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ABSTRACT

Contributions to the Theory of Optimal Stopping

for One–Dimensional Diffusions

Savas Dayanik

Advisor: Ioannis Karatzas

We give a new characterization of excessive functions with respect to arbitrary

one–dimensional regular diffusion processes, using the notion of concavity. We show

that excessive functions are essentially concave functions, in some generalized sense,

and vice–versa.

This, in turn, allows us to characterize the value function of the optimal stop-

ping problem, for the same class of processes, as “the smallest nonnegative concave

majorant of the reward function”. In this sense, we generalize results of Dynkin–

Yushkevich for the standard Brownian motion. Moreover, we show that there is

essentially one class of optimal stopping problems, namely, the class of undiscounted

optimal stopping problems for the standard Brownian motion. Hence, optimal stop-

ping problems for arbitrary diffusion processes are not inherently more difficult than

those for Brownian motion.

The concavity of the value functions also allows us to draw sharper conclusions

about their smoothness, thanks to the nice properties of concave functions. We can

therefore offer a new perspective and new facts about the smooth–fit principle and

the method of variational inequalities in the context of optimal stopping.

The results are illustrated in detail on a number of non–trivial, concrete optimal

stopping problems, both old and new.
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Chapter 1

Introduction

The focus of this study is the optimal stopping of one–dimensional diffusion processes.

Let (Ω,F ,P) be a complete probability space with a standard one–dimensional Brow-

nian motion B = {Bt; t ≥ 0}. Suppose that we have a one–dimensional diffusion

process X with state space I ⊆ R, on the same probability space, and with dynamics

dXt = µ(Xt)dt+ σ(Xt)dBt, (1.1)

for some Borel functions µ : I → R and σ : I → (0,∞) defined on I. We assume

that I is an interval with endpoints −∞ ≤ a < b ≤ +∞. Throughout this study, we

shall also assume that X is regular in (a, b), i.e. X reaches y with positive probability

starting at x, for every x and y in (a, b). We shall denote by F = {Ft} the natural

filtration of X.

Let β ≥ 0 be a constant, and h(·) be a Borel function such that Ex

[
e−βτh(Xτ )

]
is

well–defined for every F–stopping time τ and x ∈ I. By convention, we assume

f(Xτ (ω)) = 0 on {τ = +∞}, for every Borel function f(·).

Finally, we denote by

V (x) , sup
τ≥0

Ex

[
e−βτh(Xτ )

]
, x ∈ I, (1.2)
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the value function of the optimal stopping problem with reward function h(·) and

discount rate β, where the supremum is taken over all F–stopping times. The optimal

stopping problem is to find the value function, as well as an optimal stopping time

τ ∗ for which the supremum is attained, if such a stopping time exists.

One of the best known characterizations of the value function V (·) is given in terms

of β–excessive functions (with respect to the process X), namely, the nonnegative

functions f(·) that satisfy

f(x) ≥ Ex

[
e−βτf(Xτ )

]
, for every F–stopping time τ and x ∈ I. (1.3)

For every β–excessive function f(·) majorizing h(·), (1.3) implies that f(x) ≥ V (x),

x ∈ I. On the other hand, thanks to the strong Markov property of diffusion pro-

cesses, it is not hard to show that V (·) is itself a β–excessive function. Namely,

Theorem 1.1 (Dynkin [2]). The value function V (·) of (1.2) is the smallest β–

excessive (with respect to X) majorant of h(·) on I, if h(·) is lower semi–continuous.

This characterization of the value function often serves as a verification tool. It

does not however describe how to calculate the value function explicitly for a general

diffusion process. The common practice in the literature is therefore to guess the

value function, and then to put it to the test using Theorem 1.1.

One special optimal stopping problem, whose solution for arbitrary reward func-

tions is perfectly known, was studied by Dynkin and Yushkevich [3]. These authors

study the optimal stopping problem of (1.2) under the following assumptions:

X is a standard Brownian motion starting in a closed

bounded interval [a, b], and is absorbed at the boundaries

(i.e. µ(·) ≡ 0 on [a, b], σ(·) ≡ 1 on (a, b), and σ(a) = σ(b) =

0, and I ≡ [a, b] for some −∞ < a < b < ∞). Moreover,

β = 0, and h(·) is a bounded Borel function on [a, b].


(DY)

Their solution relies on the following key theorem, which characterizes the exces-

sive functions with respect to one–dimensional Brownian motion.
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Theorem 1.2 (Dynkin and Yushkevich [3]). Every 0–excessive (or simply, excessive)

function for one–dimensional Brownian motion X, i.e., every nonnegative function

with the property (1.3), is concave and vice–versa.

In conjunction with Theorem 1.1, this result implies the following

Corollary 1.1. The value function V (·) of (1.2) is the smallest nonnegative concave

majorant of h(·) under the assumptions (DY).

In this study, we generalize the findings of Dynkin and Yushkevich for the standard

Brownian motion to arbitrary one–dimensional, regular diffusion processes.

We shall show that the collection of excessive functions for a diffusion process

X coincides with the collection of concave functions in some suitably generalized

sense (cf. Proposition 3.1). A similar concavity result will also be established for the

β–excessive functions (cf. Proposition 4.1 and Proposition 5.1).

Those explicit characterizations of excessive functions allow us to describe the

value function V (·) of (1.2) in terms of generalized concave functions, in a manner

similar to Theorem 1.2 (cf. Proposition 3.2 and Proposition 4.2). The new charac-

terization of the value function, in turn, has important consequences.

The straight–forward connection between generalized concave functions and or-

dinary concave functions, will reduce the optimal stopping problem for arbitrary

diffusion processes to those for the standard Brownian motion (cf. Proposition 3.3).

Therefore, the “special” solution of Dynkin and Yushkevich, in fact, becomes a fun-

damental technique for solving the optimal stopping problems for any general one–

dimensional regular diffusion process.

The nice properties of concave functions, summarized in Appendix A, will help

us state and prove necessary and sufficient conditions about the finiteness of value

functions, and the existence and the characterization of optimal stopping times, when

the diffusion process is not contained in a compact interval, or when the boundaries



CHAPTER 1. INTRODUCTION 4

are not absorbing (cf. Proposition 5.2 and Proposition 5.8)

We shall also show that concavity and minimality properties of the value function

determine its smoothness. This will let us understand the major components of the

method of Variational Inequalities, which we briefly review in Subsection 7.2.1. We

offer, for example, a new exposition and, we believe, a better understanding, of the

smooth–fit principle, which is crucial to this method. It is again the concavity of the

value function that helps to unify many of the existing results in the literature about

the smoothness of V (·) and the smooth–fit principle.

Preview: We overview the basic facts about one–dimensional diffusion processes in

Chapter 2. Basic facts about concave functions and their generalizations are collected

in Appendix A. It is shown there that “generalized” concave functions possess all the

well–known properties of “ordinary” concave functions, under suitable conditions.

We solve undiscounted and discounted stopping problems for a regular diffusion

process, stopped at the first exit from a given closed and bounded interval, in Chap-

ter 3 and Chapter 4, respectively. In Chapter 5, we study the same problem when

the state–space of the diffusion process is an unbounded interval, or its boundaries

are not absorbing.

The results are used in Chapter 6 to treat optimal stopping problems recently

published in the literature. Chapter 7 is where we discuss further consequences of the

new characterization for the value functions. We especially address the smoothness

of the value function, and take a new look at the associated variational inequalities.
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Chapter 2

One–Dimensional Regular

Diffusion Processes

We assume that X is a one-dimensional regular diffusion of the type (1.1), on an

interval I. We shall assume that (1.1) has a (weak) solution, which is unique in the

sense of the probability law. This is, for example, guaranteed, if µ(·) and σ(·) satisfy

the condition ∫
(x−ε,x+ε)

1 + |µ(y)|
σ2(y)

dy <∞, for some ε > 0, (2.1)

at every x ∈ int(I) (Karatzas and Shreve [7, 329–393]), together with precise descrip-

tion of the behavior of the process at the boundaries of the state–space I. If killing

is allowed at time ζ, then the dynamics in (1.1) are valid for 0 ≤ t < ζ. We shall

however assume that X can only be killed at the endpoints of I which do not belong

to I.

Define τr , inf{t ≥ 0 : Xt = r} for every r ∈ I. A one–dimensional diffusion

process X is called regular, if for any x ∈ int(I) and y ∈ I, we have Px(τy < +∞) > 0.

Hence, the state–space I cannot be decomposed into smaller sets from which X could

not exit (the sufficient condition (2.1) for the existence of the unique weak solution

of (1.1) also guarantees that X is a regular process). The major consequences of this
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assumption on X are listed below: their proofs can be found in Revuz and Yor [11,

pages 300–312].

Let J , (l, r) be a subinterval of I such that [l, r] ⊆ I, and σJ is the exit time of

X from J . If x ∈ J , then σJ = τl ∧ τr, Px–a.s. For x /∈ J , then σJ = 0, Px–a.s.

Proposition 2.1. If J is bounded, then the function mJ(x) , Ex[σJ ], x ∈ I is

bounded on J . In particular, σJ is a.s. finite, and Px(τl < τr) + Px(τl > τr) = 1,

x ∈ J .

Proposition 2.2. There exists a continuous, strictly increasing function S(·) on I

such that for any l, r, x in I, with a ≤ l < x < r ≤ b, we have

Px(τr < τl) =
S(x)− S(l)

S(r)− S(l)
. (2.2)

Any other function S̃ with the same properties is an affine transformation of S, i.e.,

S̃ = αS + β for some α > 0 and β ∈ R. The function S is unique in this sense, and

is called the “scale function” of X.

If the killing time ζ is finite with positive probability, and limt↑ζ Xt = a (say),

then limx→a S(x) is finite. We shall define S(a) , limx→a S(x), and we will say

S(Xζ) = S(l). With this in mind, we have

Proposition 2.3. A locally bounded Borel function f is a scale function, if and only

if the process Y f
t , f(Xt∧ζ∧τa∧τb), t ≥ 0, is a local martingale. If X can be further

represented by the stochastic differential equation (1.1), then

S(x) =

∫ x

c

exp

{
−
∫ y

c

2µ(z)

σ2(z)
dz

}
dy, x ∈ I, (2.3)

for any arbitrary but fixed c ∈ I.

The scale function S(·) satisfies

S ′(x) = exp

{
−2

∫ x

c

µ(u)

σ2(u)
du

}
, on int(I),
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and we shall define

S ′′(x) , −2µ(x)

σ2(x)
S ′(x), x ∈ int(I).

Let us now introduce the second–order differential operator

Au(·) ,
1

2
σ2(·)d

2u

dx2
(·) + µ(·)du

dx
(·), on I, (2.4)

associated with the infinitesimal generator of X. As an ordinary differential equation,

Au = βu (2.5)

always has two linearly independent, positive solutions. These are uniquely deter-

mined up to multiplication, if we require one of them to be strictly increasing and

the other to be strictly decreasing. We shall denote the increasing solution by ψ(·)

and the decreasing solution by ϕ(·). In fact, we have

ψ(x) =


Ex[e

−βτc ], if x ≤ c

1

Ec[e−βτx ]
, if x > c

 , and ϕ(x) =


1

Ec[e−βτx ]
, if x ≤ c

Ex[e
−βτc ], if x > c

 , ∀x ∈ I,

for any arbitrary but fixed c ∈ I (cf. Ito and McKean [5, pages 128–129]). Solutions of

(2.5) in the domain of infinitesimal operator A are obtained as linear combinations of

ψ(·) and ϕ(·), subject to appropriate boundary conditions imposed on the process X.

If an endpoint is contained in the state–space I, we shall assume that it is absorbing;

and if it is not contained in I, we shall assume that X is killed if it can reach the

boundary with positive probability. In either case, the boundary conditions on ψ(·)

and ϕ(·) are ψ(a) = ϕ(b) = 0. For the complete characterization of ψ(·) and ϕ(·)

corresponding to other types of boundary behavior, refer to Ito and McKean [5, pages

128–135]. Note that the Wronskian determinant

W (ψ, ϕ) ,
ψ′(x)

S ′(x)
ϕ(x)− ϕ′(x)

S ′(x)
ψ(x) (2.6)
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of ψ(·) and ϕ(·) is a positive constant. One last useful expression is

Ex

[
e−βτy

]
=


ψ(x)

ψ(y)
, x ≤ y

ϕ(x)

ϕ(y)
, x > y

 . (2.7)
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Chapter 3

Undiscounted Optimal Stopping

Suppose we start the diffusion process X of (1.1) in the closed and bounded interval

[c, d] contained in the interior of the state–space I, and stop it as soon as it reaches

one of the boundaries c or d. Let the function h : [c, d] → R be bounded, and set

V (x) , sup
τ≥0

Ex[h(Xτ )], x ∈ [c, d]. (3.1)

We want to characterize V and find an optimal stopping time τ ∗ such that V (x) =

Ex[h(Xτ∗)], x ∈ [c, d], if such τ ∗ exists. If h ≤ 0, then trivially V ≡ 0, and τ ≡ ∞ is

an optimal stopping time. Therefore, we shall assume supx∈[c,d] h(x) > 0.

Following the spirit of Dynkin and Yushkevich [3, pages 112–126], we shall first

characterize the class of excessive functions. As shown in Theorem 1.1, these play a

fundamental role in optimal stopping problems.

To motivate what follows, let U : [c, d] → R be an excessive function of X.

Then, for any stopping time τ of X, and x ∈ [c, d], we have U(x) ≥ Ex[U(Xτ )]. In

particular, if x ∈ [l, r], some subinterval of [c, d], then we may take τ = τl ∧ τr, where

τr , inf{t ≥ 0 : Xt = r}. Thanks to the regularity of X, we have

U(x) ≥ Ex[U(Xτl∧τr)] = U(l) · Px(τl < τr) + U(r) · Px(τl > τr), x ∈ [c, d].

One can argue that u1(x) , Px(τl < τr) and u2(x) , Px(τl > τr) are the unique
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solutions of Au = 0 in (l, r), with boundary conditions u1(l) = 1 − u1(r) = 1 and

1 − u2(l) = u2(r) = 1, respectively. The scale function S(·) of X and the constant

function 1 are two familiar independent solutions of the second order ODE, Au = 0.

Using the boundary conditions, one can then show, in terms of S(·) and 1, that

Px(τl < τr) =
S(r)− S(x)

S(r)− S(l)
, and Px(τl > τr) =

S(x)− S(l)

S(r)− S(l)
, x ∈ [l, r].

After plugging these identities into the above inequality, we finally witness that

U(x) ≥ U(l) · S(r)− S(x)

S(r)− S(l)
+ U(r) · S(x)− S(l)

S(r)− S(l)
, x ∈ [l, r].

This tells us that every excessive function of X is S–concave on [c, d] (see Appendix A

for a detailed discussion). In the case that X is a standard Brownian motion, Dynkin

and Yushkevich [3] showed that the reverse is also true. We shall next show that the

reverse is true for an arbitrary diffusion process X.

Let S(·) be the scale function of X as above. Remember that S(·) is strictly

increasing and continuous on I. Since, by our choice of c and d, the process reaches

c and d in finite time with positive probability, we have −∞ < S(c) < S(d) <∞.

Proposition 3.1 (Characterization of Excessive Functions). A function U : [c, d] →

R is nonnegative and S–concave on [c, d], if and only if

U(x) ≥ Ex[U(Xτ )] (3.2)

holds for every x ∈ [c, d] and every stopping time τ of X.

This, in turn, allows us to conclude the main result of this chapter, namely

Proposition 3.2 (Characterization of the Value Function). The value function V (·)

of (3.1) is the smallest nonnegative, S–concave majorant of h(·) on [c, d], in the sense

that, for any other nonnegative S–concave majorant U(·) of h(·) on [c, d], we have

U(·) ≥ V (·).



CHAPTER 3. UNDISCOUNTED OPTIMAL STOPPING 11

The S–concavity of the value function V (·) of (3.1) was already noticed by Karatzas

and Sudderth [8]. We defer the proofs of Proposition 3.1 and Proposition 3.2 to the

end of the chapter, and discuss their implications first.

It is usually a simple matter to find the smallest nonnegative concave majorant of

a bounded function on some closed bounded interval. Geometrically, it coincides with

the rope stretched from above the graph of function, with both ends pulled to the

ground. On the contrary, it is hard to visualize the nonnegative S–concave majorant

of a function. The following Proposition has therefore some importance, when we

need to calculate V (·) explicitly.

Proposition 3.3. Let W : [S(c), S(d)] → R be the smallest nonnegative concave

majorant of H : [S(c), S(d)] → R, given by H(y) , h
(
S−1(y)

)
. Then we have

V (x) = W
(
S(x)

)
, for every x ∈ [c, d].

Remark 3.1. Since the standard Brownian motion B is on natural scale, i.e. S(x) =

x up to some affine transformation, W (·) of Proposition 3.3 is itself the value function

of some optimal stopping problem of the standard Brownian motion, namely

W (y) = sup
τ≥0

Ey[H(Bτ )] = sup
τ≥0

Ey

[
h
(
S−1

(
Bτ

))]
, y ∈ [S(c), S(d)]. (3.3)

where the supremum is taken over all stopping times of B. Therefore, solving the orig-

inal optimal stopping problem is the same as solving another, with a different reward

function, for a standard Brownian motion. This supports our claim in the intro-

duction, that there is essentially one class of optimal stopping problems for diffusion

processes, namely those for the one–dimensional Brownian motion (see Remark 4.1

also).

The concave characterization of Proposition 3.2 for the value function V (·), to-

gether with the well–known properties of concave functions, allows us to arrive at

important conclusions about the smoothness of V (·) and the existence of an optimal

stopping time.
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Proposition 3.4. If h is continuous on [c, d], then V is continuous on [c, d].

We shall characterize now the optimal stopping time, when it exists. Consider the

optimal stopping region

Γ , {x ∈ [c, d] : V (x) = h(x)}, and define τ ∗ , inf{t ≥ 0 : Xt ∈ Γ}, (3.4)

the time of first–entry into this region. For the proof of the next Proposition, we need

the following

Lemma 3.1. Suppose c ≤ l < x < r ≤ d. Then

Ex[h(Xτl∧τr)] = h(l) · S(r)− S(x)

S(r)− S(l)
+ h(r) · S(x)− S(l)

S(r)− S(l)

Ex[h(Xτr)] = h(r) · S(x)− S(l)

S(r)− S(l)
and Ex[h(Xτl)] = h(l) · S(r)− S(x)

S(r)− S(l)
.

Proof. By definition (see Revuz and Yor [11, pages 300–310]), S is the unique (up

to affine transformations) strictly increasing, continuous function defined in I such

that, for every x ∈ [l, r] ⊂ int(I), we have

Px(τl < τr) =
S(r)− S(x)

S(r)− S(l)
.

Using this and the convention h(Xτ ) ≡ 0 on {τ = ∞}, it is easy to obtain expressions

above.

Proposition 3.5. If h is continuous on [c, d], then τ ∗ of (3.4) is an optimal stopping

time.

Proof. Let U(x) , Ex[h(Xτ∗)], for every x ∈ [c, d]. Obviously V ≥ U , so we need to

prove that V ≤ U . Since V is the smallest nonnegative S–concave majorant of h on

[c, d], it is enough to show that U is a nonnegative, S–concave majorant of h on [c, d].

Since h is continuous, V is continuous by Proposition 3.4. Therefore Γ is a closed

set relative to [c, d], and h(Xτ∗) = V (Xτ∗) on {τ ∗ <∞}. Thus U(x) = Ex[h(Xτ∗)] =

Ex[V (Xτ∗)], for every x ∈ [c, d]. Because V is nonnegative, U is also nonnegative.
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1° We shall show that U is S–concave and continuous on [c, d]. First, observe

that, for x ∈ Γ, we have Px(τ ∗ = 0) = 1, and

U(x) = V (x), ∀ x ∈ Γ. (3.5)

What happens on C , [c, d]\Γ? Since Γ is closed relative to [c, d], C is open relative

to [c, d]. Therefore, C is the union of a countable family, {Jα}α∈Λ, of disjoint open

(relative to [c, d]) subintervals of [c, d]. There are two types of intervals:

Type 1 Interval: Jα = (l, r), l < r for some l, r ∈ Γ. Note that for every x ∈ Jα,

we have τ ∗ = τl ∧ τr if the process starts at X0 = x. Therefore, Lemma 3.1 implies

U(x) = Ex[V (Xτl∧τr)] = V (l) · S(r)− S(x)

S(r)− S(l)
+ V (r) · S(x)− S(l)

S(r)− S(l)
, ∀ x ∈ Jα = (l, r).

(3.6)

We shall define the S–concave function Lα : [c, d] → R by

Lα(x) , V (l) · S(r)− S(x)

S(r)− S(l)
+ V (r) · S(x)− S(l)

S(r)− S(l)
, ∀x ∈ [c, d].

(See Figure 3.1). Clearly U = Lα in Jα. Since Lα(y) = V (y), for y ∈ {l, r}, and V is

S–concave, Proposition A.3 implies that

U = Lα ≤ V on Jα, and, Lα ≥ V ≥ U outside Jα. (3.7)

Introduce Uα : [c, d] → R defined by

Uα(x) , Lα(x) ∧ V (x), ∀ x ∈ [c, d]. (3.8)

(See Figure 3.1). Since both Lα and V are S–concave, Proposition A.5 implies that

Uα is also S–concave on [c, d]. Furthermore, (3.7) implies that

Uα(x) =


U(x), if x ∈ Jα

V (x), if x /∈ Jα

 ≤ V (x), ∀ x ∈ [c, d]. (3.9)

Type 2 Interval: Jα = [c, r) or (l, d], for some l, r ∈ Γ. Consider the case Jα = [c, r)

for some r ∈ Γ (similar considerations apply to the case Jα = (l, d]). For every



CHAPTER 3. UNDISCOUNTED OPTIMAL STOPPING 14

d

((((
((((

((((
((((

((((

(((((
(((

�
�
�##��
�

#
#
#
#
#
#
#
#
#
#
#
#
#

#
#
#
#
#
#
#
#
#
#

�
�
�##��
�

c

Uα

Lα

l

Jα = (l, r)

c r

Lα

Uα
Jα = [c, r)

r

V V

d

Figure 3.1: Type 1 and Type 2 Intervals (cf. Proof of Proposition 3.5). V

is S–concave and Lα is S–linear (i.e., some affine transformation of S). For

ease of visualization, we sketch them as if they were ordinary concave and

affine functions.

x ∈ Jα = [c, r), τ ∗ = τr on {X0 = x}. Lemma 3.1 implies that

U(x) = Ex[V (Xτ∗)] = Ex[V (Xτr)] = V (r) · S(x)− S(c)

S(r)− S(c)
, ∀ x ∈ Jα. (3.10)

Since c ∈ Jα ⊆ C, we have c /∈ Γ, i.e. V (c) > h(c). Because c is absorbing, we in fact

have V (c) = 0∨ h(c). However, 0∨ h(c) = V (c) > h(c) implies that V (c) = 0 > h(c).

Therefore, we can write

U(x) = V (c) · S(r)− S(x)

S(r)− S(c)
+ V (r) · S(x)− S(c)

S(r)− S(c)
, ∀ x ∈ Jα = [c, r). (3.11)

We can define Lα and Uα as above, by replacing every occurrence of l with c. Since

(3.11) is similar to (3.6), all results about Lα and Uα above can be extended to the

second case. In particular, Uα is S–concave on [c, d], and (3.7)–(3.9) remain in force.

Since V ≥ U everywhere, (3.5) and (3.9) imply that

U(x) = V (x) ∧
(
∧α∈Λ Uα(x)

)
, ∀ x ∈ [c, d].

Because V and Uα, α ∈ Λ, are S–concave on [c, d], Proposition A.5 implies that U is

also S–concave on [c, d].

2° Because U is S–concave, and S is continuous on [c, d], U is continuous in

(c, d). To show continuity of U on [c, d], it remains to prove that U is continuous at
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the endpoints c and d. The expressions (3.5) and (3.11) imply that U coincides either

with h or Lα, for some α ∈ Λ, in some non-empty neighborhood of c. Since both h

and Lα are continuous on [c, d], U is continuous at c. Continuity of U at d can be

argued similarly.

3° To complete the proof of Proposition, it remains to show that U majorizes h

on [c, d]. Assume on the contrary that

θ , max
x∈[c,d]

h(x)− U(x) > 0.

Since h is bounded, θ is finite. U + θ is a nonnegative S–concave majorant of h on

[c, d]. Therefore, Proposition 3.2 implies that U+θ ≥ V on [c, d]. Because h and U are

continuous, there exists some x0 ∈ [c, d] where θ is attained, i.e. h(x0) − U(x0) = θ.

Now observe that

V (x0) ≤ U(x0) + θ = U(x0) + h(x0)− U(x0) = h(x0) ≤ V (x0).

Hence x0 ∈ Γ. However, (3.5) implies that U(x0) = V (x0) = h(x0), i.e. θ =

h(x0) − U(x0) = 0, contradicting the assumption θ > 0. Therefore, U ≥ h on

[c, d].

Let W and H be as defined in Proposition 3.3. In Remark 3.1, we point out

that W is the value function of Optimal Stopping problem (3.3) with reward function

H. If h is continuous on [c, d], then H is continuous on the closed bounded interval

[S(c), S(d)]. Therefore, we can talk about the optimal stopping region Γ̃ , {y ∈

[S(c), S(d)] : W (y) = H(y)} of (3.3).

Lemma 3.2. Γ = S−1
(
Γ̃
)
.

Proof. By Proposition 3.3, we have

Γ = {x ∈ [c, d] : V (x) = h(x)} = {x ∈ [c, d] : W
(
S(x)

)
= H

(
S(x)

)
}

=
{
x ∈ [c, d] : S(x) ∈

{
y ∈ [S(c), S(d)] : W (y) = H(y)

}}
= S−1

(
Γ̃
)
.
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Let C̃ , [S(c), S(d)]\Γ̃. Since H and W are continuous, C̃ is open relative to

[S(c), S(d)]. Therefore C̃ is the union of a countable family, {J̃α}α∈eΛ, of disjoint open

(relative to [S(c), S(d)]) subintervals of [S(c), S(d)].

