−Tk−1}e
−λ(Tk−Tk−1)vn−k

(
ϕ
(
Tk − Tk−1,ΦTk−1

) λ1

λ0

dν1

dν0
(Zk)

)∣∣∣∣FTk−1

}]
.

Because Rk−1 and ΦTk−1
are FTk−1

-measurable, and Tk −Tk−1 and Zk are independent of FTk−1
and have

the same distributions as T1 and Z1, respectively, under P∞, the conditional expectation becomes

Eφ∞

{∫ Rk−1∧(Tk−Tk−1)

0
e−λtg(ϕ(t,ΦTk−1

))dt

+1{Rk−1≥Tk−Tk−1}e
−λ(Tk−Tk−1)vn−k

(
ϕ
(
Tk − Tk−1,ΦTk−1

) λ1

λ0

dν1

dν0
(Zk)

)∣∣∣∣FTk−1

}
= Eφ∞

{∫ r∧T1

0
e−λtg(ϕ(t, φ))dt+ 1{r≥T1}e

−λT1vn−k

(
ϕ (T1, φ)

λ1

λ0

dν1

dν0
(Z1)

)}∣∣∣∣r = Rk−1

φ = ΦTk−1

=
{∫ r

0
e−(λ+λ0)t[g + λ0(Kvn−k)](ϕ(t, φ))dt

}∣∣∣∣r = Rk−1

φ = ΦTk−1

= (Jvn−k)(ΦTk−1
, Rk−1),

and substituting this into previous displayed equation gives
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Eφ∞
[∫ τ∧Tk

0
e−λtg(Φt)dt+ 1{τ≥Tk}e

−λTkvn−k(ΦTk
)
]

= Eφ∞
[∫ τ∧Tk−1

0
e−λtg(Φt)dt+ 1{τ≥Tk−1}e

−λTk−1(Jvn−k)(ΦTk−1
, Rk−1)

]
≥ Eφ∞

[∫ τ∧Tk−1

0
e−λtg(Φt)dt+ 1{τ≥Tk−1}e

−λTk−1vn−k+1(ΦTk−1
)
]
,

since (Jvn−k)(φ, r) ≥ inft≥0(Jvn−k)(φ, t) = (J0vn−k)(φ) = vn−k+1(φ) for every r ≥ 0 and φ ∈ Rm
+ ,

and this completes the proof of (A.3) and Proposition 3.2.

Proof of Lemma 3.2. For every n ≥ 1, 0 ≤ k ≤ n, and ε > 0, we can write

{τn,ε ≥ Tk} = {τn,ε ≥ T1, τn,ε ≥ Tk} = {rn,ε/2(Φ0) ≥ T1, τn,ε ≥ Tk}
=
{
rn,ε/2(Φ0) ≥ T1, T1 + τn−1,ε/2 ◦ θT1 ≥ Tk

}
=
{
rn,ε/2(Φ0) ≥ T1, τn−1,ε/2 ◦ θT1 ≥ Tk − T1

}
=
{
rn,ε/2(Φ0) ≥ T1, τn−1,ε/2 ◦ θT1 ≥ Tk−1 ◦ θT1

}
=
{
rn,ε/2(Φ0) ≥ T1

}
∩
({
τn−1,ε/2 ≥ Tk−1

}
◦ θT1

)
.

Repeating this k − 1 times gives

{τn,ε ≥ Tk} =
{
rn,ε/2(Φ0) ≥ T1

}
∩
({
rn−1,ε/4(Φ0) ≥ T1

}
◦ θT1

)
∩
({
τn−2,ε/4 ≥ Tk−2

}
◦ θT2

)
=
{
rn,ε/2(Φ0) ≥ T1

}
∩
({
rn−1,ε/4(Φ0) ≥ T1

}
◦ θT1

)
∩
({
rn−2,ε/8(Φ0) ≥ T1

}
◦ θT2

)
∩
({
τn−3,ε/8 ≥ Tk−3

}
◦ θT3

)
= . . .

