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Abstract: The quickest detection of the unknown and unobservable disorder time, when the arrival rate and mark
distribution of a compound Poisson process suddenly changes, is formulated in a Bayesian setting, where the detec-
tion delay penalty is a general smooth function of the detection delay time. Under suitable conditions, the problem is
shown to be equivalent to the optimal stopping of a finite-dimensional piecewise-deterministic strongly Markov suffi-
cient statistic. The solution of the optimal stopping problem is described in detail for the compound Poisson disorder
problem with polynomial detection delay penalty function of arbitrary but fixed degree. The results are illustrated for
the case of the quadratic detection delay penalty function.
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1. INTRODUCTION

Suppose that the arrival rate and mark distribution of a compound Poisson process changes at some unknown
and unobservable disorder time. We would like to detect the disorder time by a stopping rule which depends
only on the observations of the point process and which minimizes the total risk arising from frequent false
alarms and long detection delay times.

The disorder time is assumed to follow a zero-modified exponential distribution. The formulation of
the problem is Bayesian, and for each stopping time of point process observations the Bayes risk is the
expected sum the false alarm frequency and detection delay penalty, which is a general smooth function of
the detection delay time.

The compound Poisson disorder problems arise in homeland security to detect and analyze the abnormal
flow of passengers and commodities at the ports of entries, in computer network security to identify attempts
to gain unauthorized control of services from incoming packet flows to various communication ports of web
servers, in public health to determine the onset of an epidemic in a geographical area from the fluctuations
in the emergency room visits to the hospitals.

Several non-Bayesian formulations and solutions of the quickest change-detection problems have been
studied by Baron and Tartakovsky [1], Hadjiliadis [14], Hadjiliadis and Moustakides [15], Moustakides
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[19, 20], Shiryaev [28] in continuous time, and by Lorden [17], Moustakides [18], Pollak [23], Tartakovsky
[30], Tartakovsky and Veeravalli [31] in discrete time. Shiryaev [26] introduced and solved the Bayesian
formulation of quickest detection problem for general distributions in discrete time and for a change in the
drift of a Brownian motion in continuous time. Galchuk and Rozovskii [11] formulated simple Poisson
disorder problem and provided partial solution, which has been completed by Peskir and Shiryaev [22].
Gapeev [12] solved compound Poisson disorder problem with exponentially distributed jumps. The solution
for the general case was provided by Dayanik and Sezer [10]. Bayesian sequential detection of a change in
the local characteristics of a finite-activity Lévy process has been formulated and solved by Dayanik, Poor,
and Sezer [9]. Basseville and Nikiforov [2], Peskir and Shiryaev [21], and Poor and Hadjiliadis [25] give a
detailed review of the literature on both non-Bayesian and Bayesian sequential change detection problems.

Higher moments of detection delay time were shown by Baron and Tartakovsky [1] and Tartakovsky
and Veeravalli [31] to be asymptotically minimized by the Shiryaev’s procedure in Bayesian setting. The
solution of Bayesian sequential change detection problems with exponential detection delay penalties were
found by Poor [24] in discrete time, by Beibel [5] in detecting a change in the drift of a Brownian motion, by
Bayraktar and Dayanik [3] and Bayraktar, Dayanik, and Karatzas [4] in simple Poisson disorder problem,
and by Dayanik and Sezer [10] in compound Poisson disorder problem. Shiryaev [27, 29] derived the
sufficient statistics for sequential change detection problems with nonlinear detection delay penalty costs,
which include as special cases the higher moments and exponential functions of detection delay time.

We give the precise description of the compound Poisson disorder problem in Section 2, where we show
that for infinitely continuously differentiable detection delay penalty functions there are countably infinitely
many piecewise deterministic strongly Markov sufficient statistic for the problem. Our derivation is different
from that of Shiryaev [29] in that we use a suitable reference probability measure, change of measure, and
change-of-variable formula to systematically “complete” minimal sufficient statistic to a Markov sufficient
statistic. The detection delay penalty functions which are the solutions of homogeneous m + 1-st order
constant coefficient ordinary differential equations are shown to lead to an m-dimensional sufficient statis-
tic, which is a piecewise deterministic strong Markov process. Therefore, any penalty function which is a
linear combinations of products of exponential, polynomial, and sinusoidal functions is a solution of some
homogeneous constant coefficient ordinary differential equation and leads to a finite-dimensional sufficient
statistic which is a piecewise deterministic strongly Markov process. In the meantime, the disorder prob-
lem can be reduced to an optimal stopping problem, and with a finite-dimensional piecewise deterministic
strongly Markov process, one can solve it by using dynamic programming and successive approximations.

In Section 3, we explain the solution methodology in detail by specializing to polynomial disorder detec-
tion penalty function with arbitrary but fixed degree. By means of suitable dynamic programming operator,
the continuous-time optimal stopping problem is reduced to an essentially discrete-time optimal stopping
problem. This approach is based on the stochastic dynamic optimization theory for piecewise deterministic
Markov processes; see, for example, Gugerli [13] and Davis [8]. The dynamic programming operator maps
every bounded function to another bounded function, whose value at every point in the domain is obtained
as the solution of a straightforward deterministic optimization problem. The repeated applications of the
dynamic programming operator to constant zero mapping result in successive approximations of the key
optimal stopping problem’s value function, which turns out to be unique bounded fixed point of the dynamic
programming operator. In the meantime, the solutions of deterministic optimization problems naturally lead
to nearly-optimal detection alarm times. We show that optimal alarm time exists and can be characterized as
the first hitting time of the Markov sufficient statistic to a closed convex subset, which can be approximated
arbitrarily well by the zero sets of the successive approximations of the value function. We also show that
successive approximations converge to the value function over the entire state space uniformly and expo-
nentially fast, and the explicit error bound allows one to set the accuracy of nearly-optimal alarm times to
any desired level.

In Section 4, we illustrate some of the findings on the compound Poisson problem with quadratic de-



tection delay penalty cost function. We described qualitatively, but quite explicitly, the form of optimal
stopping time of the auxiliary optimal stopping problem, which is also the optimal alarm time for the com-
pound Poisson disorder problem. Finally, the long proofs of selected results are deferred to the appendix.

2. PROBLEM DESCRIPTION

Let (T}, Zy), n > 1 be a compound Poisson process whose arrival rate A and mark distribution v on some
measurable space (E, ) changes from (Ao, 1) to (A1, 1) at some unobservable disorder time ©, which
has zero-modified exponential distribution

P{®=0}=p and P{O >t} =(1—ple M t>0

for some known constants Ay > 0, \; > 0, A > 0,0 < p < 1, and known probability distributions vy and 1
on (E,&). We want to detect the disorder time © by means of a stopping time 7 of the observation filtration

Fi=0{(Th,Zy); n > 1suchthat T,, <t}, t>0

so as to minimize the expected total risk of false alarms and detection delay time. For every (F3):>0-stopping
time we define the Bayes risk as

R:(p) :=E [li;cop + f (T — 0) 1>0y]

for some general sufficiently smooth penalty function f : Ry — R of detection delay time (7 — ©)*. We
would like to (i) calculate the smallest Bayes risk

inf R:(p) forevery 0 < p < 1,
TES

where the infimum is taken over the collection S of all (F)¢>o-stopping times, and (ii) find a stopping time
in § which attains the infimum, if one such stopping time exists.
It is always possible to construct a probability space (2, F,P,) with a reference probability measure
P+ under which (i) (75,, Z,,)n>1 is a compound Poisson process with arrival rate Ao and mark distribution v/
n (E, &), and O is an independent random variable with zero-modified exponential distribution. Suppose
that \; is a positive constant and v is a probability distribution on (E, £) absolutely continuous with respect
to vy, and either \y # A\ or vy # vy. Let

Qt::a(@)\/}}, tZO

be the filtration obtained by augmenting (F3):>¢ with the information about © and define the probability
measure [P locally on (€2, G,) through the Radon-Nikodym derivatives

dP Ly
1P 5 =2Zy:=1lgycoy + 1{1:2@}5, t>0,
where
AL dv A1V
e T (M) [ (o)
ti=e H N duo( )] =exp —(A1— o)t + % N 0 (2) ) N(ds,dz) ¢,

n:Tn<t

and N (ds, dz) is the Poisson random measure on (R4 x E, B(R;) x &) with mean measure Aods vp(dz)
under P. Girsanov’s change-of-measure theorem guarantees that (7},, Z,,),>1 and © have jointly the same
statistical law under IP as they are described in the introduction. Therefore, we will work in the remainder



with P obtained by a change-of-measure from the reference probability measure P, on (€2,G,). The
change-of-variable formula gives the dynamics of process L = {L;, F;; t > 0} as

Lo=1 and dly =L, / MA Y IN@L ds) — AedEro(dz)], E>0. @)
E \ Ao drg

For every stopping time 7 € S, we have
E [f(7 — 0)1irsey] — FO)P{r = ©} =E [(f(r — ©) — £(0)) 1{s0)]
=FE [1{T>@} /OT_@ f’(t)dt] =E [1{T>@} /@T 1t — @)dt}
=E [1{72@} /Ooo fit— @)1{@§t<7}dt} =E [/OOO 1t — @)1{®§t}1{r>t}dt:| :
Because 7 A O is Po-a.s. finite stopping time of (G;)>0 and Zorr = Zo = 1 on {O < 7}, we have
P{r > 0} = Ex [Zrrolirs0}] =Poc{r >0} =p+ (1 - p)Ex [/UT )\e_/\tdt} .

Since Z11e>4y = lo4) forevery t > 0, the independence of © and F; under Po, implies that we have
Eoo [Ziliosty | Fi] =Poc{© >t} = (1 —p)e ™ forevery ¢t > 0, and

E { /0 f(t— @)1{@9}1{T>t}dt] =E [ /0 Eoo [Zef'(t — 0)lio<s | Ft] 1{T>t}dt]

T Eoo [Zif'(t — ©) o<y | Fi] [/T At (1) }
=Eo Es[Z:1 F, = dt | =1 - p)Es APt
(/0 [ tt{e>t} | t] Eoo[Ztl{6>t} | ft] ( p) 0 € t

in terms of the first element of the sequence of processes

o) . Boo [Zf™(t - ©)1e<yy | 7] _E [F™(t - ©) o<y | Fi
Lo EoolZil{os1) | Fi] P{O© >t | F} ’

t>0,n>1,

where we denote by f(") the n-th derivative of f (+), and the last equality follows from Bayes formula.
Therefore, the Bayes risk of every stopping time 7 € S can be written as

Ro(p) = P{r < O} + f(0)P{r > O} + E [ /O . @)1{9<t}1{7>t}dt]
=1-—p—(1-p)Es [/OT )\e_”dt} + £(0) <p +(1—p)Es [/OT Ae—AtdtD

+ (1 -pEx {/0 e_)‘ttbgl)dt}

=1—p+pf(0) + (1 - p)Euc [ /0 " (@0 4 Af(0) - ) dt} .