Lemma 3.2 implies that
{
Jα , S−1(J̃α)

}
α∈eΛ is the countable family of disjoint

open (relative to [c, d]) subintervals on [c, d] whose union gives C, as discussed in the

proof of Proposition 3.5. In particular, (l, r) ∈ C̃ for some l, r ∈ Γ̃ if and only if

(S−1(l), S−1(r)) ⊆ C and S−1(l) ∈ Γ, S−1(r) ∈ Γ. Similarly, [S(c), r) ∈ C̃ for some

r ∈ Γ̃ if and only if [c, S−1(r)) ⊆ C and S−1(r) ∈ Γ.

PROOF OF PROPOSITION 3.1. For the proof of sufficiency, if x ∈ [l, r] ⊆ [c, d]

and we set τ = τl ∧ τr in (3.2), Lemma 3.1 gives

U(x) ≥ Ex[U(Xτl∧τr)] = U(l) · S(r)− S(x)

S(r)− S(l)
+ U(r) · S(x)− S(l)

S(r)− S(l)
.

Thus, U is S–concave on [c, d].

To prove the necessity, suppose U : [c, d] → [0,+∞) is S–concave on [c, d]; then

it is enough to show

U(x) ≥ Ex[U(Xt)], ∀ x ∈ [c, d], ∀ t ≥ 0. (3.12)

Indeed, observe that for every x ∈ [c, d] and s, t ≥ 0, the inequality (3.12) and the

Markov property of X imply

U(Xs) ≥ EXs [U(Xt)] = Ex

[
U(Xt+s)

∣∣σ(Xu : 0 ≤ u ≤ s)
]
, a.s.

Hence, {U(Xt)}t∈[0,+∞) is a nonnegative supermartingale, and (3.2) follows then from

Optional Sampling Theorem.

To prove (3.12), let us first show

U(x) ≥ Ex[U(Xρ∧t)], ∀ x ∈ [c, d], ∀ t ≥ 0. (3.13)

where the stopping time ρ , τc ∧ τd is the exit time of X from (c, d).
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First note that, since x = c and x = d are absorbing, i.e. Px{ρ = 0} = 1, for

x ∈ {c, d}, we have Ex[U(Xρ∧t)] = U(x), for every t ≥ 0 and x ∈ {c, d}. Hence (3.13)

holds for x = c and x = d.

Now fix any x0 ∈ (c, d). Since U is S–concave on [c, d], Proposition A.6(ii) shows

that there exists a function L : [c, d] → R in the form of

L(x) = c1S(x) + c2, for all x ∈ [c, d],

where c1 and c2 are constants such that

L(x0) = U(x0), and, L(x) ≥ U(x), ∀ x ∈ [c, d].

Thus, for any t ≥ 0, we have

Ex0 [U(Xρ∧t)] ≤ Ex0 [L(Xρ∧t)] = Ex0 [c1S(Xρ∧t) + c2] = c1Ex0 [S(Xρ∧t)] + c2

Since S(·) is continuous on the closed and bounded interval [c, d], and the process

S(Xt) is a continuous local martingale, the stopped process {S(Xρ∧t), t ≥ 0} is a

bounded martingale, and

Ex0 [S(Xρ∧t)] = S(x0), for every t ≥ 0.

Therefore,

Ex0 [U(Xρ∧t)] ≤ c1Ex0 [S(Xρ∧t)] + c2 = c1S(x0) + c2 = L(x0) = U(x0).

This proves (3.13). We can finally show (3.12). Since Xt = Xσ on {t ≥ σ}, (3.13)

implies that, for every x ∈ [c, d] and t ≥ 0, we have Ex[U(Xt)] = Ex[U(Xρ∧t)] ≤

U(x).

PROOF OF PROPOSITION 3.2. Since τ ≡ ∞ and τ ≡ 0 are stopping times,

we have V ≥ 0 and V ≥ h, respectively. Hence V is nonnegative and majorizes h.

To show that V is S–concave, we shall fix some x ∈ [l, r] ⊆ [c, d]. Since h is bounded,
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V is finite on [c, d]. Therefore, for any arbitrarily small ε > 0, we can find stopping

times σl and σr such that

Ey[h(Xσy)] ≥ V (y)− ε, y = l, r.

Define a new stopping time

τ ,


τl + σl ◦ θτl , on {τl < τr},

τr + σr ◦ θτr , on {τl > τr},

where θt is the shift operator (see Ito and McKean [5], Karatzas and Shreve [7]).

Using strong Markov property of X and Lemma 3.1, we obtain

V (x) ≥ Ex[h(Xτ )] = Ex

[
h(Xτ )1{τl<τr}

]
+ Ex

[
h(Xτ )1{τl>τr}

]
= Ex

[
h(Xτl+σl◦θτl

)1{τl<τr}
]
+ Ex

[
h(Xτr+σr◦θτr

)1{τl>τr}
]

= Ex

[
1{τl<τr}θτlh(Xσl

)
]
+ Ex

[
1{τl>τr}θτrh(Xσr)

]
(Since τx + σx ◦ θτx ≥ τx, Xτx+σx◦θτx

= Xσx ◦ θτx , x = l, r)

= Ex

[
1{τl<τr}EXτl

[
h(Xσl

)
]]

+ Ex

[
1{τl>τr}EXτr

[
h(Xσr)

]]
(From the strong Markov property of X)

= El

[
h(Xσl

)
]
Px{τl < τr}+ Er

[
h(Xσr)

]
Px{τl > τr}

= El

[
h(Xσl

)
]S(r)− S(x)

S(r)− S(l)
+ Er

[
h(Xσr)

]S(x)− S(l)

S(r)− S(l)

≥
[
V (l)− ε

]S(r)− S(x)

S(r)− S(l)
+
[
V (r)− ε

]S(x)− S(l)

S(r)− S(l)

= V (l) · S(r)− S(x)

S(r)− S(l)
+ V (r) · S(x)− S(l)

S(r)− S(l)
− ε.

Since ε > 0 is arbitrary, we conclude that V is indeed a nonnegative S–concave

majorant of h on [c, d]. To complete the proof of Proposition, we have to show that

V is the smallest such function.
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Let U : [c, d] → R be any other nonnegative S–concave majorant of h on [c, d].

Then, Proposition 3.1 implies

U(x) ≥ Ex[U(Xτ )] ≥ Ex[h(Xτ )],

for every x ∈ [c, d] and every stopping time τ . Therefore U ≥ V on [c, d]. This

completes the proof.

PROOF OF PROPOSITION 3.3. Let V̂ (x) , W
(
S(x)

)
, x ∈ [c, d]. Since W is

nonnegative, and majorizes H on [S(c), S(d)], V̂ is nonnegative, and

V̂ (x) = W
(
S(x)

)
≥ H

(
S(x)

)
= h(x), ,∀x ∈ [c, d],

i.e. V̂ majorizes h on [c, d]. Furthermore, if x ∈ [l, r] ⊆ [c, d], l < r, then S(l) < S(r),

S(x) ∈ [S(l), S(r)] ⊆ [S(c), S(d)], and

V̂ (l) · S(r)− S(x)

S(r)− S(l)
+ V̂ (r) · S(x)− S(l)

S(r)− S(l)

= W
(
S(l)

)
· S(r)− S(x)

S(r)− S(l)
+W

(
S(r)

)
· S(x)− S(l)

S(r)− S(l)
≤ W

(
S(x)

)
= V̂ (x),

since W is concave on [S(c), S(d)]. Hence V̂ is a nonnegative concave majorant of h

on [c, d]. Therefore Proposition 3.2 implies V̂ ≥ V .

Next define Ŵ : [S(c), S(d)] → R by Ŵ (y) , V
(
S−1(y)

)
. Since V is nonnegative

and majorizes h on [c, d], Ŵ is also nonnegative, and

Ŵ (y) = V
(
S−1(y)

)
≥ h

(
S−1(y)

)
= H(y), y ∈ [S(c), S(d)],

i.e. Ŵ majorizes H on [S(c), S(d)]. Furthermore, if y ∈ [L,R] ⊆ [S(c), S(d)] for some

L < R, then l , S−1(L) < r , S−1(R), x , S−1(y) ∈ [l, r] ⊆ [c, d], and

Ŵ (L) · R− y

R− L
+ Ŵ (R) · y − L

R− L

= V (l) · S(r)− S(x)

S(r)− S(l)
+ V (r) · S(x)− S(l)

S(r)− S(l)
≤ V (x) = V

(
S(y)

)
= Ŵ (y),
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since, by Proposition 3.2, V is S–concave on [c, d]. Hence Ŵ is a nonnegative concave

majorant ofH on [S(c), S(d)]. SinceW is the smallest of such functions, we have Ŵ ≥

W on [S(c), S(d)]. Therefore, V (x) = V
(
S−1(y)

)
= Ŵ (y) ≥ W (y) = W

(
S(x)

)
=

V̂ (x), for every x ∈ [c, d]. Together with the opposite inequality shown above, this

proves V (x) = V̂ (x) = W
(
S(x)

)
, for every x ∈ [c, d].

PROOF OF PROPOSITION 3.4. Since S is continuous on [c, d], and V is S–

concave on [c, d], Proposition A.1 implies that V is continuous in (c, d), and

V (c) ≤ lim inf
x↓c

V (x), and V (d) ≤ lim inf
x↑d

V (x). (3.14)

Since h is bounded on the closed bounded interval [c, d], V is continuous in (c, d),

and we already have (3.14) at the boundaries. To prove V is also continuous at c and

d, it is enough to show

V (c) ≥ lim sup
x↓c

V (x), and V (d) ≥ lim sup
x↑d

V (x).

Look at c first. Let h̃(y) , maxz∈[c,y] h(y), for every y ∈ [c, d]. Since h is uniformly

continuous on the closed bounded interval [c, d], h̃ is also continuous on [c, d]. Fix

c < y < d. For any x ∈ (c, y) and optimal stopping time τ , we have

{Xτ > y} ⊆ {τy < τ} ⊆ {τy < τc}, on {X0 = x}.

Since h(Xτ ) ≡ 0 on {τ = ∞} by convention, we have

Ex[h(Xτ )] = Ex

[
h(Xτ )1{Xτ≤y}

]
+ Ex

[
h(Xτ )1{Xτ>y}

]
≤ h̃(y) + h̃(d)Px(τy < τc)

= h̃(y) + h̃(d) · S(x)− S(c)

S(y)− S(c)
≤
(
0 ∨ h̃(y)

)
+
(
0 ∨ h̃(d)

)
· S(x)− S(c)

S(y)− S(c)
.

Since the right–hand side no longer depends on τ , we further get

V (x) ≤
(
0 ∨ h̃(y)

)
+
(
0 ∨ h̃(d)

)
· S(x)− S(c)

S(y)− S(c)
.
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Since S is continuous at c, we obtain by taking limit supremum of both sides as x

tends to c

lim sup
x↓c

V (x) ≤ 0 ∨ h̃(y), ∀y ∈ (c, d).

Finally, by letting y tend to c, we get lim supx↓c V (x) ≤ 0 ∨ h̃(c) = 0 ∨ h(c) since h̃

is continuous on [c, d]. However, since c is absorbing, i.e. Pc(Xt = c, ∀t ≥ 0) = 1, we

have V (c) = 0 ∨ h(c). This proves that V is continuous at c. Continuity of V (·) at d

can be shown similarly.
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Chapter 4

Discounted Optimal Stopping

In this chapter, we shall study the discounted optimal stopping problem

V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ [c, d], (4.1)

with β > 0, where the diffusion process X and the reward function h(·) have the

same properties as described in Chapter 3. Namely, X is started in a bounded closed

interval [c, d] contained in the interior of its state space I, and is absorbed whenever

it reaches c or d. Moreover, h : [c, d] → R is a bounded Borel function such that

supx∈[c,d] h(x) > 0 (if h ≤ 0 everywhere, then τ ≡ +∞ is trivially optimal, and

V ≡ 0).

In order to motivate the key result of Proposition 4.1, let U : [c, d] → R be a

β–excessive function with respect to X. Namely, for every stopping time τ of X, and

x ∈ [c, d], we have U(x) ≥ Ex

[
e−βτU(Xτ )

]
. We shall take any subinterval [l, r] of

[c, d], and look closer to the same inequality for any x ∈ [l, r] and for the exit time

τ = τl ∧ τr of X from [l, r]. Since X is regular, we have

U(x) ≥ Ex

[
e−β(τl∧τr)U(τl ∧ τr)

]
= U(l) · Ex

[
e−βτl1{τl<τr}

]
+ U(r) · Ex

[
e−βτr1{τl>τr}

]
, x ∈ [l, r].

One can argue that u1(x) , Ex

[
e−βτl1{τl<τr}

]
and u2(x) , Ex

[
e−βτr1{τl>τr}

]
are the
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unique solutions of Au = βu in (l, r), with the boundary conditions u1(l) = 1,

u1(r) = 0 and u2(l) = 0, u2(r) = 1, respectively. From Chapter 2, let us recall that

the second order differential equation Au = βu has two positive, linearly independent

solutions ψ(·) and ϕ(·) on I, which are strictly increasing and strictly decreasing,

respectively. Using the boundary conditions, one calculates

u1(x) =
ψ(x)ϕ(r)− ψ(r)ϕ(x)

ψ(l)ϕ(r)− ψ(r)ϕ(l)
, u2(x) =

ψ(l)ϕ(x)− ψ(x)ϕ(l)

ψ(l)ϕ(r)− ψ(r)ϕ(l)
, x ∈ [l, r].

Substituting these into the inequality above, then dividing both sides of the inequality

by ϕ(x) (respectively, ψ(x)), we obtain

U(x)

ϕ(x)
≥ U(l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
+
U(r)

ϕ(r)
· F (x)− F (l)

F (r)− F (l)
x ∈ [l, r], (4.2)

and

U(x)

ψ(x)
≥ U(l)

ϕ(l)
· G(r)−G(x)

G(r)−G(l)
+
U(r)

ϕ(r)
· G(x)−G(l)

G(r)−G(l)
, x ∈ [l, r], (4.3)

respectively, where

F (x) ,
ψ(x)

ϕ(x)
, and G(x) , − 1

F (x)
= −ϕ(x)

ψ(x)
, x ∈ [c, d]. (4.4)

The way we chose c and d guarantees that ψ(·) and ϕ(·) never vanish on [c, d], so F (·)

and G(·) are well-defined and strictly increasing. Therefore, we can talk about F– and

G–concave functions (cf. Appendix A) on [c, d]. Observe now that the inequalities

(4.2) and (4.3) imply that U(·)
ϕ(·) and U(·)

ψ(·) are F– and G–concave on [c, d], respectively.

In Proposition 4.1 below, we shall show that the converse is also true.

It is worth pointing out the correspondence between the roles of S(·) and 1 in

the undiscounted optimal stopping, and the roles of ψ(·) and ϕ(·) in the discounted

optimal stopping. The division between the pairs (S(·), 1) and (ψ(·), ϕ(·)) is, in fact,

artificial: Both pairs consist of an increasing and a decreasing solution of the second

order differential equation, Au = βu in I, for the undiscounted (i.e. β = 0) and the
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discounted (i.e. β > 0) versions of the same optimal stopping problems, respectively.

Therefore, the results of Chapter 3 can be restated and proved with only minor (and

obvious) changes.

The key result of the chapter is

Proposition 4.1 (The characterization of β–excessive functions). A function U :

[c, d] → R is nonnegative, and U(·)
ϕ(·) is an F–concave function (equivalently, U(·)

ψ(·) is a

G–concave function), if and only if U(·) is β–excessive, i.e.,

U(x) ≥ Ex[e
−βτU(Xτ )] (4.5)

holds for every x ∈ [c, d] and every stopping time τ of X.

We almost immediately conclude from this the following

Proposition 4.2 (The characterization of the value function). The value function

V (·) of (4.1) is the smallest nonnegative majorant of h(·) such that

V (·)
ϕ(·)

is F–concave

(
equivalently,

V (·)
ψ(·)

is G–concave

)
, on [c, d],

in the sense that, if U(·) is another function with the same properties, then U ≥ V .

The equivalence of the characterizations, in Proposition 4.1 and Proposition 4.2

in terms of F and G, follows from

Lemma 4.1. Let U : [c, d] → R any function. U
ϕ

is F–concave on [c, d] if and only if

U
ψ

is G–concave on [c, d].

Proof. Follows from the definition of concave functions.

Since is hard to visualize the nonnegative F– or G–concave majorant of a function

geometrically, it will again be nice to describe them in terms of ordinary concave

functions. We have the following result:
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Proposition 4.3. Let W be the smallest nonnegative concave majorant of

H ,

(
h

ϕ

)
◦ F−1 : [F (c), F (d)] → R (4.6)

on [F (c), F (d)], where F−1(·) is the inverse of the strictly increasing function F (·).

Then

V (x) = ϕ(x)W
(
F (x)

)
, x ∈ [c, d]. (4.7)

Similarly, let W̃ be the smallest nonnegative concave majorant of

H̃ ,

(
h

ψ

)
◦G−1 : [G(c), G(d)] → R (4.8)

on [G(c), G(d)]. Since G(·) is strictly increasing, G−1(·) is also well-defined. Then

V (x) = ψ(x) W̃
(
G(x)

)
, x ∈ [c, d]. (4.9)

Proof. We sketch the proof of the first part only. Define U : [c, d] → R as U(x) ,

ϕ(x)W
(
F (x)

)
. Since W (·) is a nonnegative, concave majorant of H(·), U(·) turns out

to be a nonnegative majorant of h(·), such that U(·)
ϕ(·) is F–concave on [c, d]. Proposi-

tion 4.2 therefore implies U ≥ V on [c, d].

Next define Ŵ : [F (c), F (d)] → R by

Ŵ (y) ,

(
V

ϕ

)
◦ F−1(y).

Using the properties of V (·) as stated in Proposition 4.2, it is straight–forward to show

that Ŵ (·) is a nonnegative concave majorant of H(·) on [F (c), F (d)]. Therefore, we

have Ŵ ≥ W . This now implies the opposite inequality

U(x) = ϕ(x)W
(
F (x)

)
≤ ϕ(x)Ŵ

(
F (x)

)
= ϕ(x)

V (x)

ϕ(x)
= V (x).

Proof of the second part is similar.
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Remark 4.1. Let B be a one–dimensional standard Brownian motion in [F (c), F (d)]

with absorbing boundaries. Let W and H be defined as in Proposition 4.3. By

Proposition 3.2 of Chapter 3, we have

W (y) ≡ sup
τ≥0

Ey[H(Bτ )], y ∈ [F (c), F (d)]. (4.10)

Similarly, if B̃ is the one-dimensional standard Brownian Motion in [G(c), G(d)] with

absorbing boundaries, and W̃ and H̃ are as in Proposition 4.3, then we also have

W̃ (y) ≡ sup
τ≥0

Ey[H̃(B̃τ )], y ∈ [G(c), G(d)]. (4.11)

As we already pointed out in Remark 3.1, there is essentially only one class of optimal

stopping problems, namely the class of undiscounted optimal stopping problems for

Brownian motion.

Note that F is continuous on [c, d]. Since V
ϕ

is F–concave on [c, d], Proposition A.1

implies that V
ϕ

is continuous in (c, d) and

V (c)

ϕ(c)
≤ lim inf

x↓c

V (x)

ϕ(x)
, and,

V (d)

ϕ(d)
≤ lim inf

x↑d

V (x)

ϕ(x)
.

Because ϕ is itself continuous on [c, d], we conclude that V is continuous in (c, d) and

V (c) ≤ lim inf
x↓c

V (x), and, V (d) ≤ lim inf
x↑d

V (x). (4.12)

Lemma 4.2. If h is continuous on [c, d], then V is also continuous on [c, d].

Proof. Similar to that of Proposition 3.4.

We shall next characterize the optimal stopping rule. Define

Γ , {x ∈ [c, d] : V (x) = h(x)}, and, τ ∗ , inf{t ≥ 0 : Xt ∈ Γ}. (4.13)

We shall need the following
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Lemma 4.3. Let τr , inf{t ≥ 0 : Xt = r}. Then for every c ≤ l < x < r ≤ d,

Ex[e
−β(τl∧τr)h(Xτl∧τr)] = ϕ(x)

[
h(l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
+
h(r)

ϕ(r)
· F (x)− F (l)

F (r)− F (l)

]
,

= ψ(x)

[
h(l)

ψ(l)
· G(r)−G(x)

G(r)−G(l)
+
h(r)

ψ(r)
· G(x)−G(l)

G(r)−G(l)

]
.

Furthermore,

Ex[e
−βτrh(Xτr)] = ϕ(x)

h(r)

ϕ(r)
· F (x)− F (c)

F (r)− F (c)
= ψ(x)

h(r)

ψ(r)
· G(x)−G(c)

G(r)−G(c)
,

and

Ex[e
−βτlh(Xτl)] = ϕ(x)

h(l)

ϕ(l)
· F (d)− F (x)

F (d)− F (l)
= ψ(x)

h(l)

ψ(l)
· G(d)−G(x)

G(d)−G(l)
.

Proof. We have

Ex[e
−β(τl∧τr)h(Xτl∧τr)] = h(l)Ex[e

−βτl1{τl<τr}] + h(r)Ex[e
−βτr1{τl>τr}]

= h(l)Ẽx[e
−βeτl ] + h(r)Ẽx[e

−βeτr ],
where Ẽ is the expected value under the probability measure induced by the finite-

dimensional distribution of the stopped process X̃t , Xτl∧τr∧t in [l, r], and τ̃r are

defined with respect to this stopped process. The last equality follows from the

fact that both X and X̃ are governed by the same dynamics in (l, r). By the same

token, X and X̃ have the same infinitesimal generator A in (l, r). Two processes are

distinguished by the boundary conditions posed on the elements of the domain of

generator for X̃.

If we denote the increasing and decreasing solutions of Au = βu, subject to the

boundary conditions that uniquely determine X̃, by ψ̃(·, l) and ϕ̃(·, r), then we must

have ψ̃(l, l) = ϕ̃(r, r) = 0. Since ψ and ϕ spans all the solutions of Au = βu, one can

check that

ψ̃(x, l) = ψ(x)− ϕ(x)
ψ(l)

ϕ(l)
, and, ϕ̃(x, r) = ϕ(x)− ψ(x)

ϕ(r)

ψ(r)
, ∀x ∈ [l, r].
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According to Chapter 2, we have

Ẽx[e
−βeτl ] =

ϕ̃(x, r)

ϕ̃(l, r)
, and, Ẽx[e

−βeτr ] =
ψ̃(x, l)

ψ̃(r, l)
, ∀x ∈ [l, r].

Therefore

Ex[e
−β(τl∧τr)h(Xτl∧τr)] = h(l)

ϕ(x)− ψ(x)ϕ(r)
ψ(r)

ϕ(l)− ψ(l)ϕ(r)
ψ(r)

+ h(r)
ψ(x)− ϕ(x)ψ(l)

ϕ(l)

ψ(r)− ϕ(r)ψ(l)
ϕ(l)

.

Rearranging the terms will finally give the first two expressions of the Lemma. The

remaining identities can be proved similarly.

Proposition 4.4. If h is continuous on [c, d], then τ ∗ of (4.13) is an optimal stopping

rule.

Proof. Define U(x) , Ex[e
−βτ∗h(Xτ∗)], for every x ∈ [c, d]. We obviously have V ≥ U .

To show the reverse inequality, it is enough to prove that U(·)
ϕ(·) is a nonnegative F–

concave majorant of h(·)
ϕ(·) .

As in the proof of Proposition 3.4, one can show using Lemma 4.3 that U(·)
ϕ(·) can

be written as the lower envelope of a family of nonnegative F–concave functions, i.e.

itself is nonnegative and F–concave. To show that it also majorizes h(·)
ϕ(·) , assume on

the contrary that

θ , max
x∈[c,d]

(
h(x)

ϕ(x)
− U(x)

ϕ(x)

)
> 0, (4.14)

and arrive at a contradiction, namely θ = 0, as in the proof of Proposition 3.4, by

using the fact that U(·)
ϕ(·) + θ is a nonnegative, F–concave majorant of h(·)

ϕ(·) .

In Remark 4.1, we point out the connection between two optimal stopping prob-

lems, our original problem and that of (4.10). It is therefore not surprising that their

optimal stopping regions are also related.

If h is continuous on [c, d], then H will be continuous on the closed bounded

interval [F (c), F (d)]. Therefore the optimal stopping problem of (4.10) has an optimal

stopping rule σ∗ , {t ≥ 0 : Bt ∈ Γ̃}, where

Γ̃ , {y ∈ [F (c), F (d)] : W (y) = H(y)}



CHAPTER 4. DISCOUNTED OPTIMAL STOPPING 29

is the optimal stopping region of the same problem. Γ of (4.13) is related to Γ̃ as in

the following

Corollary 4.1. Suppose h is continuous on [c, d]. Let H and W be as in Proposi-

tion 4.3. Then Γ = F−1
(
Γ̃
)
.

Proof. Follows from Proposition 4.3 as in the proof of Proposition 3.2.

Observe that, since H and W are continuous, C̃ , [F (c), F (d)]\Γ̃ is open relative

to [F (c), F (d)]. Therefore C̃ is a union of countably many disjoint intervals that

are open relative to [F (c), F (d)]. Let
(
J̃α
)
α∈eΛ is the open cover of C̃ by its disjoint

subintervals. Corollary implies that
(
F−1(J̃α)

)
α∈eΛ is the open cover of C by its

disjoint open (relative to [c, d]) intervals. In particular, if J̃α = (l, r) ⊆ [F (c), F (d))],

and l, r ∈ Γ̃, then we have
(
F−1(l), F−1(r)

)
⊆ C and F−1(l) ∈ Γ, F−1(r) ∈ Γ since

F is increasing.

We close this chapter with the proof of Proposition 4.1; that of Proposition 4.2

follows along similar lines of Proposition 3.2.

PROOF OF PROPOSITION 4.1. Sufficiency follows from Lemma 4.3 after a

similar argument as in the proof of Proposition 3.2.

To prove the necessity, suppose U is nonnegative and U
ϕ

is F - concave on [c, d].

As in the proof of Proposition 3.1, thanks to the the strong Markov property of X

and the optional sampling theorem for nonnegative supermartigales, it is enough to

prove that

U(x) ≥ Ex[e
−β(ρ∧t)U(Xρ∧t)], x ∈ [c, d], t ≥ 0, (4.15)

where ρ , inf{t ≥ 0 : Xt /∈ (c, d)}.