=
{
rn,ε/2(Φ0) ≥ T1

}
∩
({
rn−1,ε/4(Φ0) ≥ T1

}
◦ θT1

)
∩
({
rn−2,ε/8(Φ0) ≥ T1

}
◦ θT2

)
∩ . . . ∩

({
rn−k+1,ε/2k(Φ0) ≥ T1

}
◦ θTk−1

)
∩
({
τn−k,ε/2k ≥ T0

}
◦ θTk

)
=

k−1⋂
`=0

({
rn−`,ε/2`+1(Φ0) ≥ T1

}
◦ θT`

)
=

k−1⋂
`=0

{
rn−`,ε/2`+1(ΦT`

) ≥ T`+1 − T`
}
,

because T0 = 0 and {τn−k,ε/2k ≥ T0} = Ω. If 0 ≤ k ≤ n− 1, then

{Tk ≤ τn,ε < Tk+1} = {τn,ε ≥ Tk} \ {τn,ε ≥ Tk+1}

=
k−1⋂
`=0

{
rn−`,ε/2`+1(ΦT`

) ≥ T`+1 − T`
}∖ k⋂

`=0

{
rn−`,ε/2`+1(ΦT`

) ≥ T`+1 − T`
}

=

(
k−1⋂
`=0

{
rn−`,ε/2`+1(ΦT`

) ≥ T`+1 − T`
})⋂{

rn−k,ε/2k+1(ΦTk
) < Tk+1 − Tk

}
,

which immediately implies that τn,ε1{Tk≤τn,ε<Tk+1} = [Tk + rn−k,ε/2k+1(ΦTk
)]1{Tk≤τn,ε<Tk+1}. Finally,

(τn,ε ∧ Tk+1)1{τn,ε≥Tk} = τn,ε1{Tk≤τn,ε<Tk+1} + Tk+11{τn,ε≥Tk+1}

=
[
Tk + rn−k,ε/2k+1(ΦTk

)
]

1{Tk≤τn,ε<Tk+1} + Tk+11{τn,ε≥Tk+1}

=
[
(Tk + rn−k,ε/2k+1(ΦTk

)) ∧ Tk+1

]
1{Tk≤τn,ε<Tk+1} +

[
(Tk + rn−k,ε/2k+1(ΦTk

)) ∧ Tk+1

]
1{τn,ε≥Tk+1}

=
[
(Tk + rn−k,ε/2k+1(ΦTk

)) ∧ Tk+1

]
1{τn,ε≥Tk},

because Tk ≤ τ ≡ Tk + rn−k,ε/2k+1(ΦTk
) < Tk+1 on {Tk ≤ τn,ε < Tk+1} and by the first part of the

lemma Tk + rn−k,ε/2k+1(ΦTk
) ≥ Tk+1 on {τn,ε ≥ Tn+1}.
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Proof of Proposition 3.3 (by induction on n). For n = 0, the last displayed equation of Proposition 3.3 be-
comes 0 ≤ 0+ε, which is obviously true for every ε > 0. Suppose now that the last inequality of Proposition
3.3 holds for every ε > 0 for some n ≥ 0. Note that

τn+1,ε =

{
rn+1,ε/2(Φ0), if rn+1,ε/2(Φ0) < T1,

T1 + τn,ε/2 ◦ θT1 , if rn+1,ε/2(Φ0) ≥ T1,

and τn+1,ε∧T1 = rn+1,ε/2(Φ0)∧T1, {τn+1,ε ≥ T1} = {rn+1,ε/2(Φ0) ≥ T1}, and τn+1,ε = T1+τn,ε/2◦θT1

on {τn+1,ε ≥ T1} by Lemma 3.2. Therefore,

Eφ∞
[∫ τn+1,ε∧Tn+1

0
e−λtg(Φt)dt

]
= Eφ∞

[∫ τn+1,ε∧T1

0
e−λtg(Φt)dt+ 1{τn+1,ε≥T1}

∫ τn+1,ε∧Tn+1

T1

e−λtg(Φt)dt
]

= Eφ∞

[∫ rn+1,ε/2(Φ0)∧T1

0
e−λtg(ϕ(t,Φ0))dt+ 1{rn+1,ε/2(Φ0)≥T1}

∫ [T1+τn,ε/2◦θT1
]∧Tn+1

T1

e−λtg(Φt)dt

]
.