Proposition 2.1. Ifthe detection delay penalty function f(-) is continuously differentiable, then the Bayesian
sequential quickest detection problem is equivalent to solving

inf Ry(p) =1 —p+pf(0) + (1 — p) inf Eo [/ et (@ﬁ” FAF(0) — )\) dt} . 0<p<l.
TES TES 0

If the optimal stopping problem on the righthand side admits an optima (F;)¢>o-stopping time, then it is
also a Bayes-optimal change-detection alarm time for the compound Poisson disorder problem. time.
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In the remainder, we will develop and use methods to solve the optimal stopping problem of Proposition
2.1 and identify optimal and nearly-optimal stopping times. The process o) = {@El),}}; t > 0}isa
sufficient statistic for the quickest detection problem in the sense that {@gl); 0 < s < t} summarizes all
of the information contained in the observations J; up to and including time ¢ for a decision to be made at
time ¢ between raising an alarm and waiting for at least some more infinitesimal amount of time. However,
() is not in general a Markov process under Po.

In general, if f(-) is (m + 1)-times continuously differentiable for some m > 1, then the processes
o) — {@ﬁ”),ft; t >0}, 1 < n < m follow the dynamics

o)) = 11 00), l<n<m,
aof” = [A(F™(0) + o) + "V ar 2.2)

o [ (d
+ o) / MA ) Nt d2) — AgdErp(dz)], 30, 1<n<m,
£ \ Ao dvg

the derivation of which is included in the appendix. For every 1 < n < m, the drift of o) depends
on &+ and the process {(@gl), ce @gm)),}}; t > 0} is in general not a Markov process. If f(-)
is infinitely continuously differentiable, then under suitable conditions {(@gl), @gz), ), F t > 0} will
be an infinite-dimensional Markov process. The finite system of stochastic differential equations in (2.2)
is “closable”, for example, if ®(™1) can be expressed in terms of 1), ... &™) in which case the m-
dimensional process {(q>§1), ey @gm)), Fi; t > 0} is a Markov sufficient statistic for the sequential change
detection problem.

Example 2.1. In each of the following examples, the system in (2.2) is closable, and the m-dimensional
process {((I)ﬁl), ceey <I>£m)), Fi; t > 0} is a piecewise deterministic strong Markov process.

(i) Suppose that f(t) = ag-+a1 (t—b1)+ag(t—b2)?+. . .4am,(t—by,)™ forevery t > 0 for some constants
ao, bo, ..., Qm, by,. Then f(m“)(-) = 0 and P.-a.s. @Emﬂ) = 0 forevery t > 0. The simple Poisson
disorder problem (i.e., A\g # A1 and 11 = 1) with linear detection delay penalty function f(t) = ¢
was formulated and partially solved by Galchuk, Rozovskii [11]. The complete solution was later
given by Peskir and Shiryaev [22] by using method of variational inequalities. Later, Dayanik and
Sezer [10] described the solution of compound Poisson disorder problem with linear detection delay
penalty by first reducing the original problem to a discrete-time optimal stopping problem, which is
then solved with successive approximations.

(ii) Suppose that f(t) = ae® + ¢, t > 0 for some constants a, b # 0, and c¢. Then f()(¢) = abe® and
fO(t) = ab®e® = bf1)(t). Therefore, @EQ) = b@gl) for every ¢t > 0, and m = 1 because

abp

1
q>g>:1_p,

aolt = [x(@W + ab) + bcbﬁ”} dt

+ oV / (Ald”l(z) - 1> [N(dt,dz) — Adtdz], t >0
E )\0 dVQ

is autonomous, and the sufficient statistic {@gl),]—}; t > 0} for the sequential change detection

problem is a one-dimensional piecewise deterministic strong Markov process. The simple Poisson

disorder problem with exponential detection delay penalty and a = —c = 1 was solved by Bayraktar

et al. [4] by the method of variational inequalities. The compound Poisson disorder problem with

the same exponential detection delay penalty function was later solved by Dayanik and Sezer [10]



with successive approximations applied to an equivalent essentially discrete-time optimal stopping
problem.

(iii) Suppose that the detection delay penalty function f is (m + 1)-times continuously differentiable, and
that (1) solves m-th order constant coefficient homogeneous ordinary differential equation

0=cifD®) +eaf D@+ + emf™@) + fOD(2)  forevery t > 0.

Then we have P.-a.s. <I>£m+1) =—>m, cn<I>§") for all t > 0, and the system of m stochastic differ-

ential equations in (2.2) is autonomous. Hence, the m-dimensional process {(@S), ey @gm)), Fi; t>
0} is a strong Markov sufficient statistic for the sequential change detection problem. The general so-
lution of the homogeneous constant coefficient ordinary differential equation is in the form of

m
ft) = Z (@ cos ant + by, sin B,t) tTmefrt, £>0

n=1
for suitable constants py,, Gy, Qn, by, Bn, Yo for 1 <n < m.
In the remainder, we will specialize to the detection delay penalty function f(t) = ¢™, ¢ > 0 for an

arbitrary but fixed m > 1 and describe in detail the solution of compound Poisson disorder problem. The
method easily extends other cases with finite-dimensional Markov sufficient statistics. For every a > 0,

0, if0o<t<a,

t m
lim <> =<1, ift=a,
m—oo \ @
oo, ift>a,

and for large m, t — (t/a)™ is a reasonable penalty function for the sequential change detection problems,
where detection delay less than a is tolerable, but detection delay more that a is completely unacceptable.
For convenience, we take a = 1. Proposition 2.2 now follows from Proposition 2.1 and (2.2).

Proposition 2.2. Suppose that the detection delay penalty function is f(t) = t"™ for every t > 0 for some
m > 1. Then the minimum Bayes risk equals

. pm!
f =1- 1— 0, —— <p<l1
inf R-(p) p+(1—-pV <0, 0, 1_p), 0<p<

in terms of the value function of the discounted optimal stopping problem
m-times

T —_—~——
V(¢) = inf E, U 6‘”9@964 . peRT=Ryx xRy 2.3)
TE 0

with running cost function g : R +— R defined by g(¢) = efd — X\ = ¢1 — ) for the m-dimensional
piecewise deterministic Markov process ® = {®, = (@El), cee @Em)), Fi; t > 0}, whose dynamics are
n n n n d
do!™ = [xa{™ + ! “)} dt+<1>§)/ (Al”l(z) - 1) [N(dt,dz) — Xodtvo(dz)], t >0,
£ \Aodrg
@gn) = %f(”)(()) =0 foreveryn=1,....m—1,
-p

and

A dyy

doi™ = A (q>gm> + m!) dt + o™ < N
E 0 0

) — 1> [N(dt,dz) — Aodt vp(dz)], t >0,
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pm/!
1—-p’

m p m
o) = 110 =

where for every ¢ € R the expectation Efo is taken under P, such that Poo{®o = ¢} = 1.

The jumps and deterministic evolution between jumps of process ® can be separated, and its dynamics
can be written compactly as

0
by = LM | AP, = (AD; + b)dt + / Ay Y N, >0
0_1_p 0 ; t — t t— = )\Odl/() ) ) = Y,

1 mx1
where
A 1 0 0 0]
<I>§1) 0 -2 1 0 O 0
Q= | |, A= , b= ;A=A =X — A,
P 0 0 X 1 Aml]
0 - 0 0 =XA_
) 0 1 0 0 0]
A 0 1 0 0
_ _ A Do :
A=—-A+N, A= ., O N= " T
) 0 --- 0 1 0
N . 0 --- 0 0 1
0 - 0 0 1o

The matrix A is the sum of diagonal matrix —A, whose diagonal elements equal —\, and matrix N, which
is nilpotent with index m. Therefore, for every ¢t > 0

- 2 m—1
t 2 On—?'
0 1 ¢ .
- = ktk o) At At Nt Xt Nt
Nt __ kY DA . . . . — o — o
e —ZN k‘!_ZNk:!_ N : and e =e e "=¢e Te".
k=0 k=0
0 t
—0 -

2.4)

Between jump times 7}, and 7,1, the process ® follows the integral curves of the system of m linear ordi-
nary differential equations d®; = (A®; + b)dt, t € [T, T+1), which admits the solution (see Coddington
[7, Theorem 3.4])

t t—Ty
O, = AP, 4 / eAt=)pds = AT oy 4 ( / 6A3d3> b
n 0
=t —T,,P1,) forevery t € [Ty, Tht1),

where we define

t
o(t, o) = et + (/0 eASds> b foreveryt > 0and ¢ € R

7



If \ # 0, then A is invertible, and

AT A2 A3 s L " X
I /0 eds= (e —1)A"", t>0,
)\—m
Al=— | 5 e e e : 2.5)
0 ... el el N2 A7y = - m! 5\—3 , and
)\—2
0 Al 31

o(t, ) = e+ (M — Ao =eM(p+ A7) — A7, V>0, Vo € RT.

If X > 0, then lim;_, o, 4 = limy_,oo e et = 0 and lim; o @ (¢, ¢) = —A~1b for every ¢ € R, If
A < 0, then for every ¢ € R we have ¢ + A~'b # 0, and because dy(t, ¢)/dt = Ap(t,$) + b > 0, the
nth component ¢, (¢, ¢) of m-dimensional (¢, ¢) is strictly increasing in ¢ € R and increases to 400 as
t — oo foreveryn = 1,...,m. Finally, if \ = 0, then A = 0 and A = —A + N = N is not invertible, but
we can still directly calculate that

_t 2B m
2 3! m!
t2 tm—l
. 0t 3 =17 .
/ eNods = t |, and ot @) =e™o + (/ eNSds> b, (2.6)
0 0
. 2
8 - % Vt>0, V€ RT,

and obviously ¢ — ¢(t, ¢) is strictly increasing with lim;_, o, ¢(t,$) = 400 for every n = 1,..., m and
¢ € R’!'. Proposition 2.3 summarizes the sample-path properties of process ® described so far.