Observe that, if x = c or x = d, then Px{ρ = 0} = 1, and, Ex[e
−β(ρ∧t)U(Xρ∧t)] =

U(x), for every t ≥ 0, i.e. (4.15) is true.
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Next fix any x ∈ (c, d). Since U
ϕ

is F–concave on [c, d], Proposition A.6(ii) shows

that there exists some function L : [c, d] → R in the form of

L(y) , c1F (y) + c2, ∀y ∈ [c, d],

where c1 and c2 are constants such that

L(x) =
U(x)

ϕ(x)
, and, L(y) ≥ U(y)

ϕ(y)
, ∀y ∈ [c, d].

Now observe that

Ex[e
−β(ρ∧t)U(Xρ∧t)] = Ex

[
e−β(ρ∧t)ϕ(Xρ∧t)

U(Xρ∧t)

ϕ(Xρ∧t)

]
≤ Ex[e

β(ρ∧t)ϕ(Xρ∧t)L(Xρ∧t)]

= Ex

[
e−β(ρ∧t)ϕ(Xρ∧t)

(
c1F (Xρ∧t) + c2

)]
= c1Ex[e

−β(ρ∧t)ψ(Xρ∧t)] + c2Ex[e
−β(ρ∧t)ϕ(Xρ∧t)], ∀ t ≥ 0.

Because ψ(·) and ϕ(·) are C2[c, d], we can apply Ito’s Rule to e−βtψ(Xt) and e−βtϕ(Xt).

Stochastic integrals become square-integrable martingales since their quadratic vari-

ation processes are integrable. Because Au = βu, u = ψ, ϕ, we obtain

Ex[e
−β(ρ∧t)ψ(Xρ∧t)] = ψ(x) + Ex

[∫ ρ∧t

0

e−βs(A− β)ψ(Xs)ds

]
= ψ(x),

for every t ≥ 0. Similarly, Ex[e
−β(ρ∧t)ϕ(Xρ∧t)] = ϕ(x), for every t ≥ 0. Therefore, we

find

Ex[e
−β(ρ∧t)U(Xρ∧t)] ≤ c1Ex[e

−β(ρ∧t)ψ(Xρ∧t)] + c2Ex[e
−β(ρ∧t)ϕ(Xρ∧t)]

= c1ψ(x) + c2ϕ(x) = ϕ(x)
(
c1F (x) + c2

)
= ϕ(x)L(x) = ϕ(x)

U(x)

ϕ(x)
= U(x).

This proves (4.15).
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Chapter 5

Boundaries and Optimal Stopping

In Chapter 3 and Chapter 4, we assumed that the process is allowed to diffuse in a

closed and bounded interval and is stopped when it reaches the boundaries. There are

many other interesting cases, where the state space may not be a compact subinterval

of R, or the behavior of the process is different near the boundaries.

It is always possible to prove that the value function V (·) must satisfy the prop-

erties of Proposition 3.2 or Proposition 4.2. Additional necessary conditions on V (·)

appear, if one or more boundaries are regular reflecting (for example, V (·) of Chap-

ter 3 should be non–increasing if c is reflecting, and non–decreasing if d is reflecting).

The challenge is to show that V (·) is the smallest function with these necessary

conditions. Proposition 3.1 and Proposition 4.1 meet this challenge when the bound-

aries are absorbing. Their proofs illustrate the key tools. Observe that the local

martingales, S(Xt) and the constant 1 of Chapter 3, and e−βtψ(Xt) and e−βtϕ(Xt) of

Chapter 4, are fundamental in the proofs of sufficiency.

One can almost always show that the concavity of the appropriate quotient of

some nonnegative function U(·) with respect to a quotient of monotone fundamental

solutions of Au = βu, β ≥ 0, implies that U(·) is β–excessive. The main tools

in this effort are Itô’s rule, the localization of local martingales, the lower semi–
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continuity of U(·) (usually implied by concavity of some sort), and Fatou’s Lemma.

Different boundary conditions may necessitate additional care to complete the proof

of superharmonicity.

We shall not attempt to formulate a general theorem that covers all cases. In

this chapter, we state and prove the key propositions for a diffusion process with

absorbing and/or natural boundaries. We shall illustrate how the propositions look

like, and what additional tools we may need, to overcome potential difficulties with

the boundaries.

5.1 Left–boundary is absorbing, and right–bound-

ary is natural.

Suppose the right boundary b ≤ ∞ of the state–space I of X is natural. Let c ∈

int(I). Note that the process X, starting in (c, b), reaches c in finite time with positive

probability. Consider the stopped process Xt, which starts in [c, b), and is stopped

when it reaches c.

Finally, let ψ(·) and ϕ(·) be the increasing and decreasing fundamental solutions

of Au = βu in I, for some constant β > 0 (cf. Chapter 2). Since c ∈ int(I), we

have 0 < ψ(c) < ∞, 0 < ϕ(c) < ∞. Because b is natural, we have ψ(b−) = ∞ and

ϕ(b−) = 0.

Let the reward function h : [c, b) → R be bounded on every compact subset of

[c, b). Finally, define

V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ [c, b).

Let (bn)n≥1 ⊂ [c, b) be an increasing sequence such that bn → b as n→∞. Define

the stopping times

σn , inf{t ≥ 0 : Xt /∈ (c, bn)}, n ≥ 1; and σ , inf{t ≥ 0 : Xt /∈ (c, b)}.
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Note that σn ↑ σ as n → ∞. Since b is a natural boundary, we in fact have σ =

inf{t ≥ 0 : Xt = c} almost surely. We can now state and prove the key

Proposition 5.1. A function U : [c, b) → R is nonnegative, and U(·)
ψ(·) is G–concave

on [c, b) if and only if

U(x) ≥ Ex[e
−βτU(Xτ )], (5.1)

for every x ∈ [c, b) and every stopping time τ of X.

Proof. Sufficiency follows from (5.1) and Lemma 4.3 when we let τ be 0, ∞, and

τl ∧ τr, for every choice of x ∈ [l, r] ⊂ [c, b).

For the necessity, we only have to show that

U(x) ≥ Ex[e
−βtU(Xt)], x ∈ [c, b), t ≥ 0. (5.2)

Indeed, this and strong Markov property of X imply that e−βtU(Xt) is a nonnegative

supermartingale, and (5.1) follows from the Optional Sampling Theorem for nonneg-

ative supermartingales. As in the proof of Proposition 4.1, we first prove a simpler

version of (5.2), namely

U(x) ≥ Ex[e
−β(σ∧t)U(Xσ∧t)], x ∈ [c, b), t ≥ 0. (5.3)

The main reason was that the behavior of the process by time σ of reaching the

boundaries is completely determined by the infinitesimal generator A of the process.

We can therefore use Ito’s rule without worrying about what happens after the process

reaches the boundaries.

Let (bn)n≥1 and (σn)n≥1 be as defined at page 32. We shall take one step further

and start with showing

U(x) ≥ Ex[e
−β(σn∧t)U(Xσn∧t)], x ∈ [c, b), t ≥ 0, n ≥ 1. (5.4)

Fix n ≥ 1. If x /∈ (c, bn), then Px{σn = 0} = 1. Therefore Ex[e
−β(σn∧t)U(Xσn∧t)] =

U(x), i.e. (5.4) holds for x /∈ (c, bn).
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Next, fix x0 ∈ (c, b). Observe that Xσn∧t lives in the closed bounded interval [c, bn]

contained in the interior of I. Furthermore, c and bn are absorbing for Xσn∧t. Using

a similar argument as in the proof of Proposition 4.1, one can complete the proof of

(5.4).

Since G(·) is continuous on [c, b), and U(·)
ψ(·) is G–concave on [c, b), Proposition A.1

implies that U is lower semi–continuous on [c, b), i.e. lim infy→x U(y) ≥ U(x), for

every x ∈ [c, b). Because σn ∧ t→ σ ∧ t and Xσn∧t → Xσ∧t, as n→∞, we have

Ex[e
−β(σ∧t)U(Xσ∧t)] ≤ Ex

[
lim inf
n→∞

e−β(σn∧t)U(Xσn∧t)
]

≤ lim inf
n→∞

Ex

[
e−β(σn∧t)U(Xσn∧t)

]
≤ U(x),

where we use lower semi–continuity for the first inequality, nonnegativity of U and

Fatou’s Lemma for the second inequality, and (5.4) for the third inequality. This

proves (5.3).

Finally, since c is absorbing, and σ ≡ inf{t ≥ 0 : Xt = c}, we have Xt = Xσ = c

on t ≥ σ. Therefore (5.2) follows from (5.3) as in

Ex[e
−βtU(Xt)] = Ex[e

−βtU(Xσ∧t)] ≤ Ex[e
−β(σ∧t)U(Xσ∧t)] ≤ U(x), x ∈ [c, b), t ≥ 0.

This completes the proof.

We shall first investigate when the value function is real–valued. It turns out that

this is determined by the quantity

`b , lim sup
x→b

h+(x)

ψ(x)
∈ [0,+∞], (5.5)

where h+(·) , max{0, h(·)} on [c, b).

We shall first show that V (x) = +∞ for every x ∈ (c, b), if `b = +∞. To this end,

fix any x ∈ (c, b). Let (rn)n∈N ⊂ (x, b) be any strictly increasing sequence with limit

b. Define the stopping times τrn , inf {t ≥ 0 : Xt ≥ rn}, n ≥ 1. Lemma 4.3 implies

V (x) ≥ Ex[e
−βτrnh(Xτrn

)] = ψ(x)
h(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)
, n ≥ 1.
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On the other hand, since τ ≡ +∞ is also a stopping time, we also have V ≥ 0.

Therefore

V (x)

ψ(x)
≥ 0 ∨

(
h(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)

)
=
h+(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)
, n ≥ 1. (5.6)

Remember that G is strictly increasing and negative (i.e. bounded from above).

Therefore G(b−) exists, and −∞ < G(c) < G(b−) ≤ 0. Furthermore since x > c,

G(x) − G(c) > 0. By taking limit supremum of both sides in (5.6) as n → +∞, we

find

V (x)

ψ(x)
≥ lim sup

n→+∞

h+(rn)

ψ(rn)
· G(x)−G(c)

G(rn)−G(c)
= `b ·

G(x)−G(c)

G(b−)−G(c)
= +∞.

Since x ∈ (c, b) was arbitrary, this proves

V (x) = +∞ for all x ∈ (c, b), if `b of (5.5) is equal to +∞. (5.7)

Suppose now that `b is finite. We shall now show that Ex[e
−βτh(Xτ )] is well–

defined for every stopping time τ , and V is finite on [c, b). Since `b < ∞, there

exists some b0 ∈ (c, b) such that h+(x) < (1 + `b)ψ(x), for every x ∈ (b0, b). Since h

is bounded on the closed and bounded interval [c, b0], we conclude that there exists

some finite constant K > 0 such that

h+(x) ≤ Kψ(x), for all x ∈ [c, b). (5.8)

When we let U , ψ in Proposition 5.1, then U is nonnegative and real–valued on

[c, b). Furthermore U
ψ
≡ 1 is G–concave on [c, b). Therefore we conclude that

ψ(x) ≥ Ex[e
−βτψ(Xτ )], ∀ x ∈ [c, b), and, every stopping time τ. (5.9)

This and (5.8) lead us to

Kψ(x) ≥ Ex[e
−βτKψ(Xτ )] ≥ Ex

[
e−βτh+(Xτ )

]
,

for every x ∈ [c, b) and every stopping time τ . Thus Ex[e
−βτh(Xτ )] is well–defined

(i.e. expectation exists) for every stopping time τ . Since Kψ(x) ≥ Ex

[
e−βτh+(Xτ )

]
≥
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Ex

[
e−βτh(Xτ )

]
, for every x ∈ [c, b) and stopping time τ , we also have

0 ≤ V (x) ≤ Kψ(x), or, 0 ≤ V (x)

ψ(x)
≤ K, ∀ x ∈ [c, b), (5.10)

i.e. V (x) is finite for every x ∈ [c, b). We have proved the following result:

Proposition 5.2. We have either V ≡ +∞ in (c, d), or V (x) < +∞ for all x ∈ [c, b).

Moreover, V (x) < +∞ for every x ∈ [c, b) if and only if `b of (5.5) is finite.

In the remaining part of this Section, we shall assume that

the quantity `b of (5.5) is finite, (5.11)

so that V (·) is real–valued. We shall investigate the properties of V , and describe

how to find it. The main result is as follows; its proof is almost identical to the proof

of Proposition 4.2, with the obvious changes, such as we use Proposition 5.1 instead

of Proposition 4.1.

Proposition 5.3. V (·) is the smallest nonnegative majorant of h(·) on [c, b) such

that V (·)/ψ(·) is G–concave on [c, b).

We shall continue our discussion by first relating `b of (5.5) to V (·) as in Proposi-

tion 5.4. Since V (·)
ψ(·) is G–concave, Proposition A.2 shows that limx→b

V (x)
ψ(x)

exists, and

(5.10) implies that this limit is finite. Since V (·) moreover majorizes max{0, h(·)},

we have

`b = lim sup
x→b

h+(x)

ψ(x)
≤ lim

x→b

V (x)

ψ(x)
< +∞. (5.12)

Proposition 5.4. If h : [c, b) → R is bounded on compact subintervals of [c, b), and

(5.11) holds, then

lim
x→b

V (x)

ψ(x)
= `b.

Proof. Fix any arbitrarily small ε > 0. (5.11) implies that there exists some l ∈ (c, b)

such that

y ∈ [l, b) =⇒ h(y) ≤ h+(y) ≤ (`b + ε)ψ(y). (5.13)
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For every x ∈ (l, b) and stopping time τ , we have

{Xτ ∈ [c, l)} ⊆ {τl < τ}, on {X0 = x}. (5.14)

Note also that the strong Markov property of X and (5.9) imply that e−βtψ(Xt) is a

nonnegative supermartingale. Therefore, we have

Ex[e
−βτh(Xτ )] = Ex[e

−βτh(Xτ )1{Xτ∈[c,l)}] + Ex[e
−βτh(Xτ )1{Xτ∈(l,b)}]

≤ KEx[e
−βτψ(Xτ )1{Xτ∈[c,l)}]+

(`b + ε)Ex[e
−βτψ(Xτ )1{Xτ∈(l,b)}]

(by (5.10) and (5.13))

≤ KEx[e
−βτψ(Xτ )1{τl<τ}] + (`b + ε)Ex[e

−βτψ(Xτ )] (by (5.14))

≤ KEx[e
−βτlψ(Xτl)1{τl<τ}] + (`b + ε)ψ(x)

(by Optional Sampling Theorem for nonnegative

supermartingales)

≤ KEx[e
−βτlψ(Xτl)1{τl<∞}] + (`b + ε)ψ(x)

= Kψ(l)Ex[e
−βτl ] + (`b + ε)ψ(x)

≤ Kψ(x)Ex[e
−βτl ] + (`b + ε)ψ(x) (ψ is increasing)

= Kψ(x)
ϕ(x)

ϕ(l)
+ (`b + ε)ψ(x) (cf. Chapter 2)

Note that right–hand side no longer depends on the stopping time τ . Therefore, we

can take supremum of lefthand side over all stopping times, and then divide both

sides by ψ(x) to get

V (x)

ψ(x)
≤ K

ϕ(l)
ϕ(x) + `b + ε, for every x ∈ (l, b).

Now remember that ϕ(b−) = 0 and limx→b
V (x)
ψ(x)

exist. By taking limits of both sides

as x tends to b, we obtain

lim
x→b

V (x)

ψ(x)
≤ K

ϕ(l)
ϕ(b−) + `b + ε = `b + ε.
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Since ε > 0 is arbitrarily small, this implies limx→b
V (x)
ψ(x)

≤ `b. Finally, (5.12) completes

the proof.

One can now easily show as in Chapter 4 the following

Proposition 5.5. Let W̃ : [G(c), G(b−)) → R be the smallest nonnegative concave

majorant of H̃ : [G(c), G(b−)) → R, defined by,

H̃(y) ,
h
(
G−1(y)

)
ψ
(
G−1(y)

) , y ∈ [G(c), G(b−)).

Then V (x) = ψ(x)W̃
(
G(x)

)
, for every x ∈ [c, b).

We can in fact show more in this case. Note that G(b−) = −ϕ(b−)
ψ(b−)

= 0 and

−∞ < G(c) < 0. Since we assume (5.11), we have

lim sup
y↑0

H̃+(y) = lim sup
x↑b

h+(x)

ψ(x)
= `b.

It is interesting to know what happens if we extend H̃ to [G(c), 0] by defining H̃(0) ,

`b. W̃ should be closely related to the smallest nonnegative concave majorant of the

extension of H̃ onto [G(c), 0]. In fact, we have

Proposition 5.6. Let W : [G(c), 0] → R be the smallest nonnegative majorant of the

function H : [G(c), 0] → R, given by

H(y) ,


h
(
G−1(y)

)
ψ
(
G−1(y)

) , if y ∈ [G(c), 0),

`b, if y = 0.

(5.15)

Then V (x) = ψ(x)W
(
G(x)

)
, for every x ∈ [c, b). Furthermore, W (0) = `b, and W is

continuous at 0.

Proof. Let W̃ and H̃ be as defined in Proposition 5.5 (remember G(b−) = 0). Since

H̃ = H on [G(c), 0), the restriction of W to [G(c), 0) is a nonnegative concave majo-

rant of H̃. Therefore, we have W ≥ W̃ on [G(c), 0).
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We shall next prove the reverse inequality. Let Ŵ : [G(c), 0] → R be given by

Ŵ (y) ,


W̃ (y), if y ∈ [G(c), 0),

`b, if y = 0.

Obviously, Ŵ is nonnegative. Moreover Ŵ (0) = `b = H(0) and; for every y ∈

[G(c), 0), Ŵ (y) = W̃ (y) ≥ H̃(y) = H(y). Hence W̃ majorizes H on [G(c), 0].

Next, we shall prove that Ŵ is concave on [G(c), 0]. Since W̃ is concave on

[G(c), 0), and, Ŵ and W̃ coincide in [G(c), 0), Ŵ is concave in [G(c), 0). Therefore,

we only need to prove that

Ŵ (y) ≥ Ŵ (l) · 0− y

0− l
+ Ŵ (0) · y − l

0− l
, for every y ∈ (l, 0) ⊂ [G(c), 0].

First observe that limy↑0 W̃ (y) = limx→b W̃
(
G(x)

)
= limx→b

V (x)
ψ(x)

= `b using Proposi-

tion 5.4 and 5.5. Therefore, for any y ∈ (l, 0) ⊂ [G(c), 0], we have

Ŵ (l) · 0− y

0− l
+ Ŵ (0) · y − l

0− l
= W̃ (l) · y

l
+ `b ·

y − l

0− l
=

= lim
z↑0

[
W̃ (l) · z − y

z − l
+ W̃ (z) · y − l

z − l

]
≤ W̃ (y) = Ŵ (y)

where we used the facts that W̃ is nonnegative and concave in [G(c), 0).

Thus, we proved that Ŵ is a nonnegative concave majorant of H on [G(c), 0].

Since W is the smallest of such functions, we have Ŵ ≥ W on [G(c), 0]. This however

implies that (i) W̃ ≥ W in [G(c), 0), and (ii) `b = H(0) ≤ W (0) ≤ Ŵ (0) = `b.

We conclude that W = W̃ on [G(c), 0) and W (0) = `b. From Proposition 5.5, we

obtain V (x) = ψ(x)W̃
(
G(x)

)
= ψ(x)W

(
G(x)

)
, for every x ∈ [c, b). Finally, this and

Proposition 5.4 imply

lim
y↑0

W (y) = lim
x→b

W
(
G(x)

)
= lim

x→b

V (x)

ψ(x)
= `b = W (0),

i.e. W is indeed continuous at 0.
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Since G is continuous in [c, b), and V
ψ

is G–concave, V
ψ

is continuous in (c, b), and

V (c)

ψ(c)
≤ lim inf

x↓c

V (x)

ψ(x)
.

However ψ itself is continuous in [c, b). Therefore, V is continuous in (c, b) and

V (c) ≤ lim inf
x↓c

V (x).

Proposition 5.7. If h : [c, b) → R is continuous, and (5.11) is satisfied, then V is

continuous on [c, b).

Proof. Note that h is bounded on every compact subinterval of [c, b). Therefore, as

discussed above, V is continuous on (c, b) and V (c) ≤ lim infx↓c V (x). We only have

to establish

V (c) ≥ lim sup
x↓c

V (x).

Define h̃ : [c, b) → R by h̃(x) , maxy∈[c,x] h(y), for every y ∈ [c, b). Since h is

uniformly continuous on compact subintervals on [c, b), h̃ is continuous.

Another crucial observation is that the strong Markov property and (5.9) imply

that e−βtψ(Xt) is a nonnegative supermartingale.

Fix some r ∈ (c, b). For every x ∈ [c, r) and stopping time τ , we have

{Xτ ∈ (r, b)} ⊂ {τr < τ} ⊂ {τr <∞} = {τr < τc}, on {X0 = x}, (5.16)

since c is absorbing. Now observe that

Ex[e
−βτh(Xτ )] = Ex

[
e−βτh(Xτ )1{Xτ∈[c,r]}

]
+ Ex

[
e−βτh(Xτ )1{Xτ∈(r,b)}

]
≤ h̃(r) +KEx

[
e−βτψ(Xτ )1{Xτ∈(r,b)}

]
(By (5.10))

≤ h̃(r) +KEx

[
e−βτψ(Xτ )1{τr<τ}

]
(By (5.16))

≤ h̃(r) +KEx

[
e−βτrψ(Xτr)1{τr<τ}

]
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(By the Optional Sampling Theorem for nonnega-

tive supermartingales)

≤ 0 ∨ h̃(r) +KEx

[
e−βτrψ(Xτr)1{τr<τc}

]
(By (5.16))

≤ 0 ∨ h̃(r) +Kψ(r)Px{τr < τc}

= 0 ∨ h̃(r) +Kψ(r)
S(x)− S(c)

S(r)− S(c)
.

Observe that right–hand side no longer depends on the stopping time τ . Therefore

we can take supremum of lefthand side over all stopping times τ , and get

V (x) ≤ 0 ∨ h̃(r) +Kψ(r)
S(x)− S(c)

S(r)− S(c)
, ∀ x ∈ [c, r).

Take the limit supremum of both sides as x tends to c. Since S is continuous in [c, b),

we obtain

lim sup
x↓c

V (x) ≤ 0 ∨ h̃(r), ∀ r ∈ (c, b).

Finally, take limit as r tend to c. Since x→ 0∨x is a continuous real–valued function,

and h̃ is continuous in [c, b), we conclude

lim sup
x↓c

V (x) ≤ lim
r↓c

0 ∨ h̃(r) = 0 ∨ h̃(c) = 0 ∨ h(c).

However, c is absorbing. Therefore Pc{Xt = c, ∀t ≥ 0} = 1, and V (c) = 0 ∨ h(c)

(“never stop” versus “stop immediately”; other stopping times give values between 0

and h(c) because of the discounting factor). This completes the proof.

In the remaining part of the section, we shall investigate when we have an optimal

stopping time. Proposition 5.8 shows that the existence of an optimal stopping time is

guaranteed when `b of (5.5) equals zero. Lemma 5.2 gives the necessary and sufficient

condition for the existence of an optimal stopping time when `b is positive. Finally,

no optimal stopping time exists when `b equals +∞, since the value function equals

+∞ everywhere. As usual, we define

Γ , {x ∈ [c, b) : V (x) = h(x)}, and τ ∗ , inf{t ≥ 0 : Xt ∈ Γ}. (5.17)
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Proposition 5.8. Suppose h : [c, b) → R is continuous, and the quantity `b of (5.5)

equals zero. Then τ ∗ of (5.17) is an optimal stopping time.

We shall prove the Proposition by using the results of Appendix B, where we

studied the properties of the smallest nonnegative concave majorant of continuous

functions. If h(·) is continuous, then the continuity of V (·) and the limiting behavior

of V (·)
ψ(·) near b follow from Corollary B.1. Proposition B.2 also leads to the

Proof of Proposition 5.8. Using the notation of Appendix B, here we have I = [c, b).

Since c ∈ I, by the continuity of h on I, `c = h+(c)
ϕ(c)

. By Corollary B.1 we also have

V (c)
ϕ(c)

= `c.

Let U(x) = Ex[e
−βτ∗h(Xτ∗)], x ∈ [c, b); Γ , {x ∈ [c, b) : V (x) = h(x)} and

C , [c, b)\Γ. Since Px{τ ∗ = 0} = 1 for x ∈ Γ, V = U on Γ.

We need to show equality of V and U in C. Since C is open relative to [c, b),

it is union of countably many disjoint open (relative to [c, b)) subintervals of [c, b).

Therefore it enough to show V = U in each of those subintervals covering C.

Suppose (l, r) ⊆ C for some l, r ∈ Γ (Type 1 Interval). Since Px{τ ∗ = τl ∧ τr} = 1

for x ∈ (l, r), Lemma 4.3 implies

U(x)

ψ(x)
=

Ex[e
−βτl∧τrh(Xτl∧τr)]

ψ(x)
=
h(l)

ψ(l)
·G(r)−G(x)

G(r)−G(l)
+
h(r)

ψ(r)
·G(x)−G(l)

G(r)−G(l)
, ∀ x ∈ (l, r).

Observe that V = U in (l, r) by (i) of Proposition B.2.

Now suppose [c, r) ⊆ C for some r ∈ Γ (Type 2 Interval). Because Px{τ ∗ = τr} = 1

for x ∈ [c, r), Lemma 4.3 implies

U(x)

ϕ(x)
=

Ex[e
−βτrh(Xτr)]

ϕ(x)
=
h(r)

ϕ(r)
· F (x)− F (c)

F (r)− F (c)
, x ∈ [a, r).

Since c ∈ C, h+(c)
ϕ(c)

= `c = V (c)
ϕ(c)

> h(c)
ϕ(c)

. This implies that h(c) < 0 and `c = h+(c)
ϕ(c)

= 0.

Therefore Proposition B.2(ii) implies that U and V coincide in [a, r).