Inside the last expectation, we take conditional expectation with respect to FT1 . By the strong Markov
property of process Φ at the first jump time T1, the conditional expectation of the last integral with respect
to FT1 becomes

Eφ∞

[∫ [T1+τn,ε/2◦θT1
]∧Tn+1

T1

e−λtg(Φt)dt

∣∣∣∣∣FT1

]
= e−λT1Eφ∞

[(∫ τn,ε/2∧Tn

0
e−λtg(Φt)dt

)
◦ θT1

∣∣∣∣FT1

]
= e−λT1EΦT1∞

[∫ τn,ε/2∧Tn

0
e−λtg(Φt)dt

]
≤ e−λT1

(
vn(ΦT1) +

ε

2

)
by the induction hypothesis. Therefore,

Eφ∞
[∫ τn+1,ε∧Tn+1

0
e−λtg(Φt)dt

]
≤ Eφ∞

[∫ rn+1,ε/2(Φ0)∧T1

0
e−λtg(ϕ(t,Φ0))dt+ 1{rn+1,ε/2(Φ0)≥T1}e

−λT1

(
vn(ΦT1) +

ε

2

)]

≤ Eφ∞

[∫ rn+1,ε/2(Φ0)∧T1

0
e−λtg(ϕ(t,Φ0))dt+ 1{rn+1,ε/2(Φ0)≥T1}e

−λT1vn(ΦT1)

]
+
ε

2

= (Jvn)(φ, rn+1,ε/2(φ)) +
ε

2
≤ vn+1(φ) +

ε

2
+
ε

2
= vn+1(φ) + ε,

which completes the proof of Proposition 3.3.

Proof of Lemma 3.3. Suppose that w : Rm
+ 7→ R is concave and bounded between−1 and 0. Then for every

r ≥ 0,

(Jw)(φ, r) =
∫ r

0
e−(λ+λ0)t[g + λ0(Kw)](ϕ(t, φ))dt ≥

∫ r

0
e−(λ+λ0)t(−λ− λ0)dt

≥ −
∫ ∞

0
(λ+ λ0)e−(λ+λ0)tdt = −1.
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Taking the infimum over r ≥ 0 gives −1 ≤ infr≥0(Jw)(φ, r) = (J0w)(φ) ≤ (Jw)(φ, 0) = 0. Moreover,
g(·) is affine and therefore concave. Because φ 7→ ϕ(t, φ) is affine for every fixed t ≥ 0, and w(·) is
concave, the mapping φ 7→ (Kw)(ϕ(t, φ)) =

∫
E w

(
ϕ(t, φ)λ1

λ0

dν1
dν0

(z)
)
ν0(dz) is concave. Therefore,

φ 7→ (Jw)(φ, r) is concave for every fixed r ≥ 0. Because the pointwise infimum of every family of concave
functions is also concave, the mapping φ 7→ (J0w)(φ) = infr≥0(Jw)(φ, r) is concave. If w1(·) ≤ w2(·),
then (Kw1)(·) ≤ (Kw2)(·), (Jw1)(·, ·) ≤ (Jw2)(·, ·), and (J0w1)(·) ≤ (J0w2)(·).