Proposition 2.3. The process ® = {®; = (@gl), ceey @gm) ), Fi; t > 0} is an m-dimensional piecewise
deterministic strong Markov process under P, and Po-a.s. for every t > 0
o(t — T, P1,), if te€[Th,Tht1) forsomen >0,
q)t = )\1 dl/1

o(Tps1 — T, @1,) (Zpnt1), if t=Tn+1 forsomen >0,

Ao dvg
where Ty = 0, and mapping (t, ) — ¢(t,¢) = (@1(t, @), ..., em(t,9)) : Ry x R = R is defined by
eMp+ A7) — A7, if A#0

t,¢) = L _ oreveryt > 0and ¢ € R,
ot 9) N + (/ eNsds> b, if A=0 f " 4
0

an{Z eAt, A=y, eNt and fot eNsds can be calculated explicitly by (Z.f‘), (2.5), (2.4), and (2.6), respectively.
If XA > 0, then limy_.oo p(t, ) = —A71b for every ¢ € RT. If X < 0, then t — ,(t, ) is strictly
increasing and limy_, @n(t, §) = 400 for every 1 < n < mand ¢ € R'}".

3. A DYNAMIC PROGRAMMING OPERATOR AND SOLUTION

Let us define for every bounded function w : R’ — R

(K)o = [ w (ebjojou) wo(d2), 6 R, G.1)

8



(Jw)(¢,7) = /D "o ORI g 1 Ao (Kuw)] (o(t, 6))dt, r>0, ¢ €R? (3.2)

(Jow)(¢) = inf (Ju)(6,7), 120, 0RL. (3

Operators J and J; naturally appear in the optimality equation satisfied by the value function of the optimal
stopping problem in (2.3). This important connection is the result of the special characterization of stopping
times 7 € S as described by Proposition 3.1, the proof of which is deferred to the appendix.

Proposition 3.1. For every T € S andn > 0, there is an Fr, -measurable nonnegative random variable R,,
such that Pso-a.s.

Loy [T A Tnt] = 1oty [(Th + Ra) A Tl (3.4)
{r>T}={Ro>T1, T\ + R > Ts,...,Th1 + Ry1 > T}, (3.5)
{Tn <7< Tn+1} = {RO > T17T1 + Rl > T27 cee 7Tn—1 + Rn—l > Tann + Rn < Tn+1}~ (36)

Toward a solution of the optimal stopping problem in (2.3) with detection delay penalty function f(t) =
t™, t > 0 for arbitrary but fixed m > 1, let us consider the following policy: suppose that we agreed to stop
at some fixed stopping time 7 € § if 7 < 77, namely, if no mark (and therefore no new information) has
arrived before the alarm time set by the stopping rule, and otherwise take optimal action at time 77 based on
the value @7, of sufficient statistic, which will then incorporate new information contained in the mark just
arrived at time 77. The strong Markov property of process ® at (F);>o-stopping time 7 A T suggests that
the expected value of this policy should equal

TAT
Eco [ | e Ma@aat+ gy TV @)
0

Let Ry = Ro(®g) be Fp-measurable random variable such that Poo-a.s. 7TAT) = Ry ATy and {7 > T} =
{Rop > T1} as in the characterization of 7 by Proposition 3.1. Because by Proposition 2.3

Ard

Oy = p(t,g) fort€[0,7)) and By = (Th, Bo) ot 2 (Zy),

AO dl/()
and since (1}, Zy,)n>1 is a compound Poisson process with arrival rate Ao and mark distribution 1 on
(E, &), and since Fy and (7171, Z;) are independent due to independent increments of (7}, Z,,),>1 under
P, we can rewrite the expected value of the policy as

Ro A dv
Eno [ | 1z e oot 20+ Ly <¢<T17 <1>0>;dl<zl>)]
0 0 Ao
Ro Ro
= [ eyt [ age e [ V(@(t,‘l)o);\ljyl(z)) (=)t
0 0 E 0 Ao

Ro
= /o e M) g 4+ N (KV)](o(t, Bo))dt = (JV) (Do, Ro).

Therefore, the minimum expected total discounted cost should be given by

TNy
inf Eo [ / e Mg(®y)dt + 1{T>T1}eATIV<<I>T1>] = inf (JV)(®0,7) = (JoV)(®0).
T 0 - r=

Because V' (®y) is by definition the minimum expected total discounted cost, the optimality principle of dy-
namic programming suggests that V(®g) = (JoV')(Py) and that Jy can be seen as a dynamic programming



operator. We later show that V(+) is indeed a solution of the optimality equation. In fact, V'(-) is the unique
bounded fixed point of operator Jy and can be approximated successively by the elements of the sequence

vo(¢) =0, ¢eRT and vn(@) = (Jovp—1)(¢), ¢ €RT, n>1. 3.7)

Let us first introduce the finite-horizon problems

TNy,
Va(¢) = inf ES [ / e Mg(®;)dt for every ¢ € R’ and n > 0, (3.8)
T 0

obtained from the original problem in (2.3) by requiring a decision at or before the arrival time 7, of the
n-th mark. The next lemma shows that V' (¢) can be approximated successively by the elements of sequence
(Vi(#))n>0 as n — oo, uniformly in ¢ € R,

Lemma 3.1. The sequence (V,,(¢))n>0 decreases to V(¢) as n — oo uniformly in ¢ € R'l'. More precisely,

A
A+ Ao

0 < Vu(p)—Vi(p) < < ) forevery ¢ € R and n > 1.
Proof. Because 7 AT, € S for every 7 € S, we have V(¢) < ES, [fOTAT” e”“g(@t)dt] forevery 7 € S,

and taking the infimum of both sides over 7 € S gives the first inequality 0 < V,,(¢) — V(¢). On the other
hand, because g(¢) > —A for every stopping time 7 € S, and under P, the random variable 7, has Erlang
distribution with parameters n and \g, we have

T TNTn T
ES [/ e)‘tg(tl)t)dt] =E2 [/ e Mg(®y)dt + 1{72Tn}/ e)‘tg(q)t)dt}
0 0 Tn

>E¢ /T/\Tn -t ®,)d ¢ > —Atd > ¢ AT, | _ A "
2B | [ e Mg@ar] ~EL | | ANt 2 Va(9) B [ =) - (55 )

which proves the second inequality and completes the proof of the lemma. O

Propositions 3.2 and 3.3 show that V,,(-) = v,,(+) for every n > 0. Namely, (V,(+))n>0 can be calculated
iteratively by successive applications of the dynamic programming operator Jy to function vg = 0. Since
each vy, (+) is obtained as the solution of a straight-forward deterministic optimization problem, Lemma 3.1
and Propositions 3.2 and 3.3 suggest for the problem in (2.3) an effective numerical solution method, which
also turns out to be very useful to identifying the structural properties of the solution.

Proposition 3.2. For everyn > 0 and ¢ € R'', we have V,,(¢) > v, ().

Proposition 3.3. For every e > 0, ¢ € R, and n > 1, let ry, .(¢) be a nonnegative number such that
(Jon-1)(¢,7n.c(9)) < € + (Jovn-1)(®) = € + vn(®), and define

Tn,£/2(q)0)a if Tn,a/Q(cI)O) <Ti,

T0e =0 and Tpe = .
: " {Tl T Th—1,e/2 ofr, if Tn,e/2(‘1)0) >Th.

Then for every e > 0 andn > 1, we have 1, . € S, and

Tn,eNTh
Efo [/ e_Mg(@t)dt] < vp(o) +e.
0

10



Corollary 3.1. For everyn > 0 and ¢ € R, we have V,,(¢) = v, (¢), and stopping time T, - is e-optimal
for the problem in (3.8): ES, [ J"’EAT” e_/\tg(@t)dt} < Vo(@) + e forevery p € R, e > 0, and n > 1.

Proof. The last displayed equation of Proposition 3.3 implies V,,(-) < v, () 4 € for every € > 0, and since
e > 0 is arbitrary, we conclude that V,,(-) < v(-). Since the opposite inequality is also true by Proposition
3.2, the equality V},(¢) = v, (¢) holds for every ¢ € R'!". Replacing v,,(¢) with V,(¢) in the last displayed
equation of Proposition 3.3 now shows that 7, . is e-optimal for the problem in (3.8). O

Lemma 3.2 describes an explicit decomposition for the stopping times 7, ¢, which is consistent with the
general characterization of stopping times of (F;);>o described by Proposition 3.1.

Lemma 3.2. For everyn > 1 and e > 0, let 7, . be the stopping time in Proposition 3.3. If 0 < k < n, then

{Tn7€ Z Tk} = {rn,a/Q((I)To) Z T1 — T(), Tn_17€/4(CI)T1) 2 T2 — Tl, ey

k—1
Tn—k+1,e/2k ((I)Tk,l) > Ty — Tk—l} = ﬂ {T'n_gﬁ/gul((l)n) > Tg.,.l — Tg} .
=0
If0 <k <n-—1,then
k—1
{Ty < ne <Thy1} = (ﬂ {rn_g’a/géﬂ(@TZ) 2> Ty — Tz}) N {Tn_k@/ngrl(q)Tk) < Tyt — Tk} ;
=0

Tn,E]‘{TkSTn,5<Tk+1} = |:T/€ + Tn—k,5/2k+1((I)Tk)] 1{Tk§Tn,s<Tk+1}’
(Tne ATy 1) Lry >T0) = [(Tk + Treke 2kt (P1,)) A Tk+1} Yr e>m)

Lemma 3.3 identifies important properties of the dynamic programming operator Jy. Particularly, Jy
preserves boundedness, concavity, and monotonicity. It may have at most one fixed point in the space of
bounded functions defined on R’!*. Corollary 3.2 below shows that .Jy has one and only one bounded fixed
point, which is the value function V'(-) of problem in (2.3).

Lemma 3.3. Ifw : R — R is concave and bounded between —1 and 0, then so is (Jow). If wi(-) < wa(-),
then (Jow1)(:) < (Jows2)(+). Moreover, Jy is a contraction mapping on the collection of bounded functions
defined on R'?, and for every bounded w (-) and wa(-), we have

Ao
A+ Ao

Corollary 3.2. The functions V,,(-), n > 0 and V (-) are bounded between —1 and 0, concave, and contin-
uous on R'['. Moreover, V (-) is the unique bounded fixed point of operator Jy.

| Jowr — Jowz|| <

w1 — wal|.