Finally, suppose (l, b) ⊆ C for some l ∈ Γ (Type 3 Interval). Since Px{τ ∗ = τl} = 1
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for x ∈ (l, b), Lemma 4.3 implies

U(x)

ψ(x)
=

Ex[e
−βτlh(Xτl)]

ψ(x)
=
h(l)

ψ(l)
· G(b−)−G(x)

G(b−)−G(l)
, x ∈ (l, b). (5.18)

Since by hypothesis `b = 0, Proposition B.2(iii) implies V = U on (l, b) as well. Thus

we exhausted all possible forms of subintervals of [c, b) that can exclusively cover C

and showed that V = U in the subintervals in each case. Hence V = U also in C.

Lemma 5.1. Suppose W and H be functions defined on [G(c), 0] as in Proposi-

tion 5.6. Let

Γ̃ , {y ∈ [G(c), 0) : W (y) = H(y)}.

Then Γ = G−1
(
Γ̃
)
.

Proof. Follows directly from Proposition 5.6.

Suppose h is continuous on [c, b). Then H of (5.15) is continuous on the closed

and bounded interval [G(c), 0]. Let Bt be a standard Brownian motion in [G(c), 0]

which is stopped whenever it reaches G(c) or 0. Remember that W is, by definition,

the smallest nonnegative concave majorant of H on [G(c), 0]. Since the scale function

of B is the identity function, Proposition 3.2 relates W and H as in

W (y) = sup
τ≥0

Ey[H(Bτ )], ∀ y ∈ [G(c), 0]. (5.19)

Proposition 3.5 shows that Γ̃ of Lemma 5.1 is the optimal stopping region of (5.19).

An alternative proof of Proposition 5.8 can also be given by using the connection

between the two optimal stopping problems and the results of Chapter 3.

It is worth mentioning that the transformation of a discounted optimal stopping

problem of any diffusion process living in a non–compact interval into an optimal

stopping problem of standard Brownian motion restricted to a compact interval proves

itself to be very useful in calculations (cf. Examples in Chapter 6).

Let C , [c, b)\Γ as in the proof of Proposition 5.8, and C̃ , [G(c), 0)\Γ̃. Since h

is continuous on [c, b), then H and W are continuous on [G(c), 0). Therefore C and
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C̃ are open relative to [c, b) and [G(c), 0), respectively. Then both sets are covered

by countable families of disjoint open (relative to [c, b) and [G(c), 0), respectively)

subintervals of [c, b) and [G(c), 0), respectively. Denote a covering of C̃ by (J̃α)α∈eΛ.

Lemma 5.1 implies that C = G−1(C̃). Therefore
(
Jα , G−1(J̃α)

)
α∈eΛ is a cover-

ing of C with the properties described above. We shall especially use the following

consequences as we study examples in the coming chapters:

� if (l, r) ⊂ C̃, l < r, for some l, r ∈ Γ̃, then G−1(l) ∈ Γ, G−1(r) ∈ Γ and

(G−1(l), G−1(r)) ⊂ C.

� If [G(c), r) ⊂ C̃, G(c) < r, for some r ∈ Γ̃, then c < G−1(r) ∈ Γ and

[c,G−1(r)) ⊂ C.

� Finally, if (l, 0) ⊂ C̃ for some l ∈ Γ̃, then G−1(l) ∈ Γ and (G−1(l), b) ⊂ C.

Do we have an optimal stopping time when `b > 0? The answer depends

on the shape of Γ.

First of all, if there exists any optimal stopping time, then τ ∗ of (5.17) must also

be an optimal stopping time (Oksendal [10]). Therefore, it is enough to investigate

when τ ∗ becomes an optimal stopping time. Let

U(x) , Ex[e
−βτ∗h(Xτ∗)], x ∈ [c, b),

as in the proof of Proposition 5.8. We always have V ≥ U , and equality holds (i.e., τ ∗

is an optimal stopping time) if and only if U(·)
ψ(·) is a nonnegative G–concave majorant

of h(·)
ψ(·) on [c, b), thanks to Proposition 5.3.

If `b > 0, then it can be shown that U(·)
ψ(·) is still a nonnegative G–concave function

on [c, b). However, it is not always true that U(·)
ψ(·) majorizes h(·)

ψ(·) on [c, b), when `b > 0.

Suppose, for example, that there exists some l ∈ [c, b) such that l ∈ Γ and

(l, b) ⊆ C (i.e. (l, b) is a Type–3 Interval studied in the proof of Proposition 5.8).
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(5.18) gives U
ψ

in (l, b). Since G(b−) = 0, by taking limit in (5.18) as x→ b, we find

that

lim
x→b

U(x)

ψ(x)
= 0. (5.20)

Therefore, there is some l̃ ∈ [c, b) such that U(x)
ψ(x)

< (1/2)`b for all x ∈ (l̃, b).

Since by hypothesis +∞ > lim supx→b
h+(x)
ψ(x)

= `b > 0, the definition of limit

supremum implies that for every l ∈ [c, b) and for every 0 < ε < `b, there exist some

x ∈ (l, b) such that

h+(x)

ψ(x)
> `b − ε > 0, i.e.

h+(x)

ψ(x)
=
h(x)

ψ(x)
> `b − ε. (5.21)

In particular, by choosing l = l̃ and ε = (1/2)`b, we realize that there exists some

x ∈ (l̃, b) such that

h(x)

ψ(x)
> `b −

1

2
`b =

1

2
`b >

U(x)

ψ(x)
.

Hence U fails to majorize h everywhere on [c, b) (See Figure 5.1). Therefore U 6= V

if `b > 0 and (l, b) ⊆ C for some l ∈ [c, b).

h
ψ

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b

XXXXXXXXXXXXXXXX

`b > 0

lc l̃ b
0

V
ψ

U
ψ

Figure 5.1: If `b > 0 and (l, b) ⊆ C for some l ∈ [c, b), then U(x) ,

Ex[e
−βτ∗h(Xτ∗)], x ∈ [c, b), no longer majorizes h even though it is nonnegative,

and U/ψ is still G–concave. Therefore U 6= V , i.e. τ ∗ of (5.17) can no longer

be an optimal stopping time (for the sake of simplicity, we assumed limx→b
h(x)
ψ(x)

exists as we draw the figure).

We shall conclude our informal discussion with a more precise statement, namely
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Lemma 5.2. Suppose `b > 0 is finite and, h is continuous. Then τ ∗ of (5.17) is an

optimal stopping time if and only if there is no l ∈ [c, b) such that (l, b) ⊆ C.1

Proof. Let U , Γ and C be as in the Proof of Proposition 5.8. We have U = V on

Γ and in every Type 1– and Type 2 Intervals that exclusively cover C as before.

Therefore τ ∗ is an optimal stopping time if C does not contain any Type 3 Interval.

If on the other hand there is a Type 3 Interval (l, b) ⊆ C for some l ∈ [c, b), then

U(x)

ψ(x)
=
h(l)

ψ(l)
· G(b−)−G(x)

G(b−)−G(l)

<
h(l)

ψ(l)
· G(b−)−G(x)

G(b−)−G(l)
+ `b ·

G(x)−G(l)

G(b−)−G(l)
=
V (x)

ψ(x)
, x ∈ (l, b),

by Proposition B.2 since `b > 0, i.e. U 6= V in a nonempty subset of C. Therefore τ ∗

cannot be an optimal stopping time.

Even if we may not have an optimal stopping time, we always have ε(x)–optimal

stopping times. We shall introduce for every ε > 0

Γb
ε ,

{
x ∈ [c, b)

∣∣∣∣h(x)ψ(x)
≥ V (x)

ψ(x)
− ε

}
and τ bε , inf

{
t ≥ 0 : Xt ∈ Γb

ε

}
. (5.22)

Proposition 5.9. Suppose h is continuous, and (5.11) holds. For every ε > 0,

V b
ε (x) , Ex[e

−βτb
εh(Xτb

ε
)] ≥ V (x)− εψ(x), x ∈ [c, b).

Proof. Since V , h and ψ are continuous, Γb
ε is closed (relative to [c, b)). Therefore,

Xτb
ε
∈ Γb

ε on {τ bε <∞}, and

V b
ε (x) ≥ Ex[e

−βτb
εV (Xτb

ε
)]−εEx[e

−βτb
εψ(Xτb

ε
)] ≥ Ex[e

−βτb
εV (Xτb

ε
)]−εψ(x), x ∈ [c, b),

1This condition is not the same as “for some l ∈ [c, b), (l, b) ⊆ Γ”. It is more than that: Suppose

there exists a strictly increasing sequence bn → b such that (bnk
, bnk+1) ⊆ C and bnk

, bnk+1 ∈ Γ

for some subsequence (bnk
). The original condition in Lemma 5.2 still holds whereas there is no

l ∈ [c, b) such that (l, b) ⊆ Γ.
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where the last inequality follows from by Proposition 5.1. It is therefore enough to

prove that

U(x) , Ex[e
−βτb

εV (Xτb
ε
)] ≥ V (x), x ∈ [c, b).

We claim that U
ψ

is a nonnegative majorant G–concave majorant of h
ψ

on [c, b)

(this will then imply U ≥ V by Proposition 5.3).

Since V is always nonnegative, U is also nonnegative. In order to prove that U
ψ

is

G–concave on [c, b), we shall show that

U(x) ≥ Ex[e
−βτU(Xτ )], x ∈ [c, b),

for every stopping time τ ≥ 0, and then use Proposition 5.1. Let τ be any stopping

time. Then

Ex[e
−βτU(Xτ )] = Ex

[
e−βτEXτ

[
e−βτ

b
εV (Xτb

ε
)
]]

= Ex

[
e−βτθτ

(
e−βτ

b
εV (Xτb

ε
)
)]

= Ex

[
e−β(τ+τb

ε◦θτ )V (Xτ+τb
ε◦θτ

)
]
≤ Ex

[
e−βτ

b
εV (Xτb

ε
)
]

= U(x), x ∈ [c, b).

Second equality follows from strong Markov property of diffusion processes. In or-

der to understand the inequality, first remember that V
ψ

is G–concave. Therefore

Proposition 5.1 and strong Markov property of X imply together that e−βtV (Xt) is a

nonnegative supermartingale. Since τ + τ bε ◦ θτ is also a stopping time and is greater

than or equal to τ bε , the inequality above immediately follows from Optional Sampling

Theorem for nonnegative supermartingales.

It remains to prove that U
ψ

majorizes h
ψ

on [c, b). Assume on the contrary that

θ , sup
x∈[c,b)

(
h(x)

ψ(x)
− U(x)

ψ(x)

)
> 0.

Since h
ψ

is bounded (see (5.8) at page 35), and U ≥ 0, θ is finite. If we let Ũ(x) ,

U(x) + θψ(x), x ∈ [c, b), then
eU
ψ

is a nonnegative G–concave majorant of h
ψ

on [c, b).

Therefore Ũ ≥ V on [c, b).
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Since θ is finite, for every 0 < δ < ε there exists some xδ ∈ [c, b) such that

h(xδ)
ψ(xδ)

− U(xδ)
ψ(xδ)

≥ θ − δ. Now observe that

h(xδ)

ψ(xδ)
≥ U(xδ)

ψ(xδ)
+ θ − δ =

Ũ(xδ)

ψ(xδ)
− δ ≥ V (xδ)

ψ(xδ)
− δ ≥ V (xδ)

ψ(xδ)
− ε.

Therefore xδ ∈ Γb
ε. Therefore Pxδ

(τ bε = 0) = 1 and U(xδ) = V (xδ) ≥ h(xδ). Thus

0 ≥ h(xδ)

ψ(xδ)
− U(xδ)

ψ(xδ)
≥ θ − δ,

i.e. θ < δ for every 0 < δ < ε. Therefore θ ≤ 0. Contradiction. Hence U majorizes h

on [c, b). This completes the proof as pointed out before.

5.2 Left–boundary is natural, and right–boundary

is absorbing

We shall now suppose that the left–boundary a of I is natural, and consider the

stopped process X which starts in (a, d], d ∈ int(I), and is absorbed at d, whenever

it reaches. Because a is natural, we have ψ(a+) = 0 and ϕ(a+) = ∞. Since d is an

interior point of I, process reaches d in finite time with positive probability. Therefore

0 < ψ(x), ϕ(x) <∞, x ∈ (a, d].

Let the reward function h : (a, d] → R be bounded on every compact subset of

(a, d]. We shall look at

V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ (a, d].

We shall state the results without proofs since they are almost identical to those in

Section 5.1 with obvious changes. The key result is

Proposition 5.10. U : (a, d] → R is nonnegative and U
ϕ

is F–concave on (a, d] if

and only if

U(x) ≥ Ex[e
−βτU(Xτ )],

for every x ∈ (a, d] and every stopping time τ of X.
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In order to address the existence problem of the value function V , we introduce2

`a , lim sup
x→a

h+(x)

ϕ(x)
. (5.23)

Using Proposition 5.10, we can show that Ex[e
−βτh(Xτ )] is well–defined for every

stopping time τ , and V is finite on (a, d] if and only `a <∞. In fact,

Proposition 5.11. We have either V ≡ +∞ in (a, d), or V (x) < +∞ for all x ∈

(a, d]. Moreover, V (x) < +∞ for every x ∈ (a, d] if and only if `a is finite.

In the remaining part of this Section, we shall assume that

the quantity `a of (5.23) is finite. (5.24)

Therefore V always exist (i.e. is finite everywhere) by Proposition 5.11. We shall

investigate the properties of V , and describe how to find it.

Since ϕ > 0 on (a, d], F is well–defined and continuous on (a, d]. Observe also

that F (a+) = 0. The main result is

Proposition 5.12. V is the smallest nonnegative majorant of h on (a, d] such that V
ϕ

is F–concave on (a, d], in the sense that, if U
ϕ

is a nonnegative F–concave majorant

of h
ϕ

on (a, d] for some U : (a, d] → R, then U ≥ V .

Since V
ϕ

is G–concave, Proposition A.2 implies that the limit limx→a
V (x)
ϕ(x)

exists.

In fact, we can show that

lim
x→a

V (x)

ϕ(x)
= `a.

2Since the left–boundary is now open, we would like to control growth of h near a. Since a is left–

boundary of state space, the role of ψ will now be taken by ϕ. It is not hard to expect us to replace

every ψ and G above with ϕ and F , respectively, in the remaining part of the chapter. Note also

that the duality in (ψ,G) ↔ (ϕ, F ) is equivalent to the duality in (ψ,−ϕ ≡ ψ ·G) ↔ (ϕ,ψ ≡ ϕ ·F ).
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Proposition 5.13. Let W : [0, F (d)] → R be the smallest nonnegative concave ma-

jorant of H : [0, F (d)] → R, given by

H(y) ,


h
(
F−1(y)

)
ϕ
(
F−1(y)

) , if y ∈ (0, F (d)],

`a, if y = 0.

Then V (x) = ϕ(x)W
(
F (x)

)
, for every x ∈ (a, d]. Furthermore, W (0) = `a, and W

is continuous at 0.

Proposition 5.14. If h : (a, d] → R is continuous, and (5.24) holds, then V is

continuous on (a, d].

Proposition 5.15. Suppose h : (a, d] → R is continuous, and `a = 0. Then τ ∗ of

(5.17) is an optimal stopping time.

Lemma 5.3. Suppose W and H be functions defined on [0, F (d)] as in Proposi-

tion 5.13. Let

Γ̃ , {y ∈ (0, F (d)] : W (y) = H(y)}.

Then Γ = F−1
(
Γ̃
)
, where Γ is defined as in (5.17).

Lemma 5.4. Suppose `a > 0 is finite and h is continuous. Then τ ∗ of (5.17) is an

optimal stopping time if and only if there is no r ∈ (a, d] such that (a, r) ⊆ C.

Even if we do not always have an optimal stopping time, we have ε(x)–optimal

stopping times. We shall introduce for every ε > 0

Γa
ε ,

{
x ∈ (a, d]

∣∣∣∣h(x)ϕ(x)
≥ V (x)

ϕ(x)
− ε

}
and τaε , inf

{
t ≥ 0 : Xt ∈ Γa

ε

}
. (5.25)

Proposition 5.16. Suppose h is continuous, and (5.24) holds. For every ε > 0,

V a
ε (x) , Ex[e

−βτa
ε h(Xτa

ε
)] ≥ V (x)− εϕ(x), x ∈ (a, d].
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5.3 Both boundaries are natural.

Suppose that both a and b are natural. Consider the process X in I = (a, b). We

have ψ(a+) = ϕ(b−) = 0, ψ(b−) = ϕ(a+) = +∞, and 0 < ψ,ϕ <∞, in (a, b).

Let the reward function h : (a, b) → R be bounded on every compact subset of

(a, b). Consider the optimal stopping problem

V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ (a, b).

The key result is

Proposition 5.17. U : (a, b) → R is nonnegative and U
ϕ

is F–concave on (a, b)

(equivalently, U
ψ

is G–concave on (a, b)) if and only if

U(x) ≥ Ex[e
−βτU(Xτ )],

for every x ∈ (a, b) and every stopping time τ of X.

The proof of the Proposition 5.17 is similar to that of Proposition 5.1 after we

redefine the sequence of stopping times (σn)n≥1. Let (an)n≥1 and (bn)n≥1 be two

sequences of real numbers such that a < an+1 < an < · · · < a1 < b1 < · · · < bn <

bn+1 < b. Define σn , inf{t ≥ 0 : Xt /∈ (an, bn)}. Observe that ψ and ϕ are C2[an, bn]

for every n ≥ 1.

Introduce

`a , lim sup
x→a

h+(x)

ϕ(x)
and `b , lim sup

x→b

h+(x)

ψ(x)
(5.26)

Using Proposition 5.17, we can show that Ex[e
−βτh(Xτ )] is well–defined for every

stopping time τ , and V is finite on (a, b) if both `a and `b are finite. In fact,

Proposition 5.18. We have either V ≡ +∞ in (a, b), or V (x) < +∞ for all x ∈

(a, b). Moreover, V (x) < +∞ for every x ∈ (a, b) if and only if both `a and `b are

finite.
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In the remaining part of this Section, we shall assume that

the quantities `a and `b of (5.26) are finite. (5.27)

Therefore V always exist (i.e. is finite everywhere) by Proposition 5.18. We shall

investigate the properties of V , and describe how to find it.

Since ψ and ϕ never vanish, and are continuous on (a, b), F and G are well–defined

and continuous on (a, b). Observe also that F (a+) = G(b−) = 0 and F (b−) =

−G(a+) = +∞ The main result is

Proposition 5.19. V is the smallest nonnegative majorant of h on (a, b) such that

V
ϕ

is F–concave (equivalently, V
ψ

is G–concave) on (a, b), in the sense that, if U
ϕ

(U
ψ
,

respectively) is a nonnegative F–concave (G–concave, respectively) majorant of h
ϕ

( h
ψ
,

respectively) on (a, b) for some U : (a, b) → R, then U ≥ V .

Because V
ϕ

is F–concave, and V
ψ

is G–concave, Proposition A.2 implies that limits

limx→a
V (x)
ϕ(x)

and limx→b
V (x)
ψ(x)

exist. In fact, we have

lim
x→a

V (x)

ϕ(x)
= `a and lim

x→b

V (x)

ψ(x)
= `b.

Proposition 5.20. Let W : [0,+∞) → R be the smallest nonnegative concave ma-

jorant of H : [0,+∞) → R, given by

H(y) ,


h
(
F−1(y)

)
ϕ
(
F−1(y)

) , if y ∈ (0,+∞),

`a, if y = 0.

Then V (x) = ϕ(x)W
(
F (x)

)
, for every x ∈ (a, b). Furthermore, W (0) = `a, and W

is continuous at 0.

Similarly, if W̃ : (−∞, 0] → R is the smallest nonnegative concave majorant of

H̃ : (−∞, 0] :→ R, given by

H̃(y) ,


h
(
G−1(y)

)
ψ
(
G−1(y)

) , if y ∈ (−∞, 0),

`b, if y = 0.
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Then V (x) = ψ(x)W̃
(
G(x)

)
, for every x ∈ (a, b). Furthermore, W̃ (0) = `b, and W̃

is continuous at 0.

The proof is similar to that of Proposition 5.6. Since V
ϕ

is F–concave, and F is

continuous on (a, b), V is continuous on (a, b) by Proposition A.1.

Proposition 5.21. Suppose h : (a, b) → R is continuous, and `a = `b = 0. Then τ ∗

of (5.17) is an optimal stopping time.

Proof. We can calculate U explicitly as in the proof of Proposition 5.8, and show that

it agrees with Proposition B.2 in Appendix B.

Lemma 5.5. Suppose W and H (W̃ and H̃, respectively) be the functions defined on

[0,+∞) (on (−∞, 0], respectively) as in Proposition 5.20. Let

Γ̂ , {y ∈ (0,+∞) : W (y) = H(y)}, (Γ̃ , {y ∈ (−∞, 0) : W̃ (y) = H̃(y)}, respectively)

Then Γ = F−1
(
Γ̂
)

(Γ = G−1
(
Γ̃
)
, respectively), where Γ is defined as in (5.17).

Lemma 5.6. If `a or `b is strictly positive (provided that they are still finite), and h

is continuous, then τ ∗ of (5.17) is still an optimal stopping time if and only if3.
there is no r ∈ (a, b)

such that (a, r) ⊂ C

if `a > 0

 and


there is no l ∈ (a, b)

such that (l, b) ⊂ C

if `b > 0

 .

Proof. Similar to the proof of Lemma 5.2.

No matter whether `a and `b are are zero or not, we always have ε(x)–optimal

stopping times, as long as both are finite. Introduce for every ε > 0

Γε ,

{
x ∈ (a, b)

∣∣∣∣ h(x)

ψ(x) + ϕ(x)
≥ V (x)

ψ(x) + ϕ(x)
−ε
}

and τ ∗ε , inf
{
t ≥ 0 : Xt ∈ Γ

}
.

3See the footnote at page 45
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Proposition 5.22. Suppose h is continuous, and (5.27) hold. Then

Vε(x) , Ex[e
−βτ∗ε h(Xτ∗ε )] ≥ V (x)− ε[ψ(x) + ϕ(x)], x ∈ (a, b).

Proof. By the continuity of all the functions involved, Γε is closed. ThereforeXτ∗ε ∈ Γε

on {τ ∗ε <∞}, and

Vε(x) ≥ Ex[e
−βτ∗ε V (Xτ∗ε )]− εEx[e

−βτ∗ε (ψ + ϕ)(Xτ∗ε )]

≥ Ex[e
−βτ∗ε V (Xτ∗ε )]− ε[ψ(x) + ϕ(x)], x ∈ (a, b).

Second inequality follows from Proposition 5.19 since (ψ+ϕ)/ϕ = F +1 is F–concave

in (a, b). Note that the proof will be complete if we can show

U(x) , Ex[e
−βτ∗ε V (Xτ∗ε )] ≥ V (x), x ∈ (a, b).

We shall do this by showing that U is a nonnegative majorant of h such thatU
ϕ

is

F–concave on (a, b) (indeed, the conclusion then follows immediately from Proposi-

tion 5.19).

U is nonnegative since V is nonnegative. Using strong Markov property and

Optional Sampling Theorem for nonnegative supermartingales, we can show as in the

proof of Proposition 5.9 that

U(x) ≥ Ex[e
−βτV (Xτ )], x ∈ (a, b),

for every stopping time τ . Therefore U
ψ

is G–concave by Proposition 5.17.

It remains to show that U majorizes h in (a, b). Assume on the contrary h > U

somewhere in (a, b). Then

θ , sup
x∈(a,b)

h(x)− U(x)

ψ(x) + ϕ(x)
> 0.

Note that θ is finite. Because U is nonnegative, (5.27) implies that for every large

enough [l, r] ⊂ (a, b), we have

h(x)− U(x)

ψ(x) + ϕ(x)
≤ max

{
h+(x)

ψ(x)
,
h+(x)

ϕ(x)

}
≤ 1 + max{`a, `b}, x /∈ [l, r].
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Therefore Ũ(x) , U(x) + θ[ψ(x) + ϕ(x)] is a nonnegative majorant of h such that
eU
ϕ

is F–concave in (a, b). Therefore Ũ ≥ V in (a, b).

Since θ is finite, for every 0 < δ < ε there exists some xδ ∈ (a, b) such that

h(xδ)−U(xδ)
ψ(xδ)+ϕ(xδ)

> θ − δ. Therefore

h(xδ) > U(xδ) + (θ − δ)[ψ(xδ) + ϕ(xδ)] = Ũ(xδ)− δ[ψ(xδ) + ϕ(xδ)]

≥ V (xδ)− δ[ψ(xδ) + ϕ(xδ)] ≥ V (xδ)− ε[ψ(xδ) + ϕ(xδ)].

Hence xδ ∈ Γε for every 0 < δ < ε. Therefore Pxδ
{τ ∗ε = 0} = 1, i.e. U(xδ) = V (xδ) ≥

h(xδ) and

0 ≥ h(xδ)− V (xδ) = h(xδ)− U(xδ) ≥ (θ − δ)[ψ(xδ) + ϕ(xδ)].

Hence θ < δ for every 0 < δ < ε. Therefore θ ≤ 0. Contradiction. We conclude that

U majorizes h.
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Chapter 6

Examples

In this chapter, we shall illustrate how the results of Chapters 3–5 apply in various

optimal stopping problems that were studied in the literature.

We already witnessed that everything boils down, in optimal stopping, to finding

the smallest nonnegative concave majorant of the reward function on an interval.

Since we are working with one–dimensional processes, this smallest concave majorant

can be constructed easily in most interesting cases.

6.1 Pricing an “Up–and–Out” Barrier Put–Option

of American Type under Black–Scholes Model

(Karatzas and Wang [9])

Karatzas and Wang [9] solve the pricing problem for an “up–and–out” barrier put–

option of American type, by solving the optimal stopping problem

V (x) , sup
τ≥0

Ex

[
e−rτ (q − Sτ )

+ 1{τ<τd}
]
, x ∈ (0, d), (6.1)
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using variational inequalities. Here S is the stock price process governed under the

risk-neutral measure by

dSt = St(rdt+ σdBt), S0 = x ∈ (0, d),

B is standard Brownian motion, and the risk–free interest rate r > 0 and the volatility

σ > 0 are constant. d > 0 is the barrier and q ∈ (0, d) is the strike–price of the option.