Let w1(·) and w2(·) be two bounded functions on Rm
+ . Fix any ε > 0 and φ ∈ Rm

+ . Then there are
constants r(i)

ε (φ), i = 1, 2 such that (Jwi)(φ, r
(i)
ε (φ)) ≤ (J0wi)(φ) + ε for every i = 1, 2. Then

(J0w1)(φ)− (J0w2)(φ) ≤ (Jw1)(φ, r(2)
ε )− (Jw2)(φ, r(2)

ε (φ)) + ε

=
∫ r

(2)
ε (φ)

0
e−(λ+λ0)t[g + λ0(Kw1)](ϕ(t, φ))dt−

∫ r
(2)
ε (φ)

0
e−(λ+λ0)t[g + λ0(Kw2)](ϕ(t, φ))dt+ ε

=
∫ r

(2)
ε (φ)

0
λ0e
−(λ+λ0)t(K(w1 − w2))(ϕ(t, φ))dt+ ε ≤ ‖w1 − w2‖

∫ ∞
0

λ0e
−(λ+λ0)tdt+ ε

= ‖w1 − w2‖
λ0

λ+ λ0
+ ε.

On the other hand,

(J0w1)(φ)− (J0w2)(φ) ≥ (Jw1)(φ, r(1)
ε (φ))− ε− (Jw2)(φ, r(1)

ε (φ))

=
∫ r

(1)
ε (φ)

0
e−(λ+λ0)t[g + λ0(Kw1)](ϕ(t, φ))dt−

∫ r
(1)
ε (φ)

0
e−(λ+λ0)t[g + λ0(Kw2)](ϕ(t, φ))dt− ε

=
∫ r

(1)
ε (φ)

0
λ0e
−(λ+λ0)t(K(w1 − w2))(ϕ(t, φ))dt− ε ≥ −‖w1 − w2‖

∫ ∞
0

λ0e
−(λ+λ0)tdt− ε

= −
(
‖w1 − w2‖

λ0

λ+ λ0
+ ε

)
.

Hence we have

|(J0w1)(φ)− (J0w2)(φ)| ≤ λ0

λ+ λ0
‖w1 − w2‖+ ε for every ε > 0 and φ ∈ Rm

+ .

Letting first ε ↓ 0 and then taking the supremum over φ ∈ Rm
+ gives the desired inequality. Because

λ0/(λ+λ0) ∈ (0, 1), operator J0 is a contraction on the collection of bounded functions w : Rm
+ 7→ R.

Proof of Lemma 3.4. Note that, since ϕ(u, ϕ(s, φ)) = ϕ(s+ u, φ) for every s, u ≥ 0 and φ ∈ Rm
+ , we can

write (J0w)(ϕ(s, φ)) as

inf
r≥0

∫ r

0
e−(λ+λ0)u[g+λ0(Kw)](ϕ(u, ϕ(s, φ)))du = inf

r≥0

∫ r

0
e−(λ+λ0)u[g+λ0(Kw)](ϕ(s+u, φ))du =

inf
r≥0

∫ s+r

s
e−(λ+λ0)(u−s)[g+λ0(Kw)](ϕ(u, φ))du = e(λ+λ0)s inf

r≥s

∫ r

s
e−(λ+λ0)u[g+λ0(Kw)](ϕ(u, φ))du,

and (Jw)(φ, s) + e−(λ+λ0)s(J0w)(ϕ(s, φ)) equals∫ s

0
e−(λ+λ0)u[g + λ0(Kw)](ϕ(u, φ))du+ e−(λ+λ0)s(J0w)(ϕ(s, φ))
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= inf
r≥s

∫ r

0
e−(λ+λ0)u[g + λ0(Kw)](ϕ(u, φ))du = (Jsw)(φ).

If (J0w)(ϕ(s, φ)) < 0 for every 0 ≤ s < t, then (Jw)(φ, s) > (Jw)(φ, s) + e−(λ+λ0)s(J0w)(ϕ(s, φ)) =
(Jsw)(φ) = infr≥s(Jw)(φ, r) for every 0 ≤ s < t. Therefore, (Jsw)(φ) = infr≥s(Jw)(φ, r) =
infr≥t(Jw)(φ, r) = (Jtw)(φ) for every 0 ≤ s ≤ t.