Proof. Because V = 0 is bounded between —1 and 0 and concave on R'(", an induction onn > 1, Corollary
3.1, and Lemma 3.3 show that V,, = JyV,,_1, n > 1 are bounded between —1 and 0 and concave. Since
they are concave on R, they are also continuous on R, . Because V/(-) is the uniform pointwise limit of
(Va(+))n>0 by Lemma 3.1, V(-) is bounded between —1 and 0, concave on R}’, and continuous on R, .
Finally, Lemmas 3.3 and 3.1 imply that

Ao Ao A "
Vo=V < 0 .
S |_)\+)\o(/\+)\0> T s e
Hence, (JoV)(¢) = limy—oo(Jo V) (@) = limp—oo Viy1(¢) = V(¢) for every ¢ € R} by Corollary 3.1.
If V(-) is another bounded fixed point of Jo, then ||V — V|| = [|JoV — JoV| < [Ao/(A + Xo)]|V — V||
implies that ||V — V|| = 0; i.e., V/(+) is the unique bounded fixed point of operator Jy. O

| JoVi — JoV | <

11



The next major result is Theorem 3.1, which states that for every ¢ > 0 the (F;);>0-stopping time
7o := inf{t > 0; V(®;) > —e} is e-optimal for the problem in (2.3). For its proof, we will need the next
few lemmas and their corollaries.

Lemma 3.4. For every bounded w : R — R, we have
(Jw) (¢, 8) + e A2 (Jow) (p(s, ¢)) = (Jsw)(¢) forevery ¢ € R and s > 0.

If (Jow)(p(s, ¢)) < 0 forevery 0 < s < t, then (Jsw)(¢) = (Jrw)(¢p) for every 0 < s < t.

The second part of Corollary 3.3 implies that, as long as the value function V'(+) of the optimal stopping
problem in (2.3) remains strictly negative along the path t — (¢, ¢), postponing the stopping decision does
not cause any regrets. This is the crucial result needed for the proof of the optimality of the stopping time
T0 = inf{t Z 0; V(‘I’t) = 0}

Corollary 3.3. If we take w =V in Lemma 3.4, then we have
(JV)(6,5) + e W01V (o(s,9)) = (JV)(¢) foreverys > 0and ¢ € R,
because V.= JoV. If V(¢(s,$)) < 0 for every 0 < s < t, then V(¢) = (J;V)(¢) and
(JV)($,5) + e A1V (o(s,0)) = V(¢) forevery0 < s <t.

Lemma 3.5 gives the explicit decomposition of stopping times 7., € > 0, announced earlier by Proposi-
tion 3.1 for all stopping times of (F3)¢>0.

Lemma 3.5. Let us define (F;)i>o-stopping time 7. = inf{t > 0; V(®;) > —c} for every € > 0. Then

{?"a(@o), if re(®g) < T1} Telr, <<ty = In +1e(@r,) {1, <ro<Tpi1}
Te = and

Ty +700n, if ro(Po) >Th for everye > 0andn > 0,

where 1-(¢) = inf{t > 0; V(p(t,¢)) > —¢c} for every ¢ € R and e > 0.

Proposition 3.4 and Corollary 3.4 state that postponing the stopping decision until time 7. does not cause
any regrets, and this observation almost immediately leads to the e-optimality of 7. for the problem in (2.3),
which is established by Theorem 3.1.

Proposition 3.4. Let us define M; := ge_A“g(un)du + e MV (®y) for every t > 0. For everyn > 0,
(Ft)e>0-stopping time T, and ¢ € R'l", we have ES, [Monrat,] = ES [Mo] = V().

Corollary 3.4. The stopped process { Minr. a1, , Ft; t > 0} is a uniformly integrable martingale under P
for everyn > 0.

Theorem 3.1. For every e > 0, the (F;)>0-stopping time 7. of Lemma 3.5 is e-optimal for problem in (2.3).
Particularly, Ty is an optimal (F)¢>o-stopping time for problem in (2.3).

Proof. By Proposition 3.4 for every € > 0, n > 0, and 7 = T,,, we have
Te NIy,
Vo) =Bl =B% | [T e Ng@iat - AT (@)
0

TeNTh,
=E¢, [ / e Mg(®y)dt + 1y ey V(D) + 1{TEZTTL}6”T‘"V<¢T”>] :
0

12



On the one hand, on the event {7. < oo} D {7. < T},}, we have V(®,_) > —¢, because V' (-) is continuous
by Corollary 3.2, and ¢ — V(®;) is right-continuous. On the other hand, we always have V' (-) > —1 by
Corollary 3.2 as well. Therefore,

Te Ny
V(p) > EZ [/ e Mg(Dy)dt — 51{75<Tn}€_ME - 1{752Tn}€_)‘T"]
0

Te NIy,
> EY, [ / e_’\tg(q)t)dt} & —ES, [eT]
0
The sequence of random variables fOT N o=At g(®4)dt, n > 0 is bounded from below, since

TeNTy TeNTy, [e%e)
/ e_/\tg(CDt)dt > —/ e Mdt > —/ e Mdt = —1,
0 0 0

and lim,, oo Ecoe M = 0 by the bounded convergence theorem, because 71, T +o00 as n — oco. Then
taking the limit infimum and using the Fatou’s lemma give

TeNTy, Te
vio = m | [T e Mgwar| e 252 | [T e vgnar -
k—o0 0 0

which proves that 7. is e-optimal for problem in (2.3). O

Because V (+) = limy,_,~ Vi (+) can be calculated only in the limit, optimal stopping rule 7y may not be
implementable. In practice, V'(-) will be approximated by V,,(-) = v, (-) for some sufficiently large n > 0,
and the optimal performance of 7y can be approximated arbitrarily closely by the stopping times 0y, ¢, € > 0
of Theorem 3.2.

Theorem 3.2. Define oy, . = inf{t > 0; V,,(®;) > —¢c} for everye > 0 and n > 0. If

A " 1
N(e) := min{nZO; ( > Sa} = Li for every e > 0,
>\+>\0 logm

then (Fy)e>0-stopping times ON(e/2),e/2 and o (e) o are e-optimal for every € > 0 for the problem in (2.3).

Proof. Because V,,(-) > V(-), we have Py-a.s. 0y, . < 7, and Proposition 3.4 with 7 = o,, . implies

E My, a1) = ES [My, arnr] = ES[Mo] = V(¢) k> 0.

Then as in the proof of Theorem 3.1, we can write
O’n,g/\Tk
V(¢) = Ego [Mo'n,s/\Tk] = ]Ego |:/ e_ktg(q)t)dt + e_A(Un’E/\Tk)V((I)Un,E/\Tk):|
0

Unyg/\Tk
=E?, U e Mg(®y)dt + 1y, o ye V(g ) + 1{%,52%}6_”’“‘/(@%)}
0

Lemma 3.1 gives 0 < V,,(¢) — V(¢) < [A/(A+ Xg)]" for every ¢ € R and n > 0, and V;,(-) > —1 by
Corollary 3.2. Therefore, V' (¢) is greater than or equal to

On,eNT}, )\ "
]Efo |:/0' e_/\tg(ét)dt + 1{0’,L,€<Tk}€_)‘0n,g <Vn(¢an75) - <)\ T )\0> ) — 1{U7L,52Tk}€_>\Tk:| )

13



On {0, < o0} D {opn,e < T}} we have V,,(®,,.) > —¢ because V,,(-) is continuous by Corollary 3.2,
and t — V,,(®,) is right-continuous. Therefore,

On,eNT}, A "
V(p) > EZ [/0 e Mg(®y)dt — 1{an,5<Tk}eﬂ\an’E (5 + <)\+)\0> ) - 1{an,€2Tk}€7’\Tk

o [ [Ty A 6 [ -ATy
- _ _ - k
> E? [/0 e g(q)t)dt] (s—f— ()\ n )\0) ) E?, [e ] .

For every fixed n > 0 and £ > 0, the sequence fOU”’EAT’“ e Mg(®;)dt, k > 0 is bounded from below since

On,e NIk on,e ATk 00
/ e_/\tg(q)t)dt > —/ e Mdt > —/ e Mdt = -1,
0 0 0

and limg_, oo Esge Mk = 0 by the bounded convergence theorem, because 7, T 400 as & — oo. Then
taking the limit infimum and using the Fatou’s lemma give

V(¢) > lim E? /Ums/\T]C e Mg(®;)dt| —e - A
i 0 A+ o

k—oo

On,e )\ n
> EZ, [/ e_Atg(q)t)dt] —€— < > foreveryn > 0 and e > 0.
0 A4 Ao

The conclusion now immediately follows from the definition of N (¢). O

We have seen that V'(-) is the limit of V,,(-) as n — oco. The final result of this section shows that
optimal stopping time 7y is similarly P-a.s. limit of the sequence of increasingly accurate stopping rules
(01,0)n>0. This result is established by first observing that 79 and oy, g, n > 0 are the first hitting times of
the process & to the nested stopping regions I and I';,, n > 0, respectively, which are defined as the subsets
of the state space R" where V'(-) and V/,(-), n > 0 vanish.

Theorem 3.3. Let us define stopping regions
I':={¢ecRT; V(¢) =0} and Ly :={¢p e RY; Vo(¢) =0}, n>1.

Then the sets R =T'o 2 I'y 2 ... 2 'y, 2 ... D I' are closed and convex, and Ny>ol'y = I'. We have
that 7o = inf{t > 0; ®; € I'} and 0,0 = inf{t > 0; &; € ', } for every n > 0. Moreover, the sequence
(0n,0)n>0 increases Pos-a.s. to 79 as n — oo.

Proof. Since V,,(-) decreases to V(-) asn — oo, wehave I'o 2 I'y O ... D I', D ... D T, which are
closed and concave because V,,(-), n > 0 and V(-) are continuous, concave, and nonpositive by Corollary
3.2. The stopping times 79 and o, 0, n > 0 of Theorems 3.1 and 3.2 are by definition the first hitting times
of process ® to stopping sets I and I';,, n > 0. Because the sets I',, n > 0 are decreasing, the hitting times
on,0, 1 > 0 are increasing with o := lim;, .o 07,0 < 70.