Moreover τd , inf{t ≥ 0 : S(t) ≥ d} is the time when the option becomes “knocked-

out”. The state space of S is I = (0,∞). Since the drift r is positive, 0 is a natural

boundary for S, whereas it hits c ∈ int(I) with probability one.

We shall offer here a novel solution for (6.1) by using the techniques of Chapter 5.

For this purpose, consider the stopped stock–price process, denoted by S̃t, which

starts in (0, d] and is absorbed when it reaches the barrier d.

It is clear from (6.1) that V (x) ≡ 0, x ≥ d. We therefore need to determine V on

(0, d]. Note that V does not depend on the behavior of stock–price process after it

reaches the barrier d, and we can rewrite

V (x) = sup
τ≥0

Ex

[
e−rτh(S̃τ )

]
, x ∈ (0, d].

where h : (0, d] → R is the reward function given by h(x) , (q − x)+ (see Fig-

ure 6.1(a)). The infinitesimal generator A of S is

Au(x) ,
σ2

2
x2u′′(x) + rxu′(x),

acting on smooth functions u. The increasing and decreasing positive solutions, ψ

and ϕ, respectively, of Au = ru turn out to be

ψ(x) = x and ϕ(x) = x−
2r
σ2 , x ∈ (0,∞).

Observe that ψ(0+) = 0, ϕ(0+) = +∞ and both are continuous functions on (0, d].

Furthermore h is continuous on (0, d], and

`0 , lim sup
x→0

h+(x)

ϕ(x)
= lim

x→0

h(x)

ϕ(x)
= 0.
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Proposition 5.11 implies that V is finite. We can therefore invoke Proposition 5.12

to conclude that V is the smallest nonnegative majorant of h such that V
ϕ

is F–

concave on (0, d]. Furthermore, Proposition 5.13 implies that V (x) = ϕ(x)W (F (x)),

x ∈ (0, d], where

F (x) ,
ψ(x)

ϕ(x)
= x1+ 2r

σ2 ≡ xβ, x ∈ (0, d]; β , 1 +
2r

σ2
> 1, (6.2)

and W : [0, dβ](≡ [F (0+), F (d)]) → R is the smallest nonnegative concave majorant

of H : [0, dβ] → R, defined by

H(y) ,


(
h

ϕ

)
◦ F−1(y), y ∈ (0, dβ]

`0, y = 0

 =


y1− 1

β
(
q − y

1
β
)+
, y ∈ (0, dβ]

0, y = 0

 .

To identify W explicitly, we shall first sketch H. Since h and ϕ are nonnegative, H

is also nonnegative. Note that H ≡ 0 on [qβ, dβ]. On (0, qβ), H(x) = y1− 1
β
(
q− y

1
β
)

is

twice–continuously differentiable, and

H ′(y) = q
(
1− 1

β

)
y−

1
β − 1, H ′′(y) = q

1− β

β2
y−(1+ 1

β
) < 0, x ∈ (0, qβ),

since β > 1. Hence H is the strictly concave on [0, qβ] (See Figure 6.1(b)).

It is clear from Figure 6.1(c) that strict concavity of H on [0, qβ] guarantees that

there exists unique z0 ∈ (0, qβ) such that

H ′(z0) =
H(dβ)−H(z0)

dβ − z0

= − H(z0)

dβ − z0

. (6.3)

Therefore the straight line Lz0 : [0, dβ] → R,

Lz0(y) , H(z0) +H ′(z0)(y − z0), y ∈ [0, dβ],

is tangent to H at z0 and coincides with the chord expanding between (z0, H(z0))

and (dβ, H(dβ) ≡ 0) over the graph of H. Since H(z0) > 0, (6.3) implies that Lz0 is

decreasing. Therefore Lz0 ≥ Lz0(d
β) ≥ 0 on [0, dβ]. Remember also that H is concave
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Figure 6.1: (Pricing Barrier Option) Sketches of (a) h, (b) H and (c)H and W .

We find V using Proposition 5.6. We shall therefore need to calculate the smallest

nonnegative concave majorant W of H on [F (0), F (d)] ≡ [0, dβ].

This problem is equivalent to wrapping an object with cross chapterH∨0 ≡ H

using the minimum amount of rope. Because H is concave on [0, qβ], W tightly

wraps H as in (c) from 0 to some z0 ∈ (0, qβ) where it takes the “short” cut, i.e.

the line Lz0 , to the right–most end dβ. Since H is strictly concave on [0, qβ], z0 is

unique. Since H is smooth on (0, qβ) 3 z0, the slope of Lz0 must agree with H ′

at z0.

Since V (·) = ϕ(·)W (F (·)) by Proposition 5.6, V > h if and only if W (F ) >

H(F ). From (c), the optimal continuation region is {x ∈ [0, d] : V (x) > h(x)} =

F−1((z0, d
β)) =

(
F−1(z0), d

)
.

on [0, z0], and every linear function is concave. It is evident from Figure 6.1(c) that

the smallest nonnegative concave majorant of H on [0, dβ] is given by

W (y) =


H(y), if y ∈ [0, z0]

Lz0(y), if y ∈ (z0, d
β]

 =


H(y), if y ∈ [0, z0]

H(z0)
dβ − y

dβ − z0

, if y ∈ (z0, d
β]


where we used the defining relation (6.3) for z0 to get the second equality. Strict

concavity of H on [0, qβ] also implies that C̃ , {y ∈ [0, dβ] : W (y) > H(y)} = (z0, d
β).

From (6.2), we find F−1(y) = y1/β, y ∈ [0, dβ]. Let x0 , F−1(z0) = z
1/β
0 . Then
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x0 ∈ (0, d). Proposition 5.13 implies that V (x) = ϕ(x)W (F (x)), x ∈ (0, d], i.e.

V (x) =


q − x, 0 ≤ x ≤ x0,

(q − x0) ·
x

x0

· d
−β − x−β

d−β − x−β0

, x0 < x ≤ d.
(6.4)

Since `0 = 0, Proposition 5.15 guarantees the existence of an optimal stopping time.

The optimal continuation region becomes C , {x ∈ (0, d] : V (x) > h(x)} =

F−1
(
C̃
)

= F−1
(
(z0, d

β)
)

= (x0, d). Therefore τ ∗ , inf{t ≥ 0 : St /∈ (x0, d)} is

optimal. Finally, one can show that the relation in (6.3), which uniquely determines

z0 (therefore x0), takes the form

1 + β
x0

q
= β +

(x0

d

)β
, (6.5)

after some simple algebra using definitions of H, H ′ and x0 ≡ z
1/β
0 . Compare (6.4)

and (6.5) above with (2.18) and (2.19) in Karatzas and Wang [9, pages 263 and 264],

respectively.

6.2 Pricing an “Up–and–Out” Barrier Put–Option

of American Type under Constant–Elasticity–

of–Variance (CEV) Model

We shall look at the same optimal stopping problem of (6.1) by assuming now that

the stock price dynamics are described according to CEV model,

dSt = rStdt+ σS1−α
t dBt, S0 ∈ (0, d),

for some α ∈ (0, 1). The infinitesimal generator for this process isA = 1
2
σ2x2(1−α) d2

dx2 +

rx d
dx

. The increasing and decreasing solutions of Au = ru are given by

ψ(x) = x, ϕ(x) = x ·
∫ +∞

x

1

z2
exp

{
− r

ασ2
z2α
}
dz, x ∈ (0,+∞),
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respectively. Moreover

ψ(0+) = 0, ϕ(0+) = 1, and ψ(+∞) = +∞, ϕ(+∞) = 0.

Therefore 0 is an exit–and–not–entrance boundary, and +∞ is a natural boundary

for S. We shall regard 0 as an absorbing boundary (i.e., upon exit at 0, we shall

assume that the process remains there forever).

We shall also modify the process such that d becomes an absorbing boundary.

Therefore, we have our optimal stopping problem in the canonical form of Chapter 4,

with the reward function h(x) = (q − x)+, x ∈ [0, d].

One can show that the results of Chapter 4 stay valid when the left–boundary of

the state space is an exit–and–not–entrance boundary. According to Proposition 4.3,

V (x) = ψ(x)W (G(x)), x ∈ [0, d] with

G(x) , −ϕ(x)

ψ(x)
= −

∫ +∞

x

1

u2
exp

{
− r

ασ2
u2α
}
du, x ∈ (0, d], (6.6)

and W : (G(0+), G(d)] ≡ (−∞, G(d)] → R is the smallest nonnegative concave

majorant of H : (−∞, G(d)] → R, given by

H(y) ,

(
h

ψ
◦G−1

)
(y) =


[( q
x
− 1
)
◦G−1

]
(y), if −∞ < y < G(q)

0, if G(q) ≤ y ≤ 0

 . (6.7)

Except for y = G(q), H is twice–differentiable on (−∞, G(d)). Note that

dH

dy
(y) =

(
d

dx

h

ψ

)
(G−1(y)) · 1

G′(G−1(y))
=

[(
(h/ψ)′

G′

)
◦G−1

]
(y)

=


[(
−q exp

{ r

ασ2
x2α
})

◦G−1
]
(y), if −∞ < y < G(q)

0, if G(q) < y < 0

 ,

and with f(x) , −q exp
{

r
ασ2x

2α
}
, we have

d2H

dy2
(y) =

d

dy

(
f ◦G−1

)
(y) =

[(
f ′

G′

)
◦G−1

]
(y)

=


[(
−2rq

σ2
x2α+1 exp

{ r

ασ2
x2α
})

◦G−1

]
(y), if −∞ < y < G(q)

0, if G(q) < y < 0

 .



CHAPTER 6. EXAMPLES 62

Therefore, H is strictly decreasing and strictly concave on (−∞, G(q)). Moreover

H(−∞) = +∞ and H ′(−∞) = −q, since G−1(−∞) = 0.

For every −∞ < y < G(q), let z(y) be the point on the y–axis, where the tangent

line Ly(·) of H(·) at y intersects the y–axis (cf. Figure 6.2(a)). Then

z(y) = y − H(y)

H ′(y)
= G(G−1(y))−

[(
q
x
− 1
)
◦G−1

]
(y))[(

−q exp
{

r
ασ2x2α

})
◦G−1

]
(y)

=

[(
G(x)−

q
x
− 1

−q exp
{

r
ασ2x2α

}) ◦G−1

]
(y)

=

[(
−
∫ +∞

x

1

u2
exp

{
− r

ασ2
u2α
}
du+

(
1

x
− 1

q

)
exp

{
− r

ασ2
x2α
})

◦G−1

]
(y)

=

[(
2r

σ2

∫ +∞

x

u2(α−1) exp
{
− r

ασ2
u2α
}
du− 1

q
exp

{
− r

ασ2
x2α
})

◦G−1

]
(y),

(6.8)

where the last equality follows from integration by parts. It is geometrically clear that

y → z(y) : (−∞, G(q)) → (G(q),+∞) is strictly decreasing. Since G−1(−∞) = 0, we

have

z(−∞) =
2r

σ2

∫ +∞

0

u2(α−1) exp
{
− r

ασ2
u2α
}
du− 1

q

Note that G(q) < z(−∞) < +∞ if 1/2 < α < 1, and z(−∞) = +∞ if 0 < α ≤

1/2. (This latter conclusion is a little puzzling. At the first glance, one may expect

z(−∞) < +∞ all the time, since H is strictly decreasing and concave, with one zero

and H ′(−∞) = −q < 0. Especially, one expects that H must have an asymptote

in the form of `(y) , a − qy for some real numbers a and b, as y tends to −∞.

It is however not difficult to come up with a simple function, which has all of the

properties of H. Let g : (−∞, 0] → R be defined by g(y) , −y +
√
−y. Then

g′(y) = −1 − (1/2)(−y)−1/2, and g is strictly decreasing and concave. Moreover

g′(−∞) = −1 < 0, and g(0) = 0. Notice now that

z(y) = y − g(y)

g′(y)
= − y

1 + 2
√
−y

, y ∈ (−∞, 0),

and z(−∞) = limy→−∞ z(y) = +∞).
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Figure 6.2: (Pricing Barrier Option under CEV Model) Sketches of functions H

and W of Proposition 4.3, when (a) G(d) < z(−∞) (for this sketch, we assume

that z(−∞) is finite. However, z(−∞) = +∞ is also possible, in which case H

does not have a linear asymtote), and (b) G(d) > z(−∞).

Case I. Suppose first G(d) < z(−∞) (especially, when 0 < α ≤ 1/2). Then there

exists unique y0 ∈ (−∞, G(q)) such that z(y0) = G(d) thanks to the monotinicity and

the continuity of z(·). In other words, the tangent line Ly0(·) of H(·) at y = y0 < G(q)

intersects y–axis at y = G(d). It is furthermore clear from Figure 6.2(a) that

W (y) =


H(y), if −∞ < y ≤ y0

H(y0)
G(d)− y

G(d)− y0

, if y0 < y ≤ G(d)


is the smallest nonnegative concave majorant of H of (6.7) on y ∈ (−∞, G(d)]. Define

x0 , G−1(y0). According to Proposition 4.3, V (x) = ψ(x)W (G(x)), x ∈ [0, d], i.e.,

V (x) =


q − x, if 0 ≤ x ≤ x0

(q − x0) ·
x

x0

· G(d)−G(x)

G(d)−G(x0)
, if x0 < x ≤ d

 .

The optimal continuation region becomes C = (x0, d), and τ ∗ , inf{t ≥ 0 : St /∈

(x0, d)} is an optimal stopping time. The relation z(G(x0)) = G(d) determines x0 ∈
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(q, d) uniquely. From (6.6) and integration by parts, we get

G(d) =
2r

σ2

∫ +∞

d

u2(α−1) exp
{
− r

ασ2
u2α
}
du− 1

d
exp

{
− r

ασ2
d2α
}
, (6.9)

and the defining relation for x0 can be rewitten, with the help of (6.8) and (6.9), as

2r

σ2

∫ d

x0

u2(α−1) exp
{
− r

ασ2
u2α
}
du =

1

q
exp

{
− r

ασ2
x2α

0

}
− 1

d
exp

{
− r

ασ2
d2α
}
.

Case II. Suppose now G(d) > z(−∞) (cf. Figure 6.2(b)). It is then clear that

W (y) = −q
[
y −G(d)

]
, −∞ < y ≤ G(d)

is the smallest nonnegative concave majorant of H of (6.7) on (−∞, G(d)]. According

to Proposition 4.3, V (x) = ψ(x)W (G(x)), x ∈ [0, d], i.e.

V (x) = −qx
[
G(x)−G(d)

]
, x ∈ [0, d],

where V (0) = V (0+) = q. Furthermore, τ ∗ , inf{t ≥ 0 : St /∈ (0, d)} is an optimal

stopping time.

6.3 American Capped Call Option on Dividend–

Paying Assets (Broadie and Detemple [1])

Let the stock price be driven by

dSt = St
[
(r − δ)dt+ σdBt

]
, t ≥ 0, S0 > 0,

with constant σ > 0, risk–free interest rate r > 0 and dividend rate δ ≥ 0. Consider

the optimal stopping problem

V (x) , sup
τ≥0

Ex

[
e−rτ (Sτ ∧ L−K)+

]
, x ∈ (0,+∞), (6.10)

with the reward function h(x) , (x∧L−K)+, x > 0. The value function V (·) is the

arbitrage–free price of the perpetual American capped call option with strike price
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K ≥ 0, and the cap L > K on the stock S, which pays dividend at a constant rate δ.

We shall reproduce the results of Broadie and Detemple [1] in this subsection.

The infinitesimal generator of X coincides with the second–order differential op-

erator A , (σ2/2)x2 d2

dx2 + (r − δ)x d
dx

. Let γ1 < 0 < γ2 be the roots of

1

2
σ2 x2 +

(
r − δ − σ2

2

)
x− r = 0.

Then the increasing and decreasing solutions of Au = ru are given by

ψ(x) = xγ2 , and ϕ(x) = xγ1 , x > 0,

respectively. Both endpoints of the state–space I = (0,+∞) of S are natural. Since

`0 , lim sup
x↓0

h+(x)

ϕ(x)
= 0, and `+∞ , lim sup

x→+∞

h+(x)

ψ(x)
= 0,

the value function V (·) of (6.10) is finite, and the stopping time τ ∗ of (5.17) is optimal.

Moreover V (x) = ϕ(x)W (F (x)), where

F (x) ,
ψ(x)

ϕ(x)
= xθ, x > 0, and θ , γ2 − γ1 > 0,

and W : [F (0+), F (+∞)) → [0,+∞) is the smallest nonnegative concave majorant

of H : [F (0+), F (+∞)) → [0,+∞), given by

H(y) ,

(
h

ϕ

)
(F−1(y)) =


0, if 0 ≤ y < Kθ,(
y1/θ −K

)
y−γ1/θ, if Kθ ≤ y < Lθ

(L−K)y−γ1/θ, if y ≥ Lθ,


, (6.11)

thanks to Proposition 5.20. We have

H ′(y) =


0, 0 < y < Kθ

1− γ1

θ
y(1−γ2)/θ +

γ1

θ
Ky−γ2/θ, Kθ < y < Lθ

− γ1

θ
(L−K)y−γ2/θ, y > Lθ


,
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and

H ′′(y) =


0, 0 < y < Kθ

(1− γ1)(1− γ2)

θ2
y(1−γ2)/θ−1 − γ1γ2

θ2
K y−γ2/θ−1, M θ < y < Lθ

γ1γ2

θ2
(L−K)y−γ1/θ−1, y > Lθ


.

The function H(·) is nondecreasing on [0,+∞) and strictly concave on [Lθ,+∞).

By solving the inequality H ′′(y) ≤ 0, for Kθ ≤ y ≤ Lθ, we find that

H(·) is


convex on

[
Kθ, Lθ

]
∩
[
0, (r/δ)θKθ

]
concave on

[
Kθ, Lθ

]
∩
[
(r/δ)θKθ,+∞

)
 .

It is easy to check that H(Lθ)/Lθ ≥ H ′(Lθ+). (See Figure 6.3).

Let Lz(y) , y H(z)/z, for every y ≥ 0 and z > 0. If (r/δ)K ≥ L, then

LLθ(y) ≥ H(y), y ≥ 0, (6.12)

(cf. Figure 6.3(b)). If (r/δ)K < L, then (6.12) holds if and only if

H(Lθ)

Lθ
< H ′(Lθ−) ⇐⇒ γ2 ≤

L

L−K
,

(cf. Figure 6.3(d,f)). If (r/δ)K < L and γ2 > L/(L−K), then the equation H(z)/z =

H ′(z), Kθ < z < Lθ has unique solution, z0 ,
[
γ2/(γ2 − 1)

]θ
Kθ > (r/δ)θKθ, and

Lz0(y) ≥ H(y), y ≥ 0,

(cf. Figure 6.3(c,e)). It is now clear that the smallest nonnegative concave majorant

of H(·) is

W (y) =


Lz0∧Lθ(y), if 0 ≤ y ≤ z0 ∧ Lθ

H(y), if y > z0 ∧ Lθ


in all cases. Finally

V (x) = ϕ(x)W (F (x)) =


(x0 ∧ L−K)

(
x

x0 ∧ L

)γ2
, if 0 < x ≤ x0 ∧ L

x ∧ L−K, if x > x0 ∧ L

 ,
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where x0 , F−1(z0) = K γ2/(γ2−1). The optimal stopping region is Γ , {x : V (x) =

h(x)} = [x0 ∧ L,+∞), and the stopping time τ ∗ , inf{t ≥ 0 : St ∈ Γ} = inf{t ≥ 0 :

St ≥ x0 ∧ L} is optimal. Finally, it is easy to check that γ2 = 1 (therefore x0 = +∞)

if and only if δ = 0.
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Figure 6.3: (Perpetual American capped call options on dividend–paying

assets) Sketches of (a) the reward function h(·), and (b)–(f) the function

H(·) of (6.11) and its smallest nonnegative concave majorant W (·).

In cases (b), (d) and (f), the left boundary of the optimal stopping region

for the auxiliary optimal stopping problem of (4.10) becomes Lθ, and W (·)

does not fit to H(·) smoothly at Lθ. In cases (c) and (e), the left boundary

of optimal stopping region, namely z0, is smaller than Lθ, and W (·) fits to

H(·) smoothly at z0.
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6.4 Options for Risk–Averse Investors (Guo and

Shepp [4])

Let X be a geometric Brownian Motion with constant drift µ ∈ R and dispersion

σ > 0. Consider the optimal stopping problem

V (x) , sup
τ≥0

Ex

[
e−rτ max{l, Xτ}

]
, x ∈ (0,∞), (6.13)

where the reward function is given as h(x) , max{l, x}, x ∈ [0,∞), and l and r

positive constants.

Guo and Shepp [4] solve this problem using variational inequalities in order to

price exotic options of American type. As it is clear from the reward function, the

buyer of the option is guaranteed at least l when the option is exercised (an insurance

for risk–averse investors). If r is the riskless interest rate, then the price of the option

will be obtained when we choose µ = r.

Remember that the dynamics of X is given as

dXt = Xt(µdt+ σdBt), Xt = x ∈ (0,∞),

where B is standard Brownian motion in R. The infinitesimal generator ofX coincides

with the second–order differential operator A = σ2

2
x2 d2

dx2 + µx d
dx

as it acts on smooth

functions. Denote by γ1, γ0 , 1
2

[
−
(

2µ
σ2 − 1

)
∓
√(

2µ
σ2 − 1

)2
+ 8r

σ2

]
, with γ1 < 0 < γ0,

the roots of the second–order polynomial

f(x) , x2 +

(
2µ

σ2
− 1

)
x− 2r

σ2
.

The positive increasing and decreasing solutions of Au = ru are then given as

ψ(x) = xγ0 , and ϕ(x) = xγ1 , x ∈ (0,+∞),

respectively. Observe that both end–points, 0 and +∞, of state space of X are

natural. Indeed ψ(0+) = ϕ(+∞) = 0 and ψ(+∞) = ϕ(0+) = +∞. We also have

`0 , lim sup
x→0

h+(x)

ϕ(x)
= lim

x→0

h(x)

ϕ(x)
= 0,
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whereas

`∞ , lim sup
x→+∞

h+(x)

ψ(x)
= lim

x→+∞

h(x)

ψ(x)
=


+∞, if γ0 < 1

1, if γ0 = 1

0, if γ0 > 1


.

The value of `∞ is crucial since it is going to determine both the finiteness of the value

function and the existence of an optimal stopping time, as stated in Proposition 5.18

and Proposition 5.21, respecively. Remember that γ1 < 0 < γ0 are the roots of

f(x) , x2 +
(

2µ
σ2 − 1

)
x − 2r

σ2 . Observe that γ0 < 1 (i.e. 1 /∈ [γ1, γ0]) if and only if

f(1) > 0, and γ0 = 1 if and only if f(1) = 0 (i.e. 1 is the positive root). However

f(1) = 1 +

(
2µ

σ2
− 1

)
− 2r

σ2
=

2

σ2
· (µ− r).

Therefore

`∞ =


+∞, if r < µ

1, if r = µ

0, if r > µ


.

Now Proposition 5.18 and Proposition 5.21 imply that
V ≡ +∞, if r < µ

V is finite, but there is no optimal stopping time, if r = µ

V is finite, and τ ∗ of (5.17) is an optimal stopping time, if r > µ


.

(Compare with Guo and Shepp[4, Theorem 4 and 5]). There is nothing more to say

about the case r < µ. We shall defer the case r = µ to the next Section (there,

we discuss a slightly different and more interesting problem, of essentially the same

difficulty as the problem with r = µ).

We shall study the case r > µ in the remainder part of this Section. So suppose

r > µ. V is finite, and it is the smallest nonnegative majorant of h on (0,∞) such

that V
ϕ

is F–concave on (0,∞) by Proposition 5.19.
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We shall use Proposition 5.20 in order to identify V . Note that

F (x) ,
ψ(x)

ϕ(x)
= xγ0−γ1 ≡ xβ, x ∈ (0,∞), β , γ0 − γ1.

Let W : [0,∞) → R be the smallest nonnegative concave majorant of H : [0,∞) → R,

defined as in Proposition 5.20. Then V (x) = ϕ(x)W (F (x)) = xγ1W (xβ), x ∈ (0,∞).

Note that

H(y) ,


h
(
F−1(y)

)
ϕ
(
F−1(y)

) , if y ∈ (0,+∞)

`0, if y = 0

 =


H0(y) ≡ ly−

γ1
β , if 0 ≤ y < lβ

H1(y) ≡ y
1−γ1

β , if y ≥ lβ

 ,

where H0(y) , ly−
γ1
β and H1(y) , y

1−γ1
β for every y ∈ (0,∞). See Figure 6.4(a) and

Figure 6.4(b) for a sketch of h and H, respectively.

In order to find W , we shall determine convexities and concavities of H. Note

that H is twice–continuously differentiable everywhere except at y = lβ. The first

two derivatives of H on (0,∞)\{lβ} are

H ′(y) =


H ′

0(y) = −γ1

β
ly−

γ0
β , 0 < y < lβ

H ′
1(y) =

1− γ1

β
y

1−γ0
β , y > lβ

 > 0, (6.14)

and

H ′′(y) =


H ′′

0 (y) =
γ1γ0

β2
ly−

γ0
β
−1, 0 < y < lβ

H ′′
1 (y) =

(1− γ1)(1− γ0)

β2
y

1−γ0
β

−1, y > lβ

 < 0. (6.15)

Note that H is strictly increasing on (0,∞), and strictly concave on both of the

subintervals (0, lβ) and (lβ,∞). H is concave on (0,∞) if and only if H ′(lβ−) ≥

H ′(lβ+) (which would also imply that W ≡ H). However

H ′(lβ−) = H ′
0(l

β) = −γ1

β
l1−γ0 <

1− γ1

β
l1−γ0 = H ′

1(l
β) = H ′(lβ+),

since −γ1 > 0 (See Figure 6.4(b)). Note that H0 and H1 are both increasing and

concave on (0,∞). Moreover we always have H0 > H1 on [0, lβ), and H0 < H1 on
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W

Lz

z

h0

h = h0 ∨ h1

h1

H = H0 ∨H1

H0

H1

Lz0

z1z0

Figure 6.4: (Options for risk–averse investors) (a) h, (b) H, (c) H and W . h is

maximum of h0 ≡ l and h1 ≡ x. The transformation h→ H of Proposition 5.20

preserves the monotonicity. If we similarly let h0 → H0 and h1 → H1, then H

becomes maximum of H0 and H1 as in (b).