Proof of Lemma 3.5. Let us define

τ̃ε =

{
rε(Φ0), if rε(Φ0) < T1

T1 + τ̃ε ◦ θT1 , if rε(Φ0) ≥ T1

}
, ε ≥ 0.

Because t 7→ V (ϕ(t, φ)) is continuous for every φ ∈ Rm
+ , we have V (ϕ(rε(φ), φ)) ≥ −ε if rε(φ) <∞ and

V (Φτ̃ε) ≥ −ε on {τ̃ε <∞}, since τ̃ε1[Tn,Tn+1)(τ̃ε) = [Tn + rε(ΦTn)]1[Tn,Tn+1)(τ̃ε), and

1{τ̃ε<∞}V (Φτ̃ε) =
∞∑
n=0

1[Tn,Tn+1)(τ̃ε)V (ΦTn+rε(ΦTn )) =
∞∑
n=0

1[Tn,Tn+1)(τ̃ε)V (ϕ(rε(ΦTn),ΦTn))

≥ (−ε)1{τ̃ε<∞}.

Therefore, P∞-a.s. τε ≤ τ̃ε. On the other hand, for every n ≥ 0, there is a nonnegative FTn-measurable
random variable Rn,ε such that τε1[Tn,Tn+1)(τε) = (Tn + Rn,ε)1[Tn,Tn+1)(τε). Because V (·) is continuous
and t 7→ Φt is right-continuous and has left-limits, t 7→ V (Φt) is right-continuous. Therefore,

(−ε)1[Tn,Tn+1)(τε) ≤ V (Φτε)1[Tn,Tn+1)(τε) = V (ΦTn+Rn,ε)1[Tn,Tn+1)(τε)

= V (ϕ(Rn,ε,ΦTn))1[Tn,Tn+1)(τε)

implies that Rn,ε ≥ rε(ΦTn) on {τε ∈ [Tn, Tn+1)}. Thus,

τε1{τε<∞} =
∞∑
n=0

(Tn +Rn,ε)1[Tn,Tn+1)(τε) ≥
∞∑
n=0

(Tn + rε(ΦTn))1[Tn,Tn+1)(τε) = τ̃ε1{τε<∞}.

Hence, τε ≥ τ̃ε on {τε < ∞} or simply τε ≥ τ̃ε. This proves that P∞-a.s. τε = τ̃ε, and without loss of
generality we can take Rn,ε = rε(ΦTn).

Proof of Proposition 3.4. The result holds for n = 0. Suppose that for some n ≥ 0 we have Eφ∞[Mτ∧τε∧Tn ] =
Eφ∞[M0] for every φ ∈ Rm

+ , ε ≥ 0, and (Ft)t≥0-stopping time τ . Fix any φ ∈ Rm
+ , ε ≥ 0, and (Ft)t≥0-

stopping time τ . Then

Eφ∞[Mτ∧τε∧Tn+1 ] = Eφ∞
[
Mτ∧τε∧Tn + 1{τ∧τε≥Tn}

(
Mτ∧τε∧Tn+1 −MTn

)]
= Eφ∞ [Mτ∧τε∧Tn ] + Eφ∞

[
1{τ∧τε≥Tn}

(
Mτ∧τε∧Tn+1 −MTn

)]
= Eφ∞[M0] + Eφ∞

[
1{τ∧τε≥Tn}

(
Mτ∧τε∧Tn+1 −MTn

)]
by the induction hypothesis. We shall prove that the second term on the righthand side equals zero. Since
by Proposition 3.1 there exists a nonnegative (Ft)t≥0-measurable random variable Rn such that