Because {®;,t > 0} has left-limits, the limit lim,, . ®,, o exists. Since jump times of process ® are
totally unpredictable, P {o¢ = T}, for some n > 1} = 0. Therefore, Py-a.s. lim,, .~ Q5,0 = Doy

On {0y = oo}, we obviously have Py-a.s. 0gp = 79. On {09 < oo}, we have 0, < oo for every
n > 0and ®,, , € I'y, C 'y, for every n > k because I';,, n > 0 are closed and ¢ — P is right-continuous.
Therefore, 5, = lim,, .00 Py, , € [y, for every k > 0, equivalently @, € Mgl on {09 < oo}. Thus,
we will have proved that oy > 79 on {o¢ < oo} as well, if we show that Ng>oI'y, =T

We already know that N;>ol'y, 2 I'. To prove the opposite inclusion, take any ¢ € Np>ol'x. Then
0 = Vi(¢) for every k > 0. Therefore, V(¢) = lim,, .o Vi(¢) = 0and ¢ € I'. Hence, Ng>ol'y CT. O

Finally, Proposition 2.1 or the first part of Proposition 2.3 guarantee that 7y is a Bayes-optimal alarm
time, and for every ¢ > 0, stopping time o) IS an e-optimal alarm time for the original compound
Poisson disorder problem.

14



4. ILLUSTRATION

Consider the compound Poisson disorder problem with \y # A1, vy = v1, and m = 2; namely, the detection
delay penalty cost function is f(t) = t2. We shall use the results of Section 3 to identify as explicitly as
possible the structure of the optimal solution of the auxiliary optimal stopping problem in (2.3).

The sufficient statistic is the two-dimensional piecewise deterministic strong Markov process & =

{®; = ((I)S)7 @122)); t > 0} which follows the dynamics

: t

ot =T, 1), if t€[Th, Tnt) o(t,¢) = Mo+ </ 6A(t—shﬂs) b
&y = A and 0
o(Tony1 —Tn, @1,)—, if t=T,4

Ao’ foreverytEO,qSERQ,ananO,

where A = A\; — Ao — \, and

! [0 ae o xe 1 t] oa, o [N OATEJO] L [2AN0 P
A‘[o —X}’b_[m}’e =T 1A= 2] T [2an! it A 70,
e M(P1 — 2AN2 + t(dg — 22NTV)) + 22072 <
v Y1 T—1 s if )\7&0
(t B e Mo — 2AA7) 4+ 22\ forevery t > 0
b1 + ot + A2 £ T—o and ¢ = (¢1, ¢2) € RZ.
P2 + 2\t ’ -

Depending on the relationships between the parameters of the problem, the sample paths of process
® can take one of two major forms, and each can further be divided into two subcases. We will describe
qualitatively the form of the optimal solution of the problem in (2.3) for each case. Note however that under
all circumstances it is never optimal to stop before the process ® leaves the strip

Co = {9 = (¢1,02) € RZ; ¢1 < A},

because the integrand in (2.3) remains negative until the first exit time 79 := inf{t > 0; &, ¢ Cp} =
inf{t > 0; (I)El) > A} of process ® from Cj.

4.1. Subsection: Case I: \ > 0.

The solution x(t) = (¢, ¢) of the system of linear ordinary differential equations dz(t)/dt = Az(t) + b
with initial condition 2(0) = ¢ € R has unique equilibrium point at —A~1b = [2AA72 2AA"!]T. Because
A > 0, we also have A\ —\g > A > 0and A; /)¢ > 1, in which case at each mark arrival time, the process ®
jumps away from the origin along the ray emanating from the origin and passing through the position of ®
before jump; see Figures 1 and 2. The structure of the optimal solution depends on the position of the root A
of the running cost function g(¢) = ¢; — A in (2.3) relative to the first coordinate 2A\~2 of the equilibrium
point —A~1b.

CaseI(a): A > 0and \ < 2)\\~2 (equivalently, 0 < \ < v/2). Let ¢ = ¢ > 0 be the unique number
such that A equals the unique minimum of the mapping t — ¢1(¢, (¢1,0)), which it is attained at ¢t = t*(¢1).
Let us also denote by ¢5 = @a(t*(¢7), (¢7,0)) the second coordinate at time ¢*(¢7), when the minimum
value of the first coordinate is attained and equals ), starting initially at (¢7, 0) on the ¢;-axis; see Figure 1.
For every fixed ¢; > 0, taking the derivative of ¢1 (¢, (¢1,0)) = e (d1 — 2272 —2A\"1) +2A\~2 with
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Figure 1. CaseI (a): A > 0and A < 2A\~2 (equivalently, 0 < A < 1/2). The sufficient statistic ® follows
the integral curves of a system of two linear ordinary differential equations, which have unique equilibrium
point. Moreover, since A; > Ao, at every arrival time of a mark, ® jumps away from the origin. On the
lefthand side, integral curves and direction of jumps are drawn. On the righthand side, region D and optimal
stopping region I" are displayed.

respect to t gives 9y (t, (¢1,0))/0t = e~ (=X + At), and equating it to zero and solving for ¢ leads to
t*(¢1) = ALy for every ¢1 > 0. Therefore, A\ = o1 (t*(4}), (¢7,0)) = 2A\ "2 [1 — e*(v/)\)ﬂ} gives

12
¢t =—-A\"2In <1 - 2) and 5 = AA.

Since A\%/2 € (0,1), we have 0 < ¢] < co. Moreover, (i) ¢7 < 2DAA"2if and only if A < 1/2(1 — e~2),
(ii) ¢35 < 2AX~2, which is the second coordinate of the equilibrium point —A~1b. Let us define

D = {(91.62) € B2 61 = @11, (61.0)), 2 > (8, (61,0)), 0 <t < (D)} U([67,00) x o),

which is the dark shaded region in Figure 1. Because A\1/\o > 1 and the equilibrium point —A~!b belongs
to D, we have (A1/Ao)D C D, and

P% {®; € D foreveryt >0} =1 for every ¢ € D.

Since g(¢) — A > 0 forevery ¢ € D C R% \ Cp, we have EZ, [Jo e Mg(®,)dt] > Oforevery T € S
and ¢ € D. Therefore, V(¢) = 0 for every ¢ € D, and D is a subset of the optimal stopping region
I' ={¢ € R%; V(¢) = 0}. Because D C I' C R% \ Cj and I' is closed and convex, the optimal stopping
boundary JI' coincides with the infinite line segment {(\, ¢2); ¢2 > ¢35} and with some nondecreasing
convex continuous curve 7 : [\, ¢f] — R such that y(\) = ¢5. There is also some A < ¢] < ¢ such that
7(+) is strictly decreasing on [\, ¢]] and equals zero on [¢], ¢;]; see Figure 1. All of those conclusions are
direct consequences of the convexity of the optimal stopping region region I'.

In this subcase, starting initially at any @y = ¢ on the vertical axis (namely, ¢ = (0, ¢2) for any ¢o > 0),
the process ® never returns to Cy once it leaves that region. Therefore, the first exit time 7y of ¢ from Cy is
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optimal for the problem in (2.3) if &y = (0, ¢2) for some ¢ > 0. Since by Proposition 2.2 the minimum
Bayes risk

2
infRT(p)zl—p+(1—p)V<0,p>, 0<p<l1
TeS 1—0p

depends on V(¢) evaluated on {¢ = (0, ¢2); ¢2 > 0}, the (F¢):>0 stopping time 79 is an optimal change-
detection alarm time if 0 < \ < v/2.

CaseI (b): A > 0and A > 2 )\ 2 (equivalently, A > v/2). We shall first state and prove a comparison
lemma for the sample paths of the process .

Lemma 4.1. For everyi = 1,2, we have Py.-a.s. @gi) > i(t, o) for every t > 0.

Proof. Clearly, @gi) = ;(t,Pg) for every 0 < t < T} and i = 1, 2. Suppose that for some n > 1, we have

Po-a.s. @Ei) > @i(t, ®g) forevery 0 < ¢t < T, and i = 1,2. Let us prove that the same inequality also
holds P.-a.s. for T}, <t < T}, 41, and hence for 0 < ¢t < T}, 11, which will then complete the proof of the
lemma since Py.-a.s. T;, T oo as n — oo.

It is clear from the explicit form of ¢ (-, -) in (2.2) that, if z = (21, 22) and y = (y1, y2) are in R such
that x; < y; and xo < yo, then p;(t, ) < ;(t,y) forevery t > 0 and ¢ = 1,2. Because A;/\g > 1, we

have @%{ = ()\1/)\0)@%)1_ > @gfi_ fori=1,2, and
o = it — Ty, 1) = 5 <t -7, A(iq)Tn‘) >0 (t— T, ®7,_),  Tp<t<Tpii, i=12.

Since @gfg_ > @i (T, ®g) for every ¢ = 1,2 by the induction hypothesis, we can now write

O > i (t = T, @1,-) > @i (t = Ty 9i (T, D)) = i (¢ — Ty + Ty B0) = i(t, ®)
for every T,, <t < T,41 and ¢ = 1, 2, which completes the proof of the induction step. ]

Lemma 4.1 implies that

V($) = inf EZ, [ / ' eMg(@t)dt] = inf B, [ / Mg )\)dt]
0 0

TES TES

> B2 | [N o0) - N =inf "M - Nt =he). R,

Therefore, {¢ € R%; h(¢) = 0} C {¢ € R2; V(¢) = 0} = I'. On the other hand, for every ¢ =
(¢1,¢2) € R% such that ¢1 > A, we have h(¢) = min{0, [;° e~ (p1(t,¢) — A)dt}, and h(¢) = 0if

0< / e M(pi1(t,¢) — N)dt = / e M [e** (p1 — 22072 + 1 (do — 22071)) + 20072 — A| d¢
0 0

= / e” 20 (G — 2DNTE 4t — 20N 7)) dt + 2072 — 1
0

o o1 — 2A\ 2 Po — 201
A1 = Ao (A1 = Xo)?
P o) 2A\ 2 2201 T2
= + — — 4+ 2274 =1,
P VLS W VAT R W VS VI W

+2272 -1
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Figure 2. Case I (b): A > 0 and A > 2\\~2 (equivalently, A > 1/2). As in Case I (a), the sufficient
statistic ® follows the integral curves of a system of two linear ordinary differential equations, which have
unique equilibrium point, and since A\; > Ag, at every arrival time of a mark, ® jumps away from the origin.
On the lefthand side, integral curves and direction of jumps are drawn. On the righthand side, region D and
optimal stopping region I are displayed.