Both H0 and H1 turn out to be concave. Since two curves intersect (at lβ),

H will however not be concave. Therefore, the smallest nonnegative concave

majorant W of H will not be trivial.

To find W , we observe in (c) how the straight lines Lz, tangent to H at z,

change direction as z moves to right. Since H ′(0+) = +∞ and H is concave

near 0, every tangent Lz near 0 has so large slope that it never meets H other

than at z. The slope of Lz however decreases steadily as z shifts right thanks

to strict concavity of H0. For the first time tangent Lz0 at some z0, before H0

meets H1 at lβ, touches H1 at some z1 > lβ. We obtain W from H by replacing

it on [z0, z1] with Lz0 : We stick to H ∨ 0 ≡ H as much as we can as we maintain

a non–increasing slope for our new curve. This will guarantee minimality and

concavity as well as nonnegativity of the curve which we just described.

(lβ,∞) (i.e. H is in fact the maximum of two concave functions, H0 and H1, on

(0,∞)). It is therefore clear that H ′
0(l

β) < H ′
1(l

β) (See Figure 6.4(b)).

It is clear from Figure 6.4(c) that there exist unique z0 ∈ (0, lβ) and unique
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z1 ∈ (lβ,∞) such that

H ′(z0) =
H(z1)−H(z0)

z1 − z0

= H ′(z1). (6.16)

This can be rigorously proven by studying the family of straight lines Lz : [0,∞) → R,

Lz(y) , H(z) +H ′(z)(y − z), y ∈ (0,∞),

indexed by z ∈ (0, lβ] (see Figure 6.4(c)). These are the lines tangent to H at

z ∈ (0, lβ]. The proof will use H ′(0+) = +∞, and the strict concavity of H on [0, lβ]

and [lβ,∞) . In fact Lz0 is the straight line that both majorizes max{H, 0} on [0,∞),

and cuts off the (only) convexity of H in the vicinity of lβ. Since Lz0 both majorizes

H, and touches H at z0 and z1 where H is differentiable, there is a smooth–fit between

Lz0 and H at both z0 and z1 (see Proposition 7.1 for a precise argument), i.e. the

slope of the line Lz0 is equal to H ′(z1). Therefore H ′(z0) = H ′(z1). On the other

hand since Lz0 connects (z0, H(z0)) and (z1, H(z1)), the slope of Lz0 is also same as

the quotient in (6.16).

It is evident from Figure 6.4(c) that the smallest nonnegative concave majorant

W of H on [0,∞) is given by

W (y) =


H(y), y ∈ [0, z0] ∪ [z1,∞),

Lz0(y), y ∈ (z0, z1).

Strict concavity of H on (0, lβ) and (lβ,∞) also implies that

C̃ , {y ∈ (0,∞) : W (y) > H(y)} = (z0, z1).

Before we write V , we shall calculate z0 and z1 explicitly by solving the two

equations in the defining relation (6.16) of z0 and z1. Using (6.14) we can write (6.16)

as

−γ1

β
lz
− γ0

β

0 =
z

1−γ1
β

1 − lz
− γ1

β

0

z1 − z0

=
1− γ1

β
z

1−γ0
β

1 . (6.17)
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The first equality in (6.17) gives(
−γ1

β
lz
− γ0

β

0

)
z1 = z

1−γ1
β

1 − γ0

β
lz
− γ1

β

0 .

We can replace the term in the parenthesis on the left with the third term in (6.17).

After rearranging terms and simplifying the expression, we obtain (γ0− 1)z
(1−γ1)/β
1 =

lγ0z
−γ1/β
0 . We solve the last equation for z0 in terms of z1, and find

z0 =

[
γ0 − 1

lγ0

z
1−γ1

β

1

]−β/γ1
. (6.18)

We plug this into −γ1
β
lz
−γ0/β
0 = 1−γ1

β
z

(1−γ0)/β
1 which is the equality of first and third

terms in (6.17). Straightforward algebra gives z1, and by plugging this back into

(6.18), we finally find

z0 = lβ
(

γ1

γ1 − 1

)1−γ1 (γ0 − 1

γ0

)1−γ0
and z1 = lβ

(
γ1

γ1 − 1

)−γ1 (γ0 − 1

γ0

)−γ0
.

(6.19)

We shall write V explicitly. Let x0 , F−1(z0) = z
1/β
0 and x1 , F−1(z1) = z

1/β
1 . By

Proposition 5.13, V (x) = ϕ(x)W (F (x)), x ∈ (0,∞). Since W ≡ H outside (z0, z1),

V ≡ h outside (x0, x1). Since z0 < lβ < z1 and F is increasing, we have x0 < l < x1.

Therefore V ≡ l on (0, x0), and V (x) = x on x ∈ (x1,∞). If x ∈ (x0, x1), then

F (x) ∈ (z0, z1) where W ≡ Lz0 , and

V (x) = ϕ(x)W (F (x)) = xγ1Lz0(x
β) = xγ1

[
H(z0) +H ′(z0)(x

β − z0)
]

= xγ1
[
lz
− γ1

β

0 − l
γ1

β
z
− γ0

β

0 (xβ − z0)

]
=
lxγ1

β

[
βx−γ10 − γ1x

−γ0
0 (xβ − xβ0 )

]
=

l

β

[
γ0

(
x

x0

)γ1
− γ1

(
x

x0

)γ0]
.

In summary, we have

V (x) =



l, if 0 < x ≤ x0,

l

β

[
γ0

(
x

x0

)γ1
− γ1

(
x

x0

)γ0]
, if x0 < x < x1,

x, if x ≥ x1,

(6.20)
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and C , {x ∈ (0,∞) : V (x) > h(x)} = F−1(C̃) = F−1((z0, z1)) = (x0, x1). Hence

τ ∗ , inf{t ≥ 0 : Xt /∈ (x0, x1)} is an optimal stopping rule by Proposition 5.21.

Compare (6.20) with (19) in Guo and Shepp [4] (al and bl of Guo and Shepp [4]

correspond to x0 and x1 in our calculations).

6.5 Another Exotic Option of Guo and Shepp [4]

The following example is quite instructive since it gives the opportunity to illustrate

new ways to find W of Proposition 5.20. It will also enrich the imagination of the

reader about different forms of least nonnegative concave majorants, and how they

rise.

Let X be a geometric Brownian motion with constant drift r > 0 and dispersion

σ > 0. Guo and Shepp [4] study the optimal stopping problem

V (x) , sup
τ≥0

Ex

[
e−rτ

(
max{l, Xτ} −K

)+]
, x ∈ (0,∞),

where l and K are positive constants and l > K. The reward function h(x) ,(
max{l, x}−K

)+
can be seen as the payoff of some exotic option of American type.

r is the riskless interest rate and K is the strike price of the option. The buyer of the

option will be guaranteed to be paid at least l −K > 0 at the time of exercise. V is

the maximum expected discounted payoff that the buyer can earn. If exists, we want

to determine the best time to exercise the option. See Guo and Shepp [4] for more

discussion about the option’s properties.

From our discussion in the first section, we know that the generator of X coin-

cides with the second–order differential operator A = σ2

2
x2 d2

dx2 + rx d
dx

. The positive

increasing and decreasing solutions of Au = ru are given by

ψ(x) = x and ϕ(x) = x−
2r
σ2 , x ∈ (0,∞).

The process is free to diffuse in (0,∞). Both boundaries are natural. Indeed ψ(0+) =
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ϕ(+∞) = 0 and ψ(+∞) = ϕ(0+) = +∞. Note that h is continuous in (0,∞) and

`0 , lim sup
x→0

h+(x)

ϕ(x)
= lim

x→0

h(x)

ϕ(x)
= 0 and `∞ , lim sup

x→∞

h+(x)

ψ(x)
= lim

x→∞

h(x)

ψ(x)
= 1.

Since h is bounded on every compact subset of (0,∞), and both `0 and `∞ are finite,

V is finite by Proposition 5.18. Moreover V is the smallest nonnegative majorant of

h such that V
ϕ

is F–concave by Proposition 5.19.

We shall use Proposition 5.20 in order to find V . Note that

F (x) ,
ψ(x)

ϕ(x)
= xβ, x ∈ (0,∞), where β , 1 +

2r

σ2
> 1.

Therefore F (0+) = 0 and F (+∞) = +∞. If W : [0,∞) → R is the smallest

nonnegative concave majorant of H : [0,∞) → R, given by

H(y) ,


h

ϕ
◦ F−1(y), y ∈ (0,∞)

`0, y = 0.

 =


(
l −K

)
y1−1/β, 0 ≤ y ≤ lβ(

y1/β −K
)
y1−1/β, y > lβ

 ,

then the value function is given by V (x) = ϕ(x)W (F (x)) = x1−βW (xβ), x ∈ (0,∞).

In order to find W explicitly, we shall identify the concavities of H. Note that H

is piecewise twice differentiable. In fact, we have

H ′(y) =


(

1− 1

β

)(
l −K

)
y−1/β, 0 < y ≤ lβ

1−
(

1− 1

β

)
Ky−1/β, y > lβ

 ,

and,

H ′′(y) =


− 1

β

(
1− 1

β

)(
l −K

)
y−(1+1/β), 0 < y ≤ lβ

1

β

(
1− 1

β

)
Ky−(1+1/β), y > lβ

 .

Note that H ′ > 0 and H ′′ < 0 on (0, lβ), i.e. H is strictly increasing and strictly

concave on [0.lβ]. Furthermore H ′(0+) = +∞. On the other hand, H ′′ > 0, i.e. H is

strictly convex on (lβ,+∞). We also have

0 < H ′(lβ−) = 1−
(

1− 1

β

)
K

l
− 1

β
= H ′(lβ+)− 1

β
< H ′(lβ+).
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Therefore H is also increasing on (lβ,+∞). One important observation which is key

to our investigation of W is that H ′ is bounded, and asymptotically grows to one:

0 < H ′(lβ−) < H ′(y) < 1, y > lβ; and lim
y→+∞

H ′(y) = 1.
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lβ y0
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lβ

concave convex

y z0

W H

45◦

H

l −K

h

Figure 6.5: (Another Exotic Option) (a) h, (b) H, (c) H and W . Since h is

piecewise, so is H. H is first concave increasing, and then convex increasing.

H ′(0+) = +∞ whereas H ′(y) increases to one as y goes to infinity.

To find W , imagine H ∨ 0 ≡ H as a landscape. Suppose we tie one end of an

infinite–length rope at H(0) ≡ 0 and release the rope by maintaining its tightness

as we climb the hill. As we go farther, the tight rope increases to W in (c).

Because H ′(0+) = +∞, and H ′ decreases to H ′(lβ) < 1, thanks to strict

concavity, the tangent Lz0 of H at some z0 has slope one for the first time before

H becomes convex at lβ. Thus W agrees with H before z0, and switches on Lz0

thereafter.

Figure 6.5(b) illustrates a sketch of H. Since H ′(0+) = +∞ and H ′(lβ−) < 1,

continuity of H ′ and strict concavity of H in (0, lβ) imply that there exists unique

z0 ∈ (0, lβ) such that H ′(z0) = 1. Let

Lz0(y) , H(z0) +H ′(z0)(y − z0) = H(z0) + y − z0, y ∈ [0,∞),
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be the straight line tangent to H at z0 (See Figure 6.5(c)). We claim that

W (y) = Ŵ (y) ,


H(y), 0 ≤ y ≤ z0,

Lz0(y), y > z0.

 , y ∈ [0,∞).

We first show that Ŵ is a nonnegative concave majorant of H on [0,∞). Since h

is positive, H is also positive. Therefore Ŵ ≡ H is positive on [0, z0]. Since Lz0 is

increasing, we also have Ŵ (y) = Lz0(y) ≥ Lz0(z0) = H(z0) > 0 for every y > z0.

Therefore Ŵ is nonnegative.

It is also obvious that Ŵ is differentiable. Since H is concave on [0, lβ] ⊃ [0, z0],

and Ŵ ′(y) = H ′(z0) for all y ≥ z0, Ŵ
′ is non–increasing on (0,∞). Because we also

have Ŵ (0) < Ŵ (y) for all y, Ŵ is concave on [0,∞).

We readily have Ŵ ≥ H on [0, z0]. Since Lz0 is tangent to H at z0 ∈ [0, lβ] where

H is concave, Proposition A.6(iii) implies that Ŵ ≡ Lz0 ≥ H on [z0, l
β]. Finally,

because H ′(y) < 1 = Ŵ ′(y), y > lβ, we have

H(y) = H(lβ) +

∫ y

lβ
H ′(z)dz ≤ Ŵ (lβ) +

∫ y

lβ
Ŵ ′(z)dz = Ŵ (y), y > lβ.

Since Ŵ is a nonnegative concave majorant of H on [0,∞), we have Ŵ ≥ W .

Since H = Ŵ ≥ W ≥ H on [0, z0], we immediately have Ŵ = W on [0, z0]. It

therefore remains to show that W ≥ Ŵ on (z0,∞).

Fix any y > z0. Since W is concave, and majorizes H, for any z > max{y, lβ} we

have

W (y) ≥ W (z0)
z − y

z − z0

+W (z)
y − z0

z − z0

≥ H(z0)
z − y

z − z0

+H(z)
y − z0

z − z0

Since limz→+∞ H(z)/(z − z0) = limz→+∞ H ′(z) = 1 by L’Hospital rule, the limit of

both sides as z → +∞ gives

W (y) ≥ H(z0) + y − z0 = Lz0(y) = Ŵ (y), y ∈ (z0,∞).

This completes the proof of W ≡ Ŵ .



CHAPTER 6. EXAMPLES 78

We are now ready to write the original value function V . Let x0 , F−1(z0) = z
1/β
0 .

Since F is strictly increasing, 0 < x0 < l. If 0 < x < x0, then 0 < F (x) < z0 and

V (x) = ϕ(x)W (F (x)) = ϕ(x)H(F (x)) = h(x) = l −K by Proposition 5.20.

Remember that z0 ∈ (0, lβ) has been uniquely determined by its defining relation

1 = H ′(z0) =

(
1− 1

β

)(
l −K

)
z
−1/β
0 (6.21)

We also have H(z0) =
(
l −K

)
z

1−1/β
0 . If x > x0, then F (x) > z0 and

V (x) = ϕ(x)W (F (x)) = x1−βLz0(x
β) = x1−β[H(z0) +H ′(z0)(x

β − z0)
]

= x1−β
[(
l −K

)
z

1−1/β
0 +

(
1− 1

β

)(
l −K

)
z
−1/β
0 (xβ − z0)

]
=
(
l −K

) [(
1− 1

β

)
z
−1/β
0 x+

1

β
x1−βz

1−1/β
0

]
=
(
l −K

) [(
1− 1

β

)
x

x0

+
1

β

(
x

x0

)1−β
]
.

In summary, we have

V (x) =


l −K, 0 < x < x0,(
l −K

) [(
1− 1

β

)
x

x0

+
1

β

(
x

x0

)1−β
]
, x > x0.

(6.22)

Furthermore, it follows from (6.21) that

x0 = z
1/β
0 =

(
1− 1

β

)(
l −K

)
.

Compare (6.22) with Corollary 3 in Guo and Shepp [4] (In their notation γ0 = 1,

γ0 − γ1 = β, l∗ = x0). Finally

C , {x ∈ (0,∞) : V (x) > h(x)}

= F−1
(
{x ∈ (0,∞) : W (x) > H(x)}

)
= F−1

(
(z0,∞)

)
= (x0,∞).

Since `∞ = 1 > 0, Lemma 5.6 implies that τ ∗ , inf {t ≥ 0 : Xt /∈ (x0,∞)} is not an

optimal stopping time. Hence there is no optimal stopping time (finite a.s. or not)

for this problem.
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6.6 An Example of H. Taylor [13]

Let X be one–dimensional Brownian motion with constant drift µ ≤ 0 and variance

coefficient σ2 = 1 in R. Taylor [13, Example 1] studies the optimal stopping problem

V (x) , sup
τ≥0

Ex[e
−βτ max{0, Xτ}], x ∈ R,

where the discounting rate β > 0 is constant. He guesses the value function and

verifies that his guess is indeed the nonnegative β–excessive majorant of the reward

function h(x) , max{0, x}, x ∈ R.

The infinitesimal generator of X is given by the operator A = 1
2
d2

dx2 + µ d
dx

acting

on smooth functions. The positive increasing and decreasing solutions of the second–

order ODE Au = βu exist, and are given by

ψ(x) = eκx and ϕ(x) = eωx, x ∈ R,

respectively, where κ = −µ+
√
µ2 + 2β > 0 > ω , −µ−

√
µ2 + 2β are the roots of

(1/2)m2 + µm − β = 0. The boundaries ±∞ are natural. Observe that ψ(−∞) =

ϕ(+∞) = 0 and ψ(+∞) = ϕ(−∞) = +∞. The reward function h is continuous and

`−∞ , lim sup
x→−∞

h+(x)

ϕ(x)
= lim

x→−∞

h(x)

ϕ(x)
= 0 and `+∞ , lim sup

x→+∞

h+(x)

ψ(x)
= lim

x→+∞

h(x)

ψ(x)
= 0.

By Proposition 5.18, the value function V is finite. It is the smallest nonnegative

majorant of the reward function h such that V/ψ is G–concave in R by Proposi-

tion 5.19. As usual, we shall use Proposition 5.20 in order to calculate V explicitly.

Note that

G(x) , −ϕ(x)

ψ(x)
= −e(ω−κ)x, x ∈ R,

and G(−∞) = −∞ and G(+∞) = 0.

Let W : (−∞, 0] → R be the smallest nonnegative concave majorant of H :

(−∞, 0] → R defined as in Proposition 5.20 by

H(y) =


h

ψ
◦G−1(y), y ∈ (−∞, 0)

`+∞, y = 0

 =


0, y ∈ (−∞,−1] ∪ {0}
(−y)α

ω − κ
log (−y), y ∈ (−1, 0)

 ,
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where α , κ
κ−ω (0 < α < 1). Note that H is piecewise twice differentiable. In fact,

H ′(y) =


0, y ∈ (−∞,−1)

(−y)α−1

κ− ω

[
α log (−y) + 1

]
, y ∈ (−1, 0)


and

H ′′(y) =


0, y ∈ (−∞,−1)

− (−y)α−2

κ− ω

[
α(α− 1) log (−y) + α+ (α− 1)

]
, y ∈ (−1, 0)

 .

Observe that

H ′′(y) < 0 ⇐⇒ α(α− 1) log (−y) + α+ (α− 1) > 0 ⇐⇒ y > T , −e
α+(α−1)
α(α−1) .

Since we have

α+ (α− 1)

α(α− 1)
=
κ2 − ω2

κω
=

2(θκ+ β)− 2(θω + β)

−2β
= −2θ

√
θ2 + 2β

β
,

H is strictly concave on [T, 0] with

T , −e−(2θ/β)
√
θ2+2β ∈ (−1, 0).

One can also check that H ′(M) = 0 gives the unique maximum of H and

M = −e−1/α ∈ (T, 0).

Figure 6.6(b) illustrates a sketch of H. We claim that

W (y) = Ŵ (y) ,


H(M), y ∈ (−∞,M)

H(y), y ∈ [M, 0]

 .

We shall first prove that Ŵ is a nonnegative concave majorant of H. This will imply

Ŵ ≥ W by Proposition 5.20.

Since h is nonnegative, H, as well as Ŵ , is nonnegative. It is also clear that Ŵ

is differentiable and Ŵ ′ = 0 on (−∞,M ]. Since H is concave on [T, 0] ⊃ [M, 0], H ′
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Figure 6.6: (Taylor’s Example) (a) h, (b) H, (c) H and W . H is strictly concave

on [T, 0] and strictly convex on (−∞, T ]. It has unique maximum at M , and

−1 < T < M < 0.

In order to visualize the smallest nonnegative concave majorant W of H,

imagine we tie one end of an infinite–length rope at H(0) ∨ 0 ≡ 0. We release

the rope as we walk along H ∨ 0 ≡ H to the left by maintaining tightness of the

rope. The rope increases to W as we continue our indefinitely long walk to −∞.

Since V (·) = ψW (G(·)) and h = ψ(·)H(G(·)) by Proposition 5.20, V (x) >

h(x) if and only if W (G(x)) > H(G(x)). Therefore the optimal continuation

region becomes {x ∈ R : V (x) > h(x)} = G−1(−∞,M) =
(
−∞, G−1(M)

)
.

is non–increasing on [M, 0). Therefore Ŵ ′ is non–increasing in (−∞, 0), i.e. Ŵ is

concave in (−∞, 0). Because Ŵ (0) = 0 < Ŵ (y) for every y ∈ (−∞, 0), Ŵ is also

concave on (−∞, 0]. It is obvious that Ŵ majorizes H.

Observe that H = Ŵ ≥ W ≥ H on [M, 0]. Hence Ŵ = W on [M, 0]. It remains

to show that W ≥ Ŵ in (−∞,M). Fix any y < M . Because W is concave, and

majorizes H, for every z < min{−1, x} we have

W (y) ≥ W (z)
y −M

M − z
+W (M)

y − z

M − z
≥ H(z)

y −M

M − z
+H(M)

y − z

M − z
= H(M)

y − z

M − z
.

By taking limit of both sides as z → −∞, we finally obtain W (y) ≥ H(M) = Ŵ (y)

for every y ∈ (−∞,M).
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We are know ready to write the value function V . Let

x0 , G−1(M) =
1

α(κ− ω)
=

1

κ
> 0.

Since G is strictly increasing, for every x < x0 we have G(x) < M , and V (x) =

ψ(x)W (G(x)) = eκxH(M) = (1/κ)eκx−1 by Proposition 5.20. On the other hand,

if x > x0 > 0, then G(x0) ∈ [M, 0) and V (x) = ψ(x)W (G(x)) = ψ(x)H(G(x)) =

h(x) = x. Hence

V (x) =


1

κ
eκx−1, x <

1

κ
,

x, x ≥ 1

κ
.

Compare this with f(·) of Taylor [13, page 1337, Example 1] (In his notation, a = 1
κ
).

Finally, note that

C , {x ∈ R : V (x) > h(x)}

= G−1
(
{y ∈ (−∞, 0) : W (y) > H(y)}

)
= G−1

(
(−∞,M)

)
= (−∞, 1/κ).

Because `−∞ = `+∞ = 0, Proposition 5.21 implies

τ ∗ , inf {t ≥ 0 : Xt /∈ C} = inf {t ≥ 0 : Xt ≥ 1/κ}

is an optimal stopping time (although Px{τ ∗ = +∞} > 0 for x < 1/κ if µ < 0).

6.7 An Example of P. Salminen [12]

Let X be a one–dimensional Brownian motions with drift µ ∈ R. Salminen [12, page

98, Example (iii)] studies the optimal stopping problem

V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ R

with the reward function

h(x) ,


1, if x ≤ 0

2, if x > 0

 ≡


h1(x), if x ≤ 0

h2(x), if x > 0

 , h1 ≡ 1, h2 ≡ 2, on R,
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and positive discounting rate β. He solves the problem by assuming µ = 0 and by us-

ing Corollary 7.3. Since h is not differentiable at 0 (which turns out to be a boundary

of the optimal stopping region), he needed to calculate the mass of the “representing

measure” for h. Salminen shows that every β–excessive function, including V , can

uniquely be represented as an integral of a functional of minimal β–excessive func-

tions with respect to a “representing measure”. Therefore finding V is equivalent to

calculating the representing measure of the value function.

Even though h is not differentiable at 0, we can use our results of Chapter 5 to

calculate V . Note that Xt = µt + Bt, t ≥ 0, and X0 = x ∈ R, where B is standard

one–dimensional Brownian motion. Its generator coincides with A = 1
2
d2

dx2 +µ d
du

, and

the positive increasing and decreasing solutions of Au = βu are given by

ψ(x) = eκx and ϕ(x) = eωx, x ∈ R,

respectively, where κ , −µ+
√
µ2 + 2β > 0 > ω , −µ−

√
µ2 + 2β are the roots of

1
2
m2 + µm− β.

The boundaries ±∞ are natural. We have ψ(−∞) = ϕ(+∞) = 0 and ψ(+∞) =

ϕ(−∞) = +∞. Note that

`−∞ , lim sup
x→−∞

h+(x)

ϕ(x)
= 0 and `+∞ , lim sup

x→+∞

h+(x)

ψ(x)
= 0.

Since furthermore h is bounded (on every compact subset of R), Proposition 5.18

implies that V is finite. Furthermore, V is the smallest nonnegative majorant of h

such that V
ϕ

is F -concave in R by Proposition 5.19, where

F (x) ,
ψ(x)

ϕ(x)
= e(κ−ω)x, x ∈ R.

We shall use Proposition 5.20 in order to calculate V explicitly. Let W : [0,∞) be

the smallest nonnegative concave majorant of

H(y) ,


h

ϕ
◦ F−1(y), y ∈ (0,+∞)

`−∞, y = 0

 =


yγ, 0 ≤ y < 1

2yγ, y ≥ 1.

 ≡


H1(y), 0 ≤ y < 1

H2(y), y ≥ 1.


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where

H1(y) , yγ, H2(y) , 2yγ, y ∈ [0,+∞), and 0 < γ ,
−ω
κ− ω

< 1,

as in Proposition 5.20. Then V (x) = ϕ(x)W (F (x)), x ∈ R. Note that H is piecewise

continuous and twice differentiable. Observe thatH is the mixture of two nonnegative

strictly concave and increasing functions H1 and H2. After y = 1, we switch from

curve H1 onto H2. Thus H is strictly concave on [0, 1] and (1,+∞). It is nonnegative

and increasing. Also note that H ′(0+) = +∞ (See Figure 6.7(a) and Figure 6.7(b)

for sketches of h and H).

Strict concavity of H on [0, 1] and H ′(0+) = +∞ imply that there exists unique

z0 ∈ (0, 1) such that

H ′(z0) =
H(1+)−H(z0)

1− z0

=
H2(1)−H1(z0)

1− z0

. (6.23)

This is equivalent to saying that there exists unique z0 ∈ (0, 1) such that the straight

line Lz0 tangent to H at z0 also passes through the point (1, H(1+)) (See Fig-

ure 6.7(c)).