(τ ∧ τε ∧ Tn+1)1{τ∧τε≥Tn} = [(Tn +Rn) ∧ Tn+1]1{τ∧τε≥Tn},

(τ ∧ τε)1{Tn≤τ∧τε<Tn+1} = (Tn +Rn)1{Tn≤τ∧τε<Tn+1},

1{τ∧τε≥Tn+1} = 1{τ∧τε≥Tn}1{Tn+Rn≥Tn+1},
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1{Tn≤τ∧τε<Tn+1} = 1{τ∧τε≥Tn}1{Tn+Rn<Tn+1},

we can write Eφ∞
[
1{τ∧τε≥Tn}

(
Mτ∧τε∧Tn+1 −MTn

)]
as

Eφ∞
[
1{τ∧τε≥Tn}

(∫ τ∧τε∧Tn+1

Tn

e−λtg(Φt)dt+ e−λ(τ∧τε∧Tn+1)V (Φτ∧τε∧Tn+1)− e−λTnV (ΦTn)
)]

= Eφ∞
[
1{τ∧τε≥Tn}

(∫ τ∧τε∧Tn+1

Tn

e−λtg(Φt)dt+ 1{τ∧τε≥Tn+1}e
−λTn+1V (ΦTn+1)

+ 1{τ∧τε<Tn+1}e
−λ(τ∧τε)V (Φτ∧τε)− e−λTnV (ΦTn)

)]
= Eφ∞

[
1{τ∧τε≥Tn}

(∫ (Tn+Rn)∧Tn+1

Tn

e−λtg(Φt)dt+ 1{Tn+Rn≥Tn+1}e
−λTn+1V (ΦTn+1)

+ 1{Tn+Rn<Tn+1}e
−λ(Tn+Rn)V (ΦTn+Rn)− e−λTnV (ΦTn)

)]

= Eφ∞

[
1{τ∧τε≥Tn}e

−λTn

(∫ (Tn+Rn)∧Tn+1

Tn

e−λ(t−Tn)g(ϕ(t− Tn,ΦTn)dt

+ 1{Rn≥Tn+1−Tn}e
−λ(Tn+1−Tn)V

(
ϕ(Tn+1 − Tn,ΦTn)

λ1

λ0

dν1

dν0
(Zn+1)

)
+ 1{Rn<Tn+1−Tn}e

−λRnV (ϕ(Rn,ΦTn))− V (ΦTn)

)]
.

Because the random variables 1{τ∧τε≥Tn}, Tn, Rn, ΦTn are FTn-measurable, and since Tn+1 − Tn and
Zn+1 are independent of FTn with exponential distribution with rate λ0 and with distribution ν0 under P∞,
respectively, taking the conditional expectation with respect to FTn inside the above expectation gives

Eφ∞

[
1{τ∧τε≥Tn}e

−λTn

(
Eφ∞

{∫ Rn∧(Tn+1−Tn)

0
e−λtg(ϕ(t,ΦTn))dt

+ 1{Rn≥Tn+1−Tn}e
−λ(Tn+1−Tn)V

(
ϕ(Tn+1 − Tn,ΦTn)

λ1

λ0

dν1

dν0
(Zn+1)

)∣∣∣∣∣FTn

}

+ Pφ∞{Tn+1 − Tn > Rn | FTn}e−λRnV (ϕ(Rn,ΦTn))− V (ΦTn)

)]
,

= Eφ∞
[
1{τ∧τε≥Tn}e

−λTn

(∫ Rn

0
e−(λ+λ0)tg(ϕ(t,ΦTn))dt

+
∫ Rn

0
λ0e
−(λ+λ0)t

∫
E
V

(
ϕ(t,ΦTn)

λ1

λ0

dν1

dν0
(z)
)
ν0(dz)︸ ︷︷ ︸

(KV )(ϕ(t,ΦTn ))

dt

+ e−(λ+λ0)RnV (ϕ(Rn,ΦTn))− V (ΦTn)
)]

,
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= Eφ∞
[
1{τ∧τε≥Tn}e

−λTn

(∫ Rn

0
e−(λ+λ0)t[g + λ0(KV )](ϕ(t,ΦTn))dt

+ e−(λ+λ0)RnV (ϕ(Rn,ΦTn))− V (ΦTn)
)]

,

= Eφ∞
[
1{τ∧τε≥Tn}e

−λTn

(
(JV )(ΦTn , Rn) + e−(λ+λ0)RnV (ϕ(Rn,ΦTn))︸ ︷︷ ︸

(JRnV )(ΦTn ) by Corollary 3.3

−V (ΦTn)
)]
,

= Eφ∞
[
1{τ∧τε≥Tn}e

−λTn ((JRnV )(ΦTn)− V (ΦTn))
]
.