and after multiplying both sides by (A1 — \g)? and rearranging the terms we obtain
B2 > Y(d1) = — (A1 — No)d1 + 22N 2(A1 — Ag) + 22071+ (1 — 22072 (A — Ao)2
Hence, we have

D= {(¢1,¢2) €RYL; ¢1 > A, d2 > Y(¢1)} € {d € RZ; h(9) =0} C {¢p € RY; V(p) =0} =T.
Lemma 4.2. Let ¢1 = ¢} be the root of 7(¢1) = 0 and define ¢ := 7(\). Then
X ‘Z’QA >A and @5 =214 (1 =2072) (A — Ao)A > 22071
1 — A0
Proof. Direct calculation gives
5 =F(N) = =XM1 = o) + 222N — o) + 220714+ (1 = 2X72) (A — Ag)?
=207 (1 =227\ — X)? — (1 = 227N (A\1 — No)
=207 F (=201 = X)) A — X0 — A) =220+ (1 =20 (A — o)A > 2207

=+

because A > /2 implies that 1 — 2A72 > 0, A\; — A\g > A > 0, and X\ > 0. Because ¢; — 7(¢1) is a
straight line slope — (A1 — Ag), we have (0 — ¢3)/(¢] — X) = —(A1 — Ao), which completes the proof. [

Because optimal stopping region I' is closed and convex, and D C T" C Ri \ Cp, there exist some
20071 < @) < ¢35, X < ¢] < ¢%, and some nondecreasing convex continuous curve 7 : [\, ¢%] — R such
that optimal stopping boundary OI" coincides with the infinite line segment {(\, ¢2); ¢2 > ¢4} and with
{(¢1,7(¢1)); A < ¢1 < ¢ }. Moreover, ¢y — (¢1) is strictly decreasing on ¢ € [A, ¢]] and equals zero
on ¢ € [¢], ¢3]; see Figure 2.
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Figure 3. Case II: \ < 0. The process ® follows integral curves, both coordinates of which are strictly
increasing. It jumps away from the origin in Case II (a): A\; > )\g and toward the origin in Case II (b):
A1 < Ap.

4.2. Subsection: Case IT: \ < 0.

Both components of ¢ — (¢, ¢) are strictly increasing for every ¢ € Ri. Both A1 > Mg and A\ < Ag are
possible.

Case Il (a): A < 0 and \; > )\o. The process ® runs away from the origin both at and between jump
times. It never returns to region Cj once it leaves that region. Therefore, optimal stopping region I' coincides
with R, \ Cp, optimal stopping boundary OT" is the straight line ¢»; = A, and the first exit time 7 of process
® from region Cj is optimal for the problem in (2.3) and an optimal alarm time for the compound Poisson
disorder problem; see Figure 3(a).

Case II (b): A < 0and \; < X\g. The process ® is driven away from the origin between jump times,
but is pulled back toward the origin at every jump. Therefore, ® may return to region Cy after a jump with
positive probability; see Figure 3(b). Since V' (-) > —1, we have

V(o) = (JaV)(@) = int [ e O MKVt )

T

> igg/ e"OF2N 0 (8, ¢) — A= X]dt =0 forevery ¢ € [A+ Ag,00) x R,
r20Jo

which implies that [\ + X\g,00) x Ry C T'. Because the optimal stopping region I' C R, \ C is closed

and convex, there exist some A < ¢] < X+ A\ and some nonincreasing convex continuous curve 7 :

[A, A+ Xg] — R such that the optimal stopping boundary JT" coincides with y(+), which is strictly decreasing
on [\, ¢]] and vanishes on [¢], A + Ag].
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A. APPENDIX: PROOFS OF SELECTED RESULTS

The Derivation of the Dynamics of Process ® in (2.2). Because Ziljo<yy = (Lt/Lo)l{o<ty: Ziljost) =
lie>¢) forevery t > 0, and © and F; are independent under Po, we have

Eoo [Zef™(t —O)ljo<yy | Fi]  Eoo [(Lt/Le)f™(t —©)lje<y | Fi]

(n)
3" = _
! Ex [Zil{oss | Fi] Poo{O > £}
_ L™ () + (1= p) fg e (Le/Lo) ST (¢ — 5)ds
N (1—p)e
t
= Ly {pe)‘tf(n) () + ekt/ /\e_)‘sif(") (t —s)ds| foreveryn > 1.
I—p 0 L

Applying change-of-variable formula and using the dynamics of process L in (2.1) give

da q>§”)/ MV 1) [NV (ds, dz) — Aodt vo(d2)
E )\0 dl/()

t
P M op(n) At / s L ey, P M p(nt1)
+ Ly [)\1 —° FU(t) + Xe ; e —Lsf (t —s)ds + T,° b (t)

1 ¢ 1
+e”Ae*Aff FM(0) + M / Ae*Asf Fr (¢ — s)ds] dt
t 0 S

= o\ /E (:\\;32(2) - 1) [N(ds,dz) — Agdt vo(dz)]

t
+ [A FM0) + ALy (1 P pe)‘t FO(t) + e / Ae—ASLi F - s)ds)
— ; :

t
+L; <p M (1) 4 e”/ )\e_Asif("H)(t - s)ds)] dt
I-p 0 L

_ q)ﬁ’i)/ ﬁ%(z) — 1) [N(ds,dz) — \odt vo(d2)] + [Af(n>(0) + A0 + <I>§n+1)} dt,

which leads to (2.2) after a rearrangement of the terms on the righthand side. Finally,

E[f"(t—O)lie<yy [ Al| PO =0}f"(0)

(n)
d) = —
0 P{O© >t | F} P{© > 0} 1—p

™). O

Proof of Proposition 3.1. The existence of F7, -measurable nonnegative random variables R,, satisfying
(3.4) for n > 0 is proved, for example, by Brémaud [6], Davis [8], and Liptser and Shiryaev [16]. We can
prove (3.5) by induction. Let us first show that Po-a.s. {7 > T1} = {Rp > T1}. Because {T > Ty} 2
{r > T}, we have

Rolir>mynfro<iy = (Ro AT r>13n(Ro<y = (T AT o130 Ro<Ty = T11{r>T1 30 Ro<T1}>
which implies that Poo ({7 > T1} N {Ro < T1}) = 0 and
{TZTl}:{TZTl,RO<T1}U{TZT1,RQZTl}:{TZTl,R()ZTl}, IP’OO-a.s. (A.l)

On the other hand, Tl{ROZTl}ﬂ{T<T1} = (RO A Tl)l{ROZTl}ﬂ{T<T1} = Tll{RUZTl}ﬁ{T<T1} implies that
]Poo({RQ > Tl} N {7’ < Tl}) =0, and

{Ro>T1} ={Ro>T1, 7 <T1}U{Ry > T1,7 > T1} ={Ro > T1,7 > T1}, Ps-as,
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which leads together with (A.1) to Poo-a.s. {7 > T1} = {Ro > T3 }. Now suppose that (3.5) holds for some
n > 1. Let us show that it must also hold if n is replaced with n + 1. Because {7 > T,,11} C {7 > T,},
by (3.4) we have

(Tn + R) Yoty Tot Ru<Torn} = (Tn + Bn) AT 1| Vs Tt R < T}

= (T ANTot 1) (> Ty Tt Ru<Tin} = Dot Lo Ty T Ru<Tin s
which implies that Poo ({7 > T}41, T, + Ry < Tyi1}) = 0, and
Poo-a.s.
{r> T} "7 {7 > Tog1, Tn+ Ry 2 Tugr} S{7 > T, T+ Ro > Toja ). (A2)

On the other hand,

Tl{Tn+Rn2Tn+1,Tn§T<Tn+1} = (T A Tn+1)l{Tn+Rn2Tn+1,Tn§T<Tn+1}

= [(Tn + Rn) A Tn+1]1{Tn+Rn2Tn+17Tn§r<Tn+1} = Tn+11{Tn+RnZTn+1,Tn§T<Tn+1}

implies that Poo {7}, + Ry, > 141,10 <7 < Tp41} = 0 and

{T > TnaTn + R, > Tn—l—l} = {Tn + R, > Tn+17Tn <7< Tn—l—l} U {Tn + R, > Tn+1;7_ > Tn+1}

Poo-a.s.
= {Tn + Rn > Tn+177— > Tn—i—l} - {T > Tn+1}7

which in combination with (A.2) gives that

Poo-as.
{T > TnJrl} o {7_ > TnaTn + R, > Tn+1} = {T > Tn} N {Tn + R, > Tn+1}
P Ry > T, Ty + Ry > Toy oo Tyt + Rumt > T} 0 {T + Ry > Tt}
= {Ro>T1,Th+R>T>,...., T+ Ry >Tht1},

where the third equality follows from the induction hypothesis. This completes the proof of (3.5). Finally,

{Th<r<Thpt={r2>2T}\{r 2T} ={Ro>T1,T1+ R > T>,...,Th—1+ Ry_1 > T }\
({RO 2 Tlle + Rl 2 T27 e 7Tn—1 +Rn—1 Z Tn} N {Tn + Rn 2 Tn—i—l})
== {RO > leTl + Rl > T27 cee 7Tn—1 + Rn—l > TnaTn + Rn < Tn-‘,—l}

proves (3.6) and completes the proof of Proposition 3.1. O

Proof of Proposition 3.2. From the definitions we immediately have Vj(¢) = vo(¢) = 0 for every ¢ € R".
For every n > 1 and 7 € S we shall prove that

’T/\Tk >\ )\T
E(go [/ e tg(q)t)dt + 1{72Tk}€_ kvn—k(q)Tk):|
0
TAT,_1
> E¢ [ / e Mg(®y)dt + 1{T>Tkl}e‘”’f-lvnm(@n_l)} forevery 1 <k <mn, (A.3)
0

which will then imply that

TATy TNy
ES. [/ e_Atg(CI)t)dt] = ES [/ e Mg(®,)dt + 1{72Tn}€_AT”UO(‘I)Tn)}
0 0
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TATH_1
> E?o [/ efAtg(tl)t)dt + I{TZTnl}eATnlvl(q)Tn_l)} > ...
0
TNATH
2B | [ M@t e ()| = (o),
0

and taking the infimum of both sides over all 7 € S gives V,,(¢) = inf,csES [ OT/\T" e_’\tg(tl)t)dt] >

vn (@) for every ¢ € R, which is the conclusion of the proposition. Let us fix any n > 1, 7 € S and prove
(A.3). For every 1 < k < n, by Proposition 3.1, there is a nonnegative Fr, ,-measurable random variable
Rj._q such that

Lot 3 (T AT) = 1o, 3 [(Th-1 + Re—1) A T,
{r>Tp} ={7 > Th—1,Tp—1 + Rx—1 > T1},

and we have

T/\Tk
Eg’o [/ e_’\tg(<1>t)dt + 1{T2Tk}e_’\Tkvn_k(<I>Tk)}
0

TAT) 1 X TAT},
/0 e tg(q)t)dt + 1{7’2Tk_1}

T/\Tk—l At
= E%, U e Mg(®y)dt
0

e Mg(®y)dt + Lipop, e Unk((I)Tk)]
Tk—1

(Tk—1+Ri—1)ATy, AE—T;
/ e (t— k—l)g((p(t — kah (ka_l))dt

+ 1{72Tk71}67>\Tk71
Tk—1

“MTe— AL dy
+1{Tk71+Rk712Tk}6 ATy Tk*l)vn—k ((p (T]€ — T+, (ka—l) )\(l)dljg(Zk)> }:|

TAT_1 Ny T Ry aAN(T—T-1) v
= Ego / e g(q)t)dt + 1{7’2Tk_1}6_ k_lEfo / e 9(80(75, ¢Tk71))dt
0 0

_ _ A1 dv
+1{Rk712Tk*kal}e Mk Tkil)vn*k (90 (T’f = T—1, (I)Tk—l) /\(1)dV;(Zk)> ’ Fr 4 }] .