One can prove this by formalizing geometry depicted in Figure 6.7 with the family

of tangent lines Lz of H at every z ∈ (0, 1) . We shall however verify directly that

(6.23) has unique solution in z0 ∈ (0, 1). We can rewrite (6.23) as

γzγ−1
0 =

2− zγ0
1− z0

⇐⇒ γzγ−1
0 + (1− γ)zγ0 = 2.

Let f(y) , γyγ−1 + (1− γ)yγ, y ∈ (0, 1). Note that +∞ = f(0+) > 2 > f(1−) = 1,

and

f ′(y) = γ(γ − 1)yγ−1
[
1− y

]
< 0, y ∈ (0, 1),

i.e. f(·) is strictly decreasing in (0, 1). Therefore there is indeed unique z0 ∈ (0, 1)

such that f(z0) = 2.

Let Lz0 be as above, i.e.

Lz0(y) , H(z0)
1− y

1− z0

+H(1+)
y − z0

1− z0

= zγ0
1− y

1− z0

+ 2
y − z0

1− z0

, x ∈ [0,+∞),
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Figure 6.7: (Salminen’s Example) (a) h, (b) H, (c) H and W . H is mixture of

two positive strictly concave functions H1 and H2. We start with H at 0, and

jump on H2 after y = 1.

To find the smallest nonnegative concave majorant W of H, we shall look at

the change of the direction of tangent lines Lz of H at z ∈ (0, 1). Since H = H1

is concave on [0, 1] and H ′(0+) = +∞, for every z near 0, L′z ≡ H ′(z) is so large

that Lz never meets H2 on [1,+∞). As z moves to the right, the slope of Lz

decreases steadily thanks to the concavity of H1. Therefore we reach some z0 < 1

such that Lz0 meets H2 at some z1 ≥ 1 for the first time. Using the concavity of

H2 and H2 > H1, we shall prove that z1 = 1.

We obtain W by piecing Lz0 restricted to [z0, 1] with H elsewhere together.

Hence we stick to H as much as possible as we maintain non–increasing right–

derivative of our trajectory. Minimality and concavity of the resulting nonnega-

tive majorant are thus obtained at the same time.

see Figure 6.7(c). We claim that

W (y) = Ŵ (y) ,


H(y), y ∈ [0, z0] ∪ (1,+∞),

Lz0(y), y ∈ (z0, 1].

First we shall show that Ŵ is a nonnegative concave majorant of H on [0,+∞).

Since W is the smallest function with the same properties, this will prove Ŵ ≥ W .

Since h is nonnegative, H is also nonnegative. Therefore Ŵ is nonnegative on
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[0, z0]∪ (1,+∞). On the other hand, Ŵ coincides with the straight line Lz0 on [z0, 1].

Since Lz0(z0) = H(z0) > 0 and Lz0(1) = H(1+) > 0, Ŵ ≡ Lz0 is nonnegative on

[z0, 1]. Hence Ŵ is nonnegative on [0,+∞).

Observe that Ŵ has right–derivative everywhere, and

D+Ŵ (y) =


H ′

1(y), y ∈ (0, z0]

H ′
1(z0), y ∈ (z0, 1)

H ′
2(y), y ∈ [1,+∞)


.

We claim that D+Ŵ is non–increasing. Since H1 and H2 are concave, H ′
1 and H ′

2 are

non–increasing. Therefore D+Ŵ is non–increasing on (0, z0] and (1,+∞). However,

for every 0 < y1 < z0 ≤ y2 < 1 ≤ y3, we have

D+Ŵ (y1) = H ′
1(y1) ≥ H ′

1(z0) = D+Ŵ (y2)

=
H2(1)−H1(z0)

1− z0

≥ H2(1)−H2(z0)

1− z0

≥ H ′
2(1) ≥ H ′

2(y3) = Ŵ (y3).

The third equality follows from the defining relation (6.23) of z0. The second in-

equality is due H1 ≤ H2. Third inequality is because z0 < 1 and H2 is concave.

Last inequality also follows from concavity of H2. This proves that D+Ŵ is non–

increasing. Therefore Ŵ is concave in (0,+∞). Since Ŵ (0) = 0 < Ŵ (y), y > 0, it is

concave also on [0,+∞).

Finally, we need to prove that Ŵ majorizesH. Clearly Ŵ ≥ H on [0, z0]∪(1,+∞).

On the other hand, since Ŵ coincides on [z0, 1] with the tangent line Lz0 of H at

z0 ∈ [0, 1] where H is concave, Proposition A.6(iii) implies that Ŵ ≡ Lz0 ≥ H on

[z0, 1].

Hence Ŵ is a nonnegative concave majorant of H on [0,+∞). Therefore Ŵ ≥ W .

On [0, z0] ∪ (1,+∞), H = Ŵ ≥ W ≥ H, i.e. Ŵ = W . Since W is concave, it is

continuous in (0,+∞) 3 1 by Proposition A.1. Therefore W (1) = limy↓1W (y) =
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limy↓1 Ŵ (y) = Ŵ (1). Finally, because Ŵ coincides with linear Lz0 on [z0, 1], we have

Ŵ (y) = Lz0(y) = Lz0(z0)
1− y

1− z0

+ Lz0(1)
y − z0

1− z0

= Ŵ (z0)
1− y

1− z0

+ Ŵ (1)
y − z0

1− z0

= W (z0)
1− y

1− z0

+W (1)
y − z0

1− z0

≤ W (y), y ∈ [z0, 1].

This proves that Ŵ = W everywhere.

We are now ready to write V explicitly. Let x0 , F−1(z0). Since F is strictly

increasing and z0 ∈ (0, 1), we have x0 ∈ (−∞, 0). If x /∈ (x0, 0], then F (x) /∈ (z0, 1]

and V (x) = ϕ(x)W (F (x)) = ϕ(x)H(F (x)) = h(x) by Proposition 5.20. Thus if

x < x0 < 1, then V (x) = 1, and if x > 1, then V (x) = 2.

Suppose now x ∈ (x0, 0]. Then F (x) ∈ (z0, 1] and

V (x) = ϕ(x)W (F (x)) = ϕ(x)Lz0(F (x))

= ϕ(x)H(z0)
1− F (x)

1− z0

+ ϕ(x)H(1+)
F (x)− z0

1− z0

=

(
1− 2eκx0

)
eωx −

(
1− 2eωx0

)
eκx

eωx0 − eκx0

In summary, we have

V (x) =



1, if x ≤ x0(
1− 2eκx0

)
eωx −

(
1− 2eωx0

)
eκx

eωx0 − eκx0
, if x0 < x ≤ 0

2, if x > 0


.

Since h is not continuous, we cannot use Proposition 5.21 to check if there is an

optimal stopping time. However, if there were any optimal stopping time, then τ ∗

of (5.17) must also be optimal. Note that C , {x ∈ R : V (x) > h(x)} = (x0, 0].

Remember that every Brownian motion with drift such as X is a standard Brownian

motion under an equivalent change of measure. Since standard Brownian motion hits

both half lines infinitely often in every arbitrarily small time interval with probability

one, we have P0{τ ∗ = 0} = 1. However

E0[e
−βτ∗h(Xτ∗)] = h(0) = 1 < 2 = V (0),
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i.e. τ ∗ is not optimal. Therefore there is no optimal stopping time, either.

Salminen [12] calculates the critical value x0 explicitly for µ = 0. When we set

µ = 0, we get κ = −ω =
√

2β, γ = 1/2, and the defining relation (6.23) of z0 becomes

1

2
z
−1/2
0 +

1

2
z

1/2
0 = 2 ⇐⇒ z0 − 4z

1/2
0 + 1 = 0,

after simplifications. If we let y0 , z
1/2
0 , then y0 is the only root in (0, 1) of y2−4y+1 =

0, i.e. y0 = 2−
√

4− 1 = 2−
√

3. Therefore z0 = (2−
√

3)2. Finally,

x0 = F−1(z0) =
1

κ− ω
log z0 =

1

2
√

2β
log (2−

√
3)2 =

1√
2β

log (2−
√

3) if µ = 0,

which agrees with the calculations of Salminen [12, page 99].

6.8 A New Optimal Stopping Problem

Let B be one-dimensional standard Brownian motion in [0,∞) with absorption at 0.

Consider

V (x) , sup
τ≥0

Ex[e
−βτ (Bτ )

p], x ∈ [0,∞).

for some β > 0 and p > 0. Hence our reward function h : [0,∞) → R is given

as h(x) , xp, which is locally bounded on [0,+∞) for any choice of p > 0. The

infinitesimal generator of Brownian motion is

A =
1

2

d2

dx2

acting on the twice–continuously differentiable functions which vanish at ±∞. The

usual solutions of the second–order ordinary differential equation Au = βu are

ψ(x) = ex
√

2β, and ϕ(x) = e−x
√

2β, x ∈ I = R ⊃ [0,∞).

The left boundary c = 0 is attainable in finite time with probability one, whereas the

right boundary b = ∞ is a natural boundary for the (stopped) process. Note that h
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is continuous on [0,∞), and

`+∞ , lim sup
x→+∞

h+(x)

ψ(x)
= lim

x→+∞

h(x)

ψ(x)
= lim

x→+∞
xpe−x

√
2β = 0.

Since h is bounded on every compact subset of [0,+∞), and `+∞ < +∞, the value

function V is finite. V is the smallest nonnegative majorant of h such that V
ψ

is G–

concave on [0,∞) by Proposition 5.3. Furthermore, since h is continuous on [0,+∞)

and `+∞ = 0, Proposition 5.8 also implies τ ∗ , inf{t ≥ 0 : Bt ∈ Γ} is an optimal

stopping time where Γ , {x ∈ [0,∞) : V (x) = h(x)}.

Thanks to Proposition 5.6, V (x) = ψ(x)W (G(x)), x ∈ [0,∞), where

G(x) , −ϕ(x)

ψ(x)
= −e−2x

√
2β, ∀ x ∈ [0,∞),

and W : [−1, 0] → R is the smallest nonnegative concave majorant of

H(y) ,
h

ψ
◦G−1(y) =

(
1

2
√

2β

)p [
−log (−y)

]p·√−y, y ∈ [G(c), G(b−)] ≡ [−1, 0),

and H(0) , `+∞ = 0.

W (·) can be obtained analytically by cutting off the convexities of H(·) with

straight lines (geometrically speaking, the holes on H(·), due to the convexity, have

to be bridged across the concave hills of H(·), see for example Figure 6.8).

Note that H is twice continuously differentiable in (−1, 0), and we have

H ′(y) =
(−y)−1/2

[
− log(−y)

]p−1

2
(
2
√

2β
)p ·

[
2p+ log(−y)

]
y ∈ (−1, 0),

H ′′(y) =
(−y)−3/2

[
− log(−y)

]p−2

4
(
2
√

2β
)p [

4p(p− 1)−
(
− log(−y)

)2]
, y ∈ (−1, 0).

If 0 < p ≤ 1, then H ′′(·) ≤ 0, so H(·) is concave on [−1, 0], and W = H. Therefore

Proposition 5.6 implies that V = h, and τ ∗ ≡ 0 (i.e., stopping immediately) is optimal.

In the rest of this Section, we shall assume that p is strictly greater than 1. With

T , −e−2
√
p(p−1), H is concave on [−1, T ], and convex on [T, 0]. It has unique maxi-

mum at M , −e−2p > T , and nonnegative everywhere on [−1, 0] (cf. Figure 6.8(a)).
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We claim that W = H on [M, 0]. Fix any z ∈ [M, 0) and let

Lz(y) , H(z) +H ′(z)(y − z), y ∈ [−1, 0],

be the line tangent to H at z (See Figure 6.8(b)). Using Proposition A.6(iii), one can

easily prove that Lz is a nonnegative concave majorant of H on [−1, 0]. Therefore,

we have H(z) = Lz(z) ≥ W (z) ≥ H(z). This proves W (z) = H(z), for z ∈ [M, 0).

However, Proposition 5.6 also guarantees W (0) = 0 = H(0).
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Figure 6.8: Sketches of (a) H, and (b) H and W (Note that the graphs are not

scaled). In order to find the smallest nonnegative concave majorant W of H, we

study the tangent lines Lz of H at z. Since H is concave on [T, 0] 3M , no line Lz

meets H other than at z, for every z ∈ [M, 0]. Since H is concave on [T, 0], the

slope of Lz, i.e. H ′(z), steadily increases as z moves to the left. Finally because

H is convex on [−1, T ], LT < H on [−1, T ]. Therefore as z moves to the left, we

shall reach some z0 such that Lz0 meets H (when it meets, it meets at y = −1)

for the first time.

We obtain W by piecing Lz0 restricted to [−1, z0] with H elsewhere. In other

words, we obtain W by stick to H as much as possible as we maintain a non–

increasing slope for our trajectory. Minimality and concavity of our nonnegative

majorant follows as a result of this.

It is clear from Figure 6.8 that there exists unique z0 ∈ [T,M) such that Lz0(−1) =
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H(−1) (this is so-called Smooth–Fit in the context of variational inequalities).

We claim that

W (y) = Ŵ (y) ,


Lz0(y), if y ∈ [−1, z0),

H(y), if y ∈ [z0, 0].

(6.24)

(See Figure 6.8(b)). In order to show Ŵ ≥ W , it is enough to prove that Ŵ is a

nonnegative concave majorant of H on [−1, 0]. As it is however clear from Figure 6.8,

Ŵ is minimum of two nonnegative concave functions majorizing H, and the result

follows from Proposition A.5.

We shall next show the reverse inequality. We already have Ŵ = H ≤ W on [z0, 0],

by the definitions of Ŵ and W . Note also that Ŵ (−1) = Lz0(−1) = H(−1). Hence

Ŵ on [−1, z0] coincides with the line that spans between the points (−1, H(−1)) and

(z0, H(z0)) on the graph of H. Since W majorizes H on [−1, 0], especially at −1 and

z0, we have

Ŵ (y) = Lz0(y) = Lz0(−1)
z0 − y

z0 − (−1)
+ Lz0(z0)

y − (−1)

z0 − (−1)

= H(−1)
z0 − y

z0 − (−1)
+H(z0)

y − (−1)

z0 − (−1)

≤ W (−1)
z0 − y

z0 − (−1)
+W (z0)

y − (−1)

z0 − (−1)
≤ W (y), ∀ y ∈ [−1, z0],

since W is also concave on [−1, 0]. This proves Ŵ is dominated by W . Therefore

Ŵ = W on [−1, 0].

We shall next identify z0. By definition, it satisfies H(−1) = Lz0(−1). Since

H is strictly concave on [T,M ] 3 z0, the uniqueness is clear from Figure 6.8(b)).

H(−1) = Lz0(−1) implies

H(z0)−H(−1)

z0 − (−1)
= H ′(z0), (6.25)

which finally leads to

log (−z0) = 2p
z0 + 1

z0 − 1
⇐⇒ −z0 = e

2p
z0+1
z0−1 . (6.26)
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It can easily be shown that (6.26) uniquely determines z0 ∈ (−1, 0).

Finally, by Proposition 5.6, we have V (x) = ψ(x)W (G(x)), for every x ∈ [0,∞),

that is

V (x) =


H(z0)

1 + z0

[
ex
√

2β − e−x
√

2β
]
, if 0 ≤ x ≤ − 1

2
√

2β
log (−z0),

x2, if x > − 1

2
√

2β
log (−z0).

(6.27)

The strict concavity of H on [−1, z0] leads to C̃ , {y ∈ [−1.0) : W (y) > H(y)} =

(−1, z0). Following the remarks at page 44 after Lemma 5.1, the optimal continuation

region and optimal stopping time for our original optimal stopping problem become

C ,

(
0,− 1

2
√

2β
log (−z0)

)
and τ ∗ = inf

{
t ≥ 0 : Bt ≥ −

1

2
√

2β
log (−z0)

}
,

respectively.

6.9 Optimal Stopping Problem of Karatzas and

Ocone [6]

Karatzas and Ocone [6] study a special optimal stopping problem in order to solve

a stochastic control problem. In this section, we shall take another look at the same

optimal stopping problem.

Suppose that the process X is governed by the dynamics

dXt = −θdt+ dBt

for some positive constant θ. Its infinitesimal generator coincides with the second–

order differential operator

A =
1

2

d2

dx2
− θ

d

dx

acting on the smooth functions in the domain of the generator. Since ±∞ are natural

boundaries for X on R, the usual solutions of Au = βu, β > 0, subject to the
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boundary conditions ψ(−∞) = ϕ(∞) = 0, become

ψ(x) = eκx, and, ϕ(x) = eωx, x ∈ R,

where κ , θ +
√
θ2 + 2β and ω , θ −

√
θ2 + 2β.

Now consider the stopped process, which we shall denote by the same notation

X, which is started in [0,∞), and is absorbed at 0 when it reaches. Since the original

process reaches 0 with positive probability, we have 0 < ψ(0), ϕ(0) < ∞ (In fact,

we have ψ(0) = ϕ(0) = 1 as we explicitly calculated above). Consider the optimal

stopping problem

inf
τ≥0

Ex

[∫ τ

0

e−βtπ(Xt)dt+ e−βτg(Xτ )

]
, x ∈ [0,∞),

with π(x) , x2 and g(x) , δx2. If we introduce Rβπ : [0,∞) → R, defined as

Rβπ(x) , Ex

[∫ ∞

0

e−βtπ(Xt)dt

]
=

1

β
x2−2θ

β2
x+

2θ2 + β

β3
−2θ2 + β

β3
eωx, ∀ x ∈ [0,∞),

(6.28)

then, by using strong Markov property of X, one can show that

Ex

[∫ τ

0

e−βtπ(Xt)dt+ e−βτg(Xτ )

]
= Rβπ(x)−Ex[e

−βτ (Rβπ(x)−g(x))], ∀ x ∈ [0,∞).

Therefore, our task is to solve the auxiliary optimal stopping problem

V (x) , sup
τ≥0

Ex[e
−βτh(Xτ )], x ∈ [0,∞), (6.29)

with

h(x) , Rβπ(x)− g(x) =
1− δβ

β
x2 − 2θ

β2
x+

2θ2 + β

β3
− 2θ2 + β

β3
eωx, x ∈ [0.∞).

Note that h is continuous and bounded on every compact subinterval of [0,∞) and

`∞ , lim sup
x→∞

h+(x)

ψ(x)
= lim

x→∞

h(x)

ψ(x)
= 0.

Proposition 5.2 implies that V is finite. By Proposition 5.3, V is the smallest non-

negative majorant of h such that V
ψ

is G–concave. Since `∞ = 0, Proposition 5.8 also

shows that an optimal stopping time exists.
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To solve for V of (6.29), we shall use Proposition 5.6. Note that

G(x) , −ϕ(x)

ψ(x)
= −e(ω−κ)x, x ∈ [0,∞),

and G(0) = −1. As in Proposition 5.6, let W : [−1, 0] → R be the smallest nonnega-

tive concave majorant of H : [−1, 0] → R, given by

H(y) ,
h

ψ
◦G−1(y) = (−y)α

[
a
(
log (−y)

)2
+ b log (−y) + c

]
+ c y, y ∈ [−1, 0),

and H(0) , `∞ = 0, where α, a, b and c are constants defined by

α ,
κ

κ− ω
, a ,

1− δβ

β

1

(ω − κ)2
, b , −2θ

β2

1

(ω − κ)
, c ,

2θ2 + β

β3
. (6.30)

Observe that

0 < α < 1, a ∈ R, b ≥ 0, c > 0.

We hope to find W analytically by cutting off the convexities of H. Therefore, we

need to find out where H is convex and concave. Note that H is twice–continuously

differentiable in (−1, 0). Therefore, we can determine convexities by looking at the

sign of H ′′. One can easily calculate

H ′(y) = −(−y)α−1
[
αa
(
log (−y)

)2
+ (αb+ 2a) log (−y) + αc+ b

]
+ c, (6.31)

H ′′(y) = (−y)α−2Q1

(
log (−y)

)
, y ∈ (−1, 0), (6.32)

where

Q1(x) , α(α− 1)a x2 +
[
α(α− 1)b+ 2a(2α− 1)

]
x+ 2a+ (2α− 1)b+ α(α− 1)c

for every x ∈ R, is a second–order polynomial. Since (−y)α−2 > 0, y ∈ (−1, 0), the

sign of H ′′ is determined by the sign of Q1

(
log (−y)

)
. Since log (−y) ∈ (−∞, 0) as

y ∈ (−1, 0), we are only interested in the behavior of Q1(x) when x ∈ (−∞, 0). Let

∆1 ,
[
α(α− 1)b+ 2a(2α− 1)

]2 − 4 · [α(α− 1)a] · [2a+ (2α− 1)b+ α(α− 1)c]
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be the discriminant of Q1. After some algebra, we find

∆1 =
θ2 + β

4(θ2 + 2β)3β2
Q̃1(1− δβ), (6.33)

where

Q̃1(x) , x2 − 2x+ 1− δβ2

θ2 + β
= (x− 1)2 − δβ2

θ2 + β
, x ∈ R,

is also a second–order polynomial. Note that Q̃1 always has two real roots,

q̃1 = 1−

√
δβ2

θ2 + β
and q̃2 = 1 +

√
δβ2

θ2 + β
.

One can show that

∆1 < 0 ⇐⇒ δ(θ2 + β) < 1.

Therefore, Q1 has no real roots if δ(θ2+β) < 1, has a repeated real root if δ(θ2+β) = 1,

and two distinct real roots if δ(θ2 +β) > 1. The sign of H ′′, and therefore the regions

where H is convex and concave, depend on the choice of the parameters δ, θ and β.

Case I. Suppose δ(θ2 + β) < 1. Then Q1 has no real roots, and Q1 < 0 every-

where. Therefore (6.32) implies thatH ′′ < 0 everywhere in (−1, 0). Since furthermore

H(−1) = H(0) = 0, H is strictly concave and nonnegative on [−1, 0]. Thus, H is a

nonnegative concave majorant of itself, and W ≡ H. By Proposition 5.6, we have

V = h, and τ ∗ ≡ 0 is an optimal stopping time thanks to Proposition 5.8.

Suppose now δ(θ2 + β) ≥ 1. Then Q1 has two real roots (repeated if equality

holds). The sign of Q1 (hence the sign of H ′′ by (6.32)) will be determined by the

sign of the coefficient of the leading term of Q1, namely by α(α − 1)a. Note that

α(α− 1) is always negative, whereas a has the same sign as 1− δβ thanks to (6.30).

Case II. Suppose δ(θ2 +β) ≥ 1 and 1− δβ ≤ 0. Since 1− δβ ≤ 0, α(α− 1)a ≥ 0.

Therefore, Q1 has two real roots (possibly repeated), and is upward directed. Denote

the roots by q1 ≤ q2. Since Q1(0) < 0, we have q1 < 0 < q2, and Q1 > 0 in (−∞, q1)

and Q < 0 in (q1, 0]. Thus, (6.32) implies that

H ′′ < 0 in (−1,−eq1), and H ′′ > 0 in (−eq1 , 0), and H ′′(−eq1) = 0. (6.34)
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Hence H is strictly concave on [−1,−eq1 ], and strictly convex on [−eq1 , 0]. Note also

that −1 < −eq1 < 0.

We claim that H has unique maximum at some M ∈ (−1,−eq1), and H(M) > 0.

We shall first show that maxy∈[−1,0]H(y) > 0 by proving that H is positive in some

neighborhood of −1. Thanks to (6.31), we have

H ′(−1+) = −(α− 1)c− b = − ω

κ− ω

2θ2 + β

β3
− 2θ

β2(κ− ω)
= −ω(2θ2 + β) + 2θβ

β3(κ− ω)
.

Since H ′(−1+) > 0 ⇔ β2 > 0, and β is strictly greater than 0, we have H ′(−1+) > 0.

Therefore, there exists some sufficiently small ε > 0 such that H ′(y) > 0 for all

y ∈ (−1,−1 + ε). Hence H is strictly increasing in (−1,−1 + ε]. Therefore, H(y) >

H(−1) = 0 for all y ∈ (−1,−1 + ε). This proves that maxy∈[−1,0]H(y) > 0.

Let x ∈ [−1, 0] be such that H(x) = maxy∈[−1,0]H(y) > 0. Since H(x) > 0 =

H(−1) = H(0), we must have x ∈ (−1, 0). Therefore H ′(x) = 0 and H ′′(x) ≤ 0, and

x ∈ (−1,−eq1) thanks to (6.34). Because H is strictly concave on [−1,−eq1 ], there

can be at most one interior maximizer of H on [−1,−eq1 ]. Therefore H has unique

maximum at some M ∈ (−1,−eq1) and H(M) > 0 (See Figure 6.9(a)).
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M

H

H̃

Figure 6.9: Sketches of (a) H (may become negative in the neighborhood of zero

as H̃ looks like), (b) H and W , in Case II. The idea behind how we find W is

similar to that of Chapter 6.8. Especially, read the caption of Figure 6.8.

We shall first prove that W ≡ H on [−1,M ]. Since H(−1+) = 0, and H is
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increasing on [−1,M ], H is nonnegative on [−1,M ]. Next fix any z ∈ (−1,M ] and

let

Lz(y) , H(z) +H ′(z)(y − z), y ∈ [−1, 0],

be the line tangent toH at z (See Figure 6.9(b)). It is evident that Lz is a nonnegative

concave majorant of H on [−1, 0]. Since W is the smallest nonnegative concave

majorant of H on [−1, 0], we have Lz ≥ W on [−1, 0]. However H(z) = Lz(z) ≥

W (z) ≥ H(z), that is, W (z) = H(z), z ∈ [−1,M ].

We shall continue our investigation of W on [M, 0] by considering the family of

linear functions

Lz(y) , H(z) +H ′(z)(y − z), y ∈ [−1, 0],

indexed by z ∈ [M,−eq1 ]. In fact, every Lz is the line segment that is tangent to H at

z ∈ [M,−eq1 ]. It is clear from Figure 6.9(b) that there exists unique z0 ∈ (M,−eq1 ]

such that Lz0(0) = H(0). Similar to the previous examples, one can finally show (cf.