Because

(τ ∧ τε)1{Tn≤τ∧τε<Tn+1} = (Tn +Rn)1{Tn≤τ∧τε<Tn+1},

τε1{Tn≤τε<Tn+1} = [Tn + rε(ΦTn)]1{Tn≤τε<Tn+1},

where rε(·) is defined as in Lemma 3.5, and since τ ∧ τε ≤ τε, we have Rn ≤ rε(ΦTn) on {Tn ≤ τ ∧ τε <
Tn+1}. However, sinceRn and rε(ΦTn) areFTn-measurable, we must also haveRn ≤ rε(ΦTn) on {τ∧τε ≥
Tn}. Because V (ϕ(s,ΦTn)) < −ε ≤ 0 for every 0 ≤ s < rε(ΦTn), we also have V (ϕ(s,ΦTn)) < −ε ≤ 0
for every 0 ≤ s < Rn on {τ ∧ τε ≥ Tn}. Then Corollary 3.3 guarantees that (JRnV )(ΦTn) = V (ΦTn) on
{τ ∧ τε ≥ Tn} and we finally have

Eφ∞
[
1{τ∧τε≥Tn}

(
Mτ∧τε∧Tn+1 −MTn

)]
= Eφ∞

[
1{τ∧τε≥Tn}e

−λTn ((JRnV )(ΦTn)− V (ΦTn))
]

= 0,

which completes the proof of Proposition 3.4.

Proof of Corollary 3.4. Observe that since ‖V ‖ ≤ 1 by Corollary 3.2, we have |Mt∧τε∧Tn | ≤ 1+
∫ Tn

0 e−λuΦ(1)
u du

for every t ≥ 0. On the other hand, since Tn is an (Ft)t≥0-stopping time, the derivations on page 4 show
that

(1− p)E∞
[∫ Tn

0
e−λuΦ(1)

u du
]

= E[f(Tn −Θ)1{Tn≥Θ}]− f(0)P{Tn ≥ Θ}

= E
[
(Tn −Θ)m1{Tn≥Θ}

]
≤ E[Tmn | Tn ≥ Θ]P{Tn ≥ Θ} ≤ E[Tmn | Tn ≥ Θ]

≤ E[(Θ + T̃n)m] ≤ 2m−1E[Θm + T̃mn ] <∞,

where T̃n is the n-th arrival time of a Poisson process with arrival rate λ1 under P, and the last inequality
follows from that all of the moments of an Erlang distribution are finite. Therefore, supt≥0 ‖Mt∧τε∧Tn‖ is

bounded from above by the integrable random variable 1 +
∫ Tn

0 e−λuΦ(1)
u du, and {Mt∧τε∧Tn ,Ft; t ≥ 0} is

uniformly integrable under P∞.
Fix any 0 ≤ s ≤ t and F ∈ Fs. Let us define τ = t1F + s1Ω\F . By Proposition 3.4,

E∞ [Ms∧τε∧Tn ] = E∞[M0] = E∞ [Mτ∧τε∧Tn ] = E∞
[
Mt∧τε∧Tn1F +Ms∧τε∧Tn1Ω\F

]
= E∞ [Mt∧τε∧Tn1F ] + E∞

[
Ms∧τε∧Tn1Ω\F

]
,

which can be rearranged into E∞[Ms∧τε∧Tn1F ] = E∞[Mt∧τε∧Tn1F ] = E∞ [E∞(Mt∧τε∧Tn | Fs)1F ]. Be-
cause F ∈ Fs is arbitrary, we conclude that E∞[Mt∧τε∧Tn | Fs] = Ms∧τε∧Tn .
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