Because Rj_1 and ®7, | are F7,  -measurable, and T}, — T},_; and Zj, are independent of Fr, , and have
the same distributions as 77 and Z;, respectively, under P, the conditional expectation becomes

4 R i AN(Te—Tk—1) Y
Bl | e Ng(olt, Br, )il

)\0 dl/()
AT A1 dv
s {7 ettt o+ Ly o (000 29220 ), g
0 0 d1g
=7,
—{ [ et ol )t by, = o) (@ R,

and substituting this into previous displayed equation gives
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T/\Tk
ES, [/ e Mg(®)dt + 1{72Tk}6)\Tkvn—k(q)Tk):|
0
T/\Tk—l
= E%, [/ e Mg(®)dt + 1{T2Tk_1}€_/\Tk‘1 (JUn—k)(‘I)Tkka;—l)}
0

T AT
2 Efo [/ e tg((I)t)dt + 1{T2Tk_1}€_ k_lvn_k+1(<I>Tk_1):| s
0

since (Jvp—)(P,7) > infy>o(Jop—k) (6, t) = (Jovn—k)(¢) = vp—g+1(p) for every r > 0 and ¢ € R,
and this completes the proof of (A.3) and Proposition 3.2. 0

Proof of Lemma 3.2. Foreveryn > 1,0 < k < n, and € > 0, we can write

{Tn,{-: > Tk} = {Tn,{-: > TlaTn,e > Tk:} = {rn,a/Q(q)O) > TlaTn,e > Tk}
= {rn,e/Q(q)O) >N, T+ Tn—1,e/2 © 9T1 > Tk} = {Tn,s/Z((I)O) > T, Tn—1,e/2 ° 0T1 > T — Tl}
= {rn,£/2(q)0) > Tlan—1,5/2 o 6T1 >Tgq0 HTI} = {Tn,E/Q((I)O) > Tl} N ({Tn—l,a/Q > kal} o 9T1) :

Repeating this k¥ — 1 times gives

{Tne > Ti} = {rpe2(®0) > T1} N ({rn_1,/4(®0) > T1} 0 01) N ({T—2./a > Th—2} 0 Or,)
= {rne/2(®0) = T} N ({rp_1,/a(®0) > T1} 0 01,) N ({rp_2./8(P0) > T1} 0 61,)

N ({Tn-3e/8 > Th3} 0 O1,) =
= {Tne/2(®0) > Ti} N ({rn-1./4(P0) > T1} 0 01,) N ({rn_2.e/s(Po) > Th} 0 0r,)

Nn...N ({rn_kHﬁ/Qk((I)o) > Tl} o 0ka1> N ({Tn_kﬁm > To} o QTk)

= lhl ({Tnf&s/?f“ (®o) > Tl} ° 0T£> = kﬂl {rnff,a/ﬂ*'l(q)Tg) > Tov1 — Tz} :
£=0 £=0

because Tp = 0 and {7,,_j, . jor > To} = Q. 1f 0 <k <n — 1, then

{Tk < Tne <Tpt1} ={mne > Ti} \{mne > Tht1}

k-1 k
= ﬂ {’“n—&E/Z“l(@Tz) = Top1 — Tf} \ ﬂ {Tn—e,a/zm(qm) >Tp1 — Te}
£=0 (=0
k-1
- <ﬂ {Tnf&s/Z“l(q’Tz) > Ty — Tf}) m {Tnfk,s/Qk‘H((I)Tk) < Tky1 — Tk} ,
=0

which immediately implies that 7, c (7, <7, . <711} = [Tk + T ejort1 (P11 {13, <7, . <71} Finally,
(e ATkt 1) L m 21} = Toe T e<tinn} T Tht1lim >Ti)
= [Tk T Tk 2k (@Tk)} Lny<rne<Tiin) + Do, o>7 )
= [(Tk + T jorrt (P1)) A Tk+1] Uny<re<Tiiny T | Tk + Tnpeyomtn (R1y)) A Thotr | 1ir, o >Ti)
- [(Tk + Tn—k,e/2k+1 ((I)Tk)) A TkJrl] 1{Tn,sZTk}7

because T, < 7 = T, + 1y, cjor+1(P1y,) < Thy1 on {T}, < 7, e < Tky1} and by the first part of the
lemma T, + 7, . jok+1 (P13,) > Thr1 on {7 e > Ty} O
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Proof of Proposition 3.3 (by induction on n). For n = 0, the last displayed equation of Proposition 3.3 be-
comes 0 < 0+e¢, which is obviously true for every € > 0. Suppose now that the last inequality of Proposition
3.3 holds for every € > 0 for some n > 0. Note that

i Tnt1,e/2(®0), it 7rpi1/2(Po) < T,
+1l,e — .
n+l,e Ty + Tn.e/2 © 9T17 if 7’n+1’€/2(<1)0) > 1T,

and Tnt1l,e Ny = Tn+1’€/2((1)0)/\T1, {Tn+175 > Tl} = {Tn+1’€/2((1)0) > Tl}, and Tntle = Ty +Tn,5/209T1
on {7,+1, > 11} by Lemma 3.2. Therefore,

Tnt1,e NTnt1
ES, [ / 6_”9(<I>t)dt]
0
Tn+1,5/\T1 A Tn+l,5/\Tn+1 A
=E%, [/o e g(Py)dt + 1{Tn+175>T1}/T e Q(CI’t)dt]
1

5 Tnt1,e/2(P0)AT Y (11 +Tn e y2007 N Th41 Y
_ R /0 NGt B+ 1y, o)) /T e Mg(@,)dt| .
1

Inside the last expectation, we take conditional expectation with respect to Fr,. By the strong Markov
property of process ® at the first jump time 77, the conditional expectation of the last integral with respect
to Fr, becomes

EZ,

[Tl +Tn,5/209T1}/\Tn+1
/ e Mg(®;)dt
T

Tn,E/Q/\T’ﬂ
.7-"T1] = e MRS, [(/ e’\tg(cbt)dt> o Or,
0

. Tn,E/Z/\Tn €
— e MRS [/ e_Atg(@t)dt} < e <'Un((I)T1) + *)
0

-

1

2

by the induction hypothesis. Therefore,

Tn+1,s/\Tn+1
ES [/ e_)‘tg(@t)dt]
0

¢ Tn+1,a/2(<I>O)AT1 At AT £
<e|f Mgt B+ 1, uworsrye T (un(@r) + )
Tni1,e/2(P0)ATL €
<E%, /0 e Mg(p(t, Bo))dt + 1{rn+1,5/2(<1>0)2T1}€_AT1Un(q’Tl) +3
€ e €
= (Jon) (P, Tnt1,e/2(0)) + 5 < vpy1(9) + 5T3= Unt1(9) +¢,
which completes the proof of Proposition 3.3. O

Proof of Lemma 3.3. Suppose that w : R’ — R is concave and bounded between —1 and 0. Then for every
r >0,

(Jw)(é,r) = /O T OB g 4 o(Kw)] (ol $))dt > /0 T O\~ A

Vv

—/ (A4 Ng)e~ A FAo)tqp = 1.
0
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Taking the infimum over r > 0 gives —1 < inf,>o(Jw)(¢p,7) = (Jow)(¢) < (Jw)(¢,0) = 0. Moreover,
g(+) is affine and therefore concave. Because ¢ — ¢(t, @) is affine for every fixed ¢ > 0, and w(-) is
concave, the mapping ¢ — (Kw)(p(t,¢)) = [pw (@(t,qﬁ);\—ég—:(z)) vo(dz) is concave. Therefore,

¢ +— (Jw)(¢, ) is concave for every fixed r > 0. Because the pointwise infimum of every family of concave
functions is also concave, the mapping ¢ — (Jow)(p) = inf,>o(Jw)(¢, ) is concave. If w;(-) < wa(-),
then (Kwp)() < (Kuws)(-), (Jun)(,) < (Jwn)(-,-), and (Jown)(-) < (Jows)(-)

Let wy(-) and wy(-) be two bounded functions on R’". Fix any € > 0 and ¢ € R’. Then there are

constants réi)(gb), i = 1,2 such that (Jw;) (¢, rf;i)(qb)) < (Jow;)(¢) + € for every i = 1,2. Then
(Jown) (@) = (Jowa)(6) < (Jwn)(¢, 7)) = (Jws)(6, 7 (¢)) + €

) (4) s ) (¢) s
— / e~ PN g 1 xo(Kwn)]((t, 6))dt — / e~ ORI g 1 X (Kwa)](p(t, 6))dt + ¢
0 0

(2)
Te (¢) [e'e)
- / Xoe” AT K (w1 — wa)) (p(t, ¢))dt + & < |Jwy — wa| / Age~ M T20)tqp 4 ¢
0 0

Ao
A+ Ao

= ||w1 —wzH + €.