Figure 6.9(b)) that

W (x) =


H(y), if y ∈ [−1, z0]

Lz0(y), if y ∈ (z0, 0]

 . (6.35)

Moreover, trivial calcultions show that log (−z0) is the unique solution of

(1− α)
[
a x2 + b x+ c

]
= 2ax+ b, x ∈

[
log (−M), q1

]
,

and C̃ , {y ∈ [−1, 0] : W (y) > H(y)} = (z0, 0) (cf. Figure 6.9(b)). Proposition 5.6

implies

V (x) =


h(x), if 0 ≤ x ≤ x0

ϕ(x)

ϕ(x0)
h(x0), if x0 < x <∞

 , (6.36)

with x0 , G−1(z0), and the optimal continuation region becomes C = G−1(C̃) =

G−1((z0, 0)) = (x0,∞). We shall next look at the final case, namely
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Case III. Suppose δ(θ2 + β) ≥ 1 and 1− δβ > 0. Therefore α(α − 1)a < 0, and

Q1 is downward directed with two real roots. As in Case II, we shall denote the roots

of Q1 by q1 and q2, q1 ≤ q2. By investigating the signs of the roots of Q1, one can

show that
H ′′ > 0 in (−eq2 ,−eq1), H ′′ < 0 in (−1,−eq2) ∪ (−eq1 , 0)

H ′′(−eq2) = H ′′(−eq1) = 0

 . (6.37)

Furthermore H ′(−1+) > 0, and H is positive in some neighborhood of 0 (See Fig-

ure 6.10(a)). Since in addition H ′(0−) = −∞, we have W ≡ H in some neighborhood

of 0 unlike Case II. To see this, we shall introduce linear functions

Lz , H(z) +H ′(z)(y − z), y ∈ [−1, 0],

indexed by z ∈ [−eq1 , 0). They are line segments, tangent to H at z. Since H is

continuous on [−1, 0], it is bounded. Denote +∞ > K , maxy∈[−1,0]H(y) > 0.

Since eq1 > 0 and H ′(0−) = −∞, there exists some −eq1 ≤ −ε < 0 such that

H ′(z) ≤ −K/eq1 for every z ∈ [−ε, 0). We now claim that Lz, z ∈ [−ε, 0), is a

nonnegative concave majorant of H on [−1, 0] (See Figure 6.10(b) for the geometric

interpretation).

Let’s fix some z ∈ [−ε, 0). Since Lz is linear, it is concave. Because Lz is tangent

to H at z ∈ [−eq1 , 0] where H is concave, Proposition A.6(iii) implies Lz ≥ H on

[−eq1 , 0]. To prove that Lz ≥ H on [−1,−eq1 ], note that Lz is decreasing, and

Lz(−eq1) ≥ K. For the first one we have L′z ≡ H ′(z) ≤ −K/eq1 < 0. Since Lz(0) ≥

H(0) = 0 as proved above, we also have

Lz(−eq1) = H(z) +H ′(z)(−eq1 − z) =
[
H(z)− zH ′(z)

]
+H ′(z)(−eq1)

= Lz(0) +H ′(z)(−eq1) ≥ H(0) +H ′(z)(−eq1) = H ′(z)(−eq1) ≥ −K

eq1
(−eq1) = K.

Therefore, for every y ∈ [−1,−eq1 ], we have H(y) ≤ K ≤ Lz(−eq1) ≤ Lz(y), i.e.

Lz ≥ H also on [−1,−eq1 ]. Finally, since Lz is decreasing and Lz majorizes H on

[−1, 0], we have Lz(y) ≥ Lz(0) ≥ H(0) = 0, y ∈ [−1, 0]. Therefore Lz is nonnegative.
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We proved that Lz is a nonnegative concave majorant of H on [−1, 0]. Since W

is the smallest of such functions, we have Lz ≥ W on [−1, 0]. However Lz(z) = H(z).

Since W also majorizes H, this implies W (z) ≥ H(z) = Lz(z) ≥ W (z), i.e. W (z) =

H(z). This proves that W ≡ H in [−ε, 0] (remember that W (0) = 0 = H(0) always

by Proposition 5.6). It is clear from Figure 6.10(b) that

W (y) =


Lz1(y), if y ∈ [z2, z1],

H(y), if y ∈ [−1, z2) ∪ (z1, 0],

(6.38)

for some unique −1 < z2 < z1 < 0, where z2 is the second tangent point of Lz1 to H.

In fact, the pair (z, z̃) = (z2, z1) is the unique solution of exactly one of

H ′(z) =
H(z)−H(z̃)

z − z̃
= H ′(z̃), z̃ > −1, or H ′(z) =

H(z)−H(−1)

z − (−1)
, z̃ = −1,

for some z̃ ∈ [−1,−eq2 ], z ∈ [−eq1 , 0). Furthermore

C̃ = {y ∈ [−1, 0] : W (y) > H(y)} = (z2, z1).

The value function V of (6.29) can be calculated using Proposition 5.6, and the

optimal continuation region becomes

C , {x ∈ [0,∞) : V (x) > h(x)} = G−1(C̃) = (G−1(z2), G
−1(z1)).
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Figure 6.10: Sketches of (a) H, (b) H and W , in Case III. In (a), H̃ depicts

another possibility where H̃ takes negative values, and its global maximum is

contained in [−eq1 , 0]. In (b), tan θ = −K/eq1 , and ε > 0 is chosen as described

in 12. For illustration, we have also chosen z = ε.

In order to find the smallest nonnegative concave majorant W of H, we shall

study the tangent lines Lz of H at z ∈ [−eq1 , 0). Since H ′(0−) = −∞ and H is

concave on [−eq1 , 0], the slope of Lz near 0 (z ∈ (−ε, 0)) is so large that it never

meets H except at z. On the other hand, as z moves to the left, the slope of Lz

steadily decreases thanks to the concavity of H on [−eq1 , 0]. Finally L−eq1 < H

in (−eq2 ,−eq1) because of the convexity of H on the same interval. Therefore as

z moves to the left, we reach some z1 ∈ (−eq1 , 0) such that Lz1 meets H (if it

meets, it meets H at some z2 ∈ [−1,−eq2)) for the first time.

We obtain W by piecing Lz1 restricted to [z2, z1] together with H elsewhere.

Hence we stick H as much as possible as we maintain a non–increasing slope

for our new curve. Therefore both minimality and concavity of our nonnegative

majorant are guaranteed.
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Chapter 7

Smooth–Fit Principle and

Variational Inequalities

In this chapter, we shall continue to investigate the properties of the value function

V . For concreteness, we shall focus on the discounted optimal stopping problem

introduced in Chapter 4, although all results can be carried over for the optimal

stopping problems of Chapter 3 and Chapter 5.

7.1 Smooth–Fit Principle and Necessary Condi-

tions for Optimal Stopping Boundaries

In Chapter 4, we started by assuming that h is bounded, and showed that V
ϕ

is the

smallest nonnegative F–concave majorant of h
ϕ

on [c, d] (cf. Proposition 4.2). The

continuity of V in (c, d) immediately followed from concavity, as pointed out before

Lemma 4.2. The F–concavity property of V
ϕ

has further implications. From Proposi-

tion A.6(i), we know that d±

dF

(
V
ϕ

)
exist, and are nondecreasing in (c, d). Furthermore,1

1The fact that the left–derivative of the value function V is always greater than or equal to the

right–derivative of V was pointed by Salminen [12, page 86].
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d−

dF

(
V

ϕ

)
(x) ≥ d+

dF

(
V

ϕ

)
(x), x ∈ (c, d). (7.1)

Lemma A.6(ii) implies that equality holds in (7.1) everywhere in (c, d), except possibly

on a subset N which is at most countable, i.e.

d+

dF

(
V

ϕ

)
(x) =

d−

dF

(
V

ϕ

)
(x) ≡ d

dF

(
V

ϕ

)
(x), x ∈ (c, d)\N.

Hence V
ϕ

is essentially F–differentiable in (c, d). Let

Γ , {x ∈ [c, d] : V (x) = h(x)} and C , [c, d]\Γ = {x ∈ [c, d] : V (x) > h(x)}.

When the F–concavity of V
ϕ

is combined with the fact that V majorizes h on [c, d],

we obtain the key result of Proposition 7.1, which leads, in turn, to the celebrated

Smooth–Fit principle.

Proposition 7.1. At every x ∈ Γ ∩ (c, d), where d±

dF

(
h
ϕ

)
(x) exist, we have

d−

dF

(
h

ϕ

)
(x) ≥ d−

dF

(
V

ϕ

)
(x) ≥ d+

dF

(
V

ϕ

)
(x) ≥ d+

dF

(
h

ϕ

)
(x).

Proof. The second inequality is the same as (7.1). For the rest, first remember that

V = h on Γ. Since V majorizes h on [c, d], and F is strictly increasing, this leads to

h(y)
ϕ(y)

− h(x)
ϕ(x)

F (y)− F (x)
≥

V (y)
ϕ(y)

− V (x)
ϕ(x)

F (y)− F (x)
and

V (z)
ϕ(z)

− V (x)
ϕ(x)

F (z)− F (x)
≥

h(z)
ϕ(z)

− h(x)
ϕ(x)

F (z)− F (x)
, (7.2)

for every x ∈ Γ, y < x < z. Suppose x ∈ Γ ∩ (c, d), and d±

dF

(
h
ϕ

)
(x) exist. As we

summarized before stating Proposition 7.1, we know that d±

dF

(
V
ϕ

)
(x) always exist in

(c, d). Therefore, the limits of both sides of the inequalities in (7.2), as y ↑ x and

z ↓ x respectively, exist, and give

d−

dF

(
h

ϕ

)
(x) ≥ d−

dF

(
V

ϕ

)
(x) and

d+

dF

(
V

ϕ

)
(x) ≥ d+

dF

(
h

ϕ

)
(x),

respectively.
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Corollary 7.1 (Smooth–Fit Principle). At every x ∈ Γ ∩ (c, d) where h
ϕ

is F–

differentiable, V
ϕ

is also F–differentiable, and touches h
ϕ

at x smoothly, in the sense

that the F–derivatives of both functions also agree at x:

d

dF

(
h

ϕ

)
(x) =

d

dF

(
V

ϕ

)
(x).

Corollary 7.1 raises the question when we should expect V
ϕ

to be F–differentiable

in (c, d). If h
ϕ

is F–differentiable in (c, d), then it is immediate from Corollary 7.1 that

V
ϕ

is F–differentiable in Γ ∩ (c, d). However, we know little about the behavior of V
ϕ

on C = [c, d]\Γ if h is only bounded. On the contrary, if h is continuous on [c, d],

then Proposition 4.4 shows that an optimal stopping time exists. More precisely, it

implies that τ ∗ , inf{t ≥ 0 : Xt /∈ C} is an optimal stopping time. This finding will

help us better characterize V on C in our attempt to answer standing question of

F–differentiability of V
ϕ
.

Suppose h : [c, d] → R is continuous on [c, d]. Since [c, d] is closed and bounded, h

is bounded and previous results still hold. Lemma 4.2 implies that V is also continuous

at the boundaries c and d, i.e. V is a continuous function on [c, d].

C is now an open subset of [c, d]. Therefore, it is the union of a countable family

(Jα)α∈Λ of disjoint open (relative to [c, d]) subintervals of [c, d]. Using Lemma 4.3,

one can show that

V (x)

ϕ(x)
=

Ex[e
−βτ∗h(Xτ∗)]

ϕ(x)
=
V (lα)

ϕ(lα)
· F (rα)− F (x)

F (rα)− F (lα)
+
V (rα)

ϕ(rα)
· F (x)− F (lα)

F (rα)− F (lα)
, x ∈ Jα,

(7.3)

where lα and rα are the left– and right–boundary of Jα, α ∈ Λ, respectively. Observe

that V
ϕ

coincides with an F–linear function on every Jα, i.e. it is F–differentiable in

Jα ∩ (c, d) for every α ∈ Λ. By taking the F–derivative of (7.3), we find that

d

dF

(
V

ϕ

)
(x) =

1

F (rα)− F (lα)

[
V (rα)

ϕ(rα)
− V (lα)

ϕ(lα)

]
, x ∈ Jα ∩ (c, d) (7.4)

is constant, i.e. is itself F–differentiable in Jα∩ (c, d). Since C is the union of disjoint
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Jα, α ∈ Λ, this implies that V
ϕ

is twice continuously F–differentiable in C∩ (c, d). We

are ready to prove the following result.

Proposition 7.2. Suppose h is continuous on [c, d]. Then V is continuous on [c, d],

and V
ϕ

is twice continuously F–differentiable in C ∩ (c, d). Furthermore,

(i) if h
ϕ

is F–differentiable in (c, d), then V
ϕ

is continuously2 F–differentiable in

(c, d), and

(ii) if h
ϕ

is twice (continuously) F–differentiable in (c, d), then V
ϕ

is twice (continu-

ously) F–differentiable in (c, d)\∂C,

where ∂C is the boundary of C relative to R or [c, d].

Proof. Since h and F are continuous, V is continuous by Lemma 4.2. We also proved

above that V
ϕ

is F–differentiable in C ∩ (c, d) (this is always true even if h
ϕ

were not

F–differentiable).

(i) If h
ϕ

is F–differentiable in (c, d), then the F–differentiability of V
ϕ

in (c, d)\C =

(c, d) ∩ Γ follows from Corollary 7.1. Therefore V
ϕ

is F–differentiable in (c, d) =

[(c, d)\C]∪C by the discussion above. However, V
ϕ

is also F–concave on [c, d], and F

is continuous on [c, d]. Therefore Proposition A.7 implies that d
dF

(
V
ϕ

)
is continuous

in (c, d).

(ii) We only need prove that V
ϕ

is twice (continuously) F–differentiable in (c, d)\C

where C is the closure of C relative to [c, d]. However (c, d)\C is an open set (rel-

ative to R) contained in Γ where V and h coincide. Because we assume h
ϕ

is twice

(continuously) F–differentiable, the conclusion follows immediately.

Even if h
ϕ

is not smooth everywhere in (c, d), it is still possible to draw conclusions

based on its local properties. In (7.3), suppose lα and rα are contained in Γ. Therefore

2Note that this is always true no matter whether d
dF

(
h
ϕ

)
is continuous or not. As the proof

indicates, this is as a result of F–concavity of V
ϕ and continuity of F on [c, d].
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V (lα) = h(lα) and V (rα) = h(rα), and V
ϕ

coincides with the F–linear function

Lα(x) ,
h(lα)

ϕ(lα)
· F (rα)− F (x)

F (rα)− F (lα)
+
h(rα)

ϕ(rα)
· F (x)− F (lα)

F (rα)− F (lα)
, x ∈ [c, d],

on Jα. If we envisage h
ϕ

as the outermost boundary of a pile of rocks on the ground,

then Lα may be thought of a tree which has fallen and come to a rest on the pile of

rocks. lα and rα can be seen the points where rocks support the tree. We expect the

surfaces of rock and the fallen tree to match at those supporting points where the

rock has a smooth surface (See Figure 7.1).
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Figure 7.1: The smooth–fit principle may hold even if the reward function is

not smooth everywhere.

Proposition 7.3 (Necessary conditions for the boundaries of the optimal continua-

tion region). Suppose h is continuous on [c, d]. Suppose l, r ∈ Γ ∩ (c, d), and h
ϕ

has

F–derivatives at l and r. Then d
dF

(
V
ϕ

)
exists at l and r. Moreover

(i) If (l, r) ⊆ C, then

d

dF

(
h

ϕ

)
(l) =

d

dF

(
V

ϕ

)
(l) =

h(r)
ϕ(r)

− h(l)
ϕ(l)

F (r)− F (l)
=

d

dF

(
V

ϕ

)
(r) =

d

dF

(
h

ϕ

)
(r),

and,

V (x)

ϕ(x)
=
h(θ)

ϕ(θ)
+
[
F (x)− F (θ)

] d
dF

(
h

ϕ

)
(θ), x ∈ [l, r], θ = l, r.
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(ii) If [c, r) ⊆ C, then

d

dF

(
h

ϕ

)
(r) =

d

dF

(
V

ϕ

)
(r) =

1

F (r)− F (c)
· h(r)
ϕ(r)

,

and,

V (x)

ϕ(x)
=
h(r)

ϕ(r)
+
[
F (x)−F (r)

] d
dF

(
h

ϕ

)
(r) =

[
F (x)−F (c)

] d
dF

(
h

ϕ

)
(r), x ∈ [c, r).

(iii) If (l, d] ⊆ C, then

d

dF

(
h

ϕ

)
(l) =

d

dF

(
V

ϕ

)
(l) = − 1

F (d)− F (l)
· h(l)
ϕ(l)

,

and,

V (x)

ϕ(x)
=
h(l)

ϕ(l)
+
[
F (x)−F (l)

] d
dF

(
h

ϕ

)
(l) =

[
F (x)−F (d)

] d
dF

(
h

ϕ

)
(l), x ∈ (l, d].

Proof. Existence of d
dF

(
V
ϕ

)
, and equality of d

dF

(
h
ϕ

)
and d

dF

(
V
ϕ

)
at l and r, respectively,

follow from Corollary 7.1. Therefore, the first and last equality in (i), and the first

equalities in (ii) and (iii) are clear.

Note that the intervals (l, r), [c, r) and (l, b] are all three possible forms that Jα,

α ∈ Λ can take. Let lα and rα denote the left– and right–boundaries of intervals,

respectively. Then (7.4) is true for all three cases.

In (i), both lα = l and rα = r are in Γ. Therefore, V (l) = h(l) and V (r) = h(r),

and (7.4) implies

d

dF

(
V

ϕ

)
(x) =

1

F (r)− F (l)

[
h(r)

ϕ(r)
− h(l)

ϕ(l)

]
, x ∈ (l, r). (7.5)

Since V
ϕ

is F–concave on [c, d] ⊃ [l, r], and F is continuous on [c, d], Proposition A.6(iii)

implies that d+

dF

(
V
ϕ

)
and d−

dF

(
V
ϕ

)
are right– and left–continuous in (c, d). Because V

ϕ

is F–differentiable on [l, r], d±

dF

(
V
ϕ

)
and d

dF

(
V
ϕ

)
coincide on [l, r]. Therefore d

dF

(
V
ϕ

)
is continuous on [l, r], and second and third equalities in (i) immediately follow from
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(7.5). In a more direct way,

d

dF

(
V

ϕ

)
(l) =

d+

dF

(
V

ϕ

)
(l) = lim

x↓l

d+

dF

(
V

ϕ

)
(x) = lim

x↓l

d

dF

(
V

ϕ

)
(x) =

h(r)
ϕ(r)

− h(l)
ϕ(l)

F (r)− F (l)
.

d

dF

(
V

ϕ

)
(r) =

d−

dF

(
V

ϕ

)
(r) = lim

x↓l

d−

dF

(
V

ϕ

)
(x) = lim

x↓l

d

dF

(
V

ϕ

)
(x) =

h(r)
ϕ(r)

− h(l)
ϕ(l)

F (r)− F (l)
.

Same equalities could have also been proved by direct calculation using (7.3).

Proofs of second equalities in (ii) and (iii) are similar once we note that V (c) = 0

if c ∈ C, and V (d) = 0 if d ∈ C.

Finally, the expressions for V
ϕ

follow from (7.3) by direct calculation. Simply note

that V
ϕ

is an F–linear function passing through
(
lα,

V
ϕ
(lα)
)

and
(
rα,

V
ϕ
(rα)

)
.

Proposition 5.3 is more useful in the applications than Proposition 5.6, although

the first one is merely a restatement of the second. We therefore would like to see

what Proposition 7.3 may imply for the (H,W ) pair of Proposition 5.6. Suppose h, ψ

and ϕ are differentiable at x , F−1(y) for some y ∈ (F (c), F (d)). Then both F and

h/ϕ are differentiable at x. Therefore d
dF

(
h
ϕ

)
(x) exists. Moreover H is differentiable

at y and

dH

dy
(y) =

d

dy

(
h

ϕ
◦ F−1

)
(y) =

1

F ′(F−1(y))
·
[
d

dy

(
h

ϕ

)]
◦ F−1(y)

=

[
dy

dF
· d
dy

(
h

ϕ

)]
◦ F−1(y) =

d

dF

(
h

ϕ

)
(x).

If x is also in Γ, equivalently y = F (x) ∈ {z ∈ [F (c), F (d)] : W (z) = H(z)}, then

d
dF

(
V
ϕ

)
(x) also exist by Corollary 7.1. Therefore W = V

ϕ
◦ F−1 is differentiable at y,

and

dW

dy
(y) =

d

dF

(
V

ϕ

)
(x).

Finally define Γ̃ , {y ∈ [F (c), F (d)] : W (y) = H(y)} and C̃ , [F (c), F (d)]\Γ̃. Then

Proposition 7.3 immediately implies
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Corollary 7.2. Suppose h is continuous on [c, d]. Let H and W be as in Propo-

sition 5.6. Suppose h, ψ and ϕ are differentiable at some l, r ∈ Γ ∩ (c, d). Then

l̃ , F (l) ∈ Γ̃ and r̃ , F (r) ∈ Γ̃, and H ′ and W ′ exist at l̃ and r̃. Moreover

(i) If (l, r) ⊆ C, then (l̃, r̃) ⊂ C̃, and

H ′(l̃) = W ′(l̃) =
H(r̃)−H(l̃)

r̃ − l̃
= W ′(r̃) = H ′(r̃),

and

W (y) = H(l̃) +H ′(l̃)(y − l̃) = H(y) = H(r̃) +H ′(r̃)(y − r̃), y ∈ [l̃, r̃].

(ii) If [c, r) ⊂ C, then [F (c), r̃) ⊂ C̃ and

H ′(r̃) = W ′(r̃) =
H(r̃)

r̃ − l̃
,

and

W (y) = H(r̃) +H ′(r̃)(y − r̃) = (y − F (c))H ′(r̃), y ∈ [F (c), r̃].

(iii) If (l, d] ⊆ C, then (l̃, F (d)] ⊆ C̃ and

H ′(l̃) = W ′(l̃) = − H(l̃)

F (d)− l̃
,

and

W (y) = H(l̃) + (y − l̃)H ′(l̃) = (y − F (d))H ′(l̃), y ∈ (l̃, F (d)].

Remark 7.1. All results of this chapter also hold when we replace (ϕ, F ) with (ψ,G)

(equivalently, replace (ϕ, ψ) with (ψ,−ϕ) since ψ = ϕ·F ↔ ψ·G = −ϕ). Alternatively

one can use relations

F ·G = −1 and
h

ψ
= −h

ϕ
·G

to derive counterparts. For example,

d

dG

(
h

ψ

)
=

d

dG

(
−h
ϕ
·G
)

= −G · d

dG

(
h

ϕ

)
− h

ϕ
= −G · dF

dG
· d

dF

(
h

ϕ

)
− h

ϕ
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and

dF

dG
= − d

dG

(
1

G

)
=

1

G2
= F 2

will together imply

d

dG

(
h

ψ

)
= −G · F 2 · d

dF

(
h

ϕ

)
− h

ϕ
= F · d

dF

(
h

ϕ

)
− h

ϕ
. (7.6)

We can obtain d
dG

(
V
ψ

)
by replacing h with V . Now at every x ∈ Γ where d

dF

(
h
ϕ

)
exists,

d
dF

(
V
ϕ

)
, d
dG

(
h
ψ

)
and d

dG

(
V
ψ

)
also exist, and

d

dF

(
h

ϕ

)
(x) =

d

dF

(
V

ϕ

)
(x) ⇐⇒ d

dG

(
h

ψ

)
(x) =

d

dG

(
V

ψ

)
(x)

by (7.6) (Observe that h(x) = V (x) since x ∈ Γ). We can therefore rewrite Proposi-

tion 7.3 and its Corollary in terms of G and h/ψ instead of F and h/ϕ easily.

We shall verify that our necessary conditions agree with those of Salminen [12,

Theorem 4.7]. To do this, we first remember his

Definition 7.1 (Salminen [12], page 95). A point x∗ ∈ Γ is called a left boundary

of Γ if for ε > 0 small enough (x∗, x∗ + ε) ⊆ C and (x∗ − ε, x∗] ⊆ Γ. A point y∗ ∈ Γ

is called a right boundary of Γ if for ε > 0 small enough (y∗ − ε, y∗) ⊆ C and

[y∗, y∗ + ε) ⊆ Γ (cf. Figure 7.2 for illustration).

Γ

A
A

A
A

y∗ y∗ + εy∗ − εx∗ x∗ + εx∗ − ε

CΓ C

Figure 7.2: x∗ is a left- and y∗ is a right-boundary point of Γ.

We shall also remind the definitions of the key functions Gb and Ga of Salminen’s

conclusion. At every x ∈ (c, d) where h is S–differentiable, let

Gb(x) , ϕ(x)
dh

dS
(x)− h(x)

dϕ

dS
(x) and Ga(x) , h(x)

dψ

dS
− ψ(x)

dh

dS
(x). (7.7)
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Proposition 7.4. Suppose h is continuous on [c, d]. If h, ψ and ϕ are S–differentiable

at some x ∈ (c, d), then h
ϕ

and h
ψ

are F– and G–differentiable at x, respectively.

Moreover,

d

dF

(
h

ϕ

)
(x) =

Gb(x)

W (ψ, ϕ)
and

d

dG

(
h

ψ

)
(x) = − Ga(x)

W (ψ, ϕ)
, (7.8)

where Gb(x) and Ga(x) are defined as in (7.7), and W (ψ, ϕ) , ϕdψ
dS
−ψ dϕ

dS
(Wronskian

of ψ and ϕ) is constant and positive (cf. Chapter 2).

Proof. Since h, ψ and ϕ are S–differentiable at x, h
ϕ

and F are S–differentiable at x.

Therefore, d
dF

(
h
ϕ

)
exist at x, and equals

d

dF

(
h

ϕ

)
(x) =

d
dS

(
h
ϕ

)
dF
dS

(x) =
DSh · ϕ− h ·DSϕ

DSψ · ϕ− ψ ·DSϕ
(x)

=
1

W (ψ, ϕ)

[
ϕ(x)

dh

dS
(x)− h(x)

dϕ

dS
(x)

]
=

Gb(x)

W (ψ, ϕ)
, (7.9)

where DS ≡ d
dS

. Following Remark 7.1 and noting the symmetry in (ϕ, F ) versus

(ψ,G), we can repeat all arguments