On the other hand,

(Jow1)(9) — (Jowz)(¢) = (Jwi)(¢,rM($)) — & — (Jw2) (¢, 7V (9))

r(¢)

) (9)
= / e~ AT g 4 X (Kw)]((t, ¢))dt — /0 e~ T g+ X (Kwa)](p(t, ¢))dt —

(1)
re () 00
_ / Noe= ALK (1 — wo)) (ot @)t — & > —||wy — ws] / Age— Oty — ¢
0

= — (w1 — wo| A
- I TN '

Hence we have

A
[(Jown)(@) = (Jowz) (9)] < 5 +°A |wy —wsl +&  forevery e > 0and ¢ € R
0

Letting first € | O and then taking the supremum over ¢ € R’ gives the desired inequality. Because
Xo/(A+Xo) € (0,1), operator .Jy is a contraction on the collection of bounded functions w : R — R. [

Proof of Lemma 3.4. Note that, since p(u, (s, ®)) = ¢(s + u, @) for every s,u > 0 and ¢ € R'", we can
write (Jow)(¢(s, ¢)) as

uf | " O 4 A (K w)) (s (5, 6)))du = in / T OBl A (K w)) (s -+, 6))du =
0 0

r>0 r>0
S+r r
inf [ e PO g A (Kuw)](p(u, ¢))du = X0 inf [ =AM g 400 (Kw)] (p(u, ¢))du,

and (Jw)(¢, s) + e~ A5 (Jow) (o(s, ¢)) equals

/os e~ 0205 1 X (Kw)]((u, ¢))du + e~ O (Jow) (o(s, )
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= / e O (K)ol 6))du = (Jw)(6).
r>s Jo

If (Jow)(p(s, $)) < 0 forevery 0 < s < t, then (Jw)(¢,s) > (Jw)(¢,s) + e~ At (Jow)(p(s, ¢)) =

(Jsw)(¢p) = inf,>s(Jw)(p,r) for every 0 < s < t. Therefore, (Jsw)(¢p) = inf,>s(Jw)(p,T)

inf,>¢(Jw)(¢p,r) = (Jrw)(¢) for every 0 < s < . O

Proof of Lemma 3.5. Let us define

. Ta(fbo), if 7”5((1)0) < T1
Te = ~ . , €>0.
T+ 70 (9T1, if Ta(q)o) >T;

Because ¢ — V (¢(t, ¢)) is continuous for every ¢ € R, we have V (p(r:(¢), ¢)) > —eif r-(¢) < oo and
V(®7.) > —e on {7 < oo}, since ?El[TanH)(?E) = [T, + rg(q)Tn)]l[TanH)(ﬁ), and

L <o} V(®2) =D 1 1os) TV (@T @) = O L m 1) 7V (0(re(213,), @13,))
n=0 n=0

> (—&) 17 <00}

Therefore, Poo-a.s. 7. < 7. On the other hand, for every n > 0, there is a nonnegative Fr, -measurable
random variable Ry, . such that 7.1i7, 7, )(7c) = (T + Rne)1ir, 7,.1)(7c). Because V(-) is continuous
and t — ®, is right-continuous and has left-limits, ¢ — V' (®;) is right-continuous. Therefore,

(=), 1) (7e) S V(@) g, 1) (Te) = V(@1 4R, )1 10 00) (Te)
= V(e(Rne, ®1,)) 1, 77011)(72)

implies that R,, . > r(®7,) on {7. € [T}, T+1)}. Thus,

[e.o] [e.o]

Telircocy = D (Tn 4 Bu) i, 1) (72) 2 Y (T 4 1e(®r,) iz, 1) (7e) = Telircoo)

Hence, 7. > 7. on {7. < oo} or simply 7. > 7.. This proves that Po.-a.s. 7. = 7., and without loss of

generality we can take R, . = 7-(®7,). O

Proof of Proposition 3.4. The result holds for n. = 0. Suppose that for some n > 0 we have EZ [M, a7, ] =
ES [Mp)] for every ¢ € R, ¢ > 0, and (F;)¢>o-stopping time 7. Fix any ¢ € R, ¢ > 0, and (F)>0-
stopping time 7. Then
Efo [MT/\TE/\TR+1] = Ego [MT/\TE/\Tn + 1{7/\T82Tn} (Mr/\rg/\TnH - MTn)]
= Ego [MT/\TE/\TTL] + Ego [1{T/\T52Tn} (MT/\Tg/\Tn+1 - MTn)]
= Ego [MO] =+ E(go [1{7'/\7'52Tn} (MT/\TE/\TnJrl - MTn)]

by the induction hypothesis. We shall prove that the second term on the righthand side equals zero. Since
by Proposition 3.1 there exists a nonnegative (F;):>o-measurable random variable R,, such that

(T ANTe A Tn+1)1{T/\T52Tn} = [(Tn + Rn) A TnJrl]l{T/\TEZT"}a
(T A TE)]‘{TnST/\Tg<Tn+1} = (Tn + Rn)]‘{TnST/\Tg<Tn+1}7

Lrnr>Tiy = Yrnre 1y Mt Ru> T}

26



L, <rare<Tniay = Yrnre>T YT+ Ry <}

we can write E, [1{7/\752Tn} (MT/\TE/\Tn+1 - MTn)] as

TATeNT 41
S, [1{7A762Tn} (/ e Mg(®y)dt + e NNV (D p ) — G_AT”V(Q’Tn))]
Ty
T/\Tg/\Tn+1 )\ )\T
= E(go |:1{7'/\7'52Tn} (/T e tg((I)t)dt + 1{7’/\7'52Tn+1}€_ n+lv(q>Tn+1)
+ 1{7/\TE<Tn+1}ei)\(T/\TE)V((I)T/\Ts) - eATnV(q)Tn))]

n

(Tn+Rn)/\Tn+1 v AT
= E(go 1{7'/\7'52Tn} / e g(@t)dt + 1{Tn+Rn2Tn+1}e_ n+1 V(CI)Tn+1)
T,
+ Ur g moer, e V(D 1R,) - e_AT"V(‘I)Tn)H

(Tn+Rn)/\Tn+1
/ e MT) g(o(t — Ty, B, )dt

n

= Efo ll{T/\TEZTn}e_ATn (
)\1 dVl

+ 1{Rn2Tn+1—Tn}6_>\(Tn+1_T")V (SO(Tn—l-l — Tna (I)Tn))\OdVO<Zn+1)>

+ 1{Rn<TrL+17Tn}€7)\RnV(SO(RT“ (an)) - V((PTH)>

Because the random variables Lirar>Toys I R, ®1, are Fr,-measurable, and since 1,11 — 7}, and
Zn+1 are independent of Fr,, with exponential distribution with rate Ag and with distribution vy under Py,
respectively, taking the conditional expectation with respect to Fr,, inside the above expectation gives

F, }

+ P8 {Ths1 — Tp > Ry | Fr, Y MV (o(Rn, @1,,)) — V<<I>Tn>>] :

EZ,

N [ o Bof(Tot1=Tn)
1{7’/\7'52Tn}e " ES /0 e g(go(t?q)Tn))dt

A dv
A(Tps1—Tn 1 diy
+ 1R, Tpy—Tpe Y <<P(Tn+1 — T, ‘I’Tn))\O(M)(ZnH))

Ry
K, [HWZM&*T" (/ e g (p(t, @, )
0

n 67(/\+/\0)an(§0(an o)) — V(@Tn)>] )
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Ry
_EY, [umzmem ( [ 00 vl et
0

. e—(A+>\0)R”V(<P(Rm D)) — V((I)Tn)>] )

ES, [mmﬂn}e”ﬂ ( (JV) (@1, Ra) + e OOy (R, D7, ) —v<<1>Tn>)] ,
(Jr, V)(®T,,) by Corollary 3.3

E% [Lramsmye ™ (U, V)(@r,) = V(@1,))]

Because

(T AT m<rnr<Tniny = (Tn + Ro)Yr,<rnr <y}
Tel{Tn§TE<Tn+1} = [Tn + r5(®Tn)]1{Tn§Tg<Tn+1}7
where r.(+) is defined as in Lemma 3.5, and since 7 A 7. < 7., we have R,, < r.(®p )on{T, <7 AT <
T,+1}. However, since R,, and r-(®7, ) are Fr, -measurable, we must also have R,, < r.(®7,) on {TAT. >
T, }. Because V(p(s, @r,)) < —e < 0forevery 0 < s < r.(®r, ), we also have V(¢(s, Pr,)) < —e <0

forevery 0 < s < R, on {7 A 7. > T, }. Then Corollary 3.3 guarantees that (Jz,V)(®7,) = V(P1,) on
{r A 1. > T,,} and we finally have

EZ [Lrnroty (Monnntr = Mr,)] = B& |Lnrsnye ™ (Jr,V)(@1,) = V(@1,)] =0,
which completes the proof of Proposition 3.4. O

Proof of Corollary 3.4. Observe that since ||V|| < 1 by Corollary 3.2, we have | Miar. a1, | < 1—|—f0T” e upiH dy
for every ¢ > 0. On the other hand, since 7T}, is an (F;);>o-stopping time, the derivations on page 4 show
that

(1- [ e aldu| = EIS(T, - ©)1(1,0)] - FOP(T, > ©)
(T, — ©)™1y1, >0y <E[T) | T, > O]P{T,, > ©} <E[I} | T), > O]
<E[(®+T,)"] < 2" 'E[O" +T™] < o,

where fn is the n-th arrival time of a Poisson process with arrival rate A\; under P, and the last inequality
follows from that all of the moments of an Erlang distribution are finite. Therefore, sup;> || Miar.aT, || is

bounded from above by the integrable random variable 1 + f T *’\”<I>( )du, and { Miar. a1, , Fi; t > 0} is
uniformly integrable under P,
Fixany0 < s <tand F € ]—"S. Let us define 7 = {1p + slg\ p. By Proposition 3.4,

Eoo [MS/\Tg/\Tn] = IEoo [MO] = Eoo [MT/\Tg/\Tn] = Eoo [Mt/\rg/\Tan + Ms/\rg/\Tn 1Q\F]
= Eco [Minr. a1, 17] + Boo [Mapr.az, 1o\

which can be rearranged into Eoo [Msar a7, 1F] = Eco[Minrat, 1F] = Eoo [Eco(Miar.aT, | Fs)1F|. Be-
cause I' € F; is arbitrary, we conclude that Eoo [Minr a7, | Fs] = MsprontT, - O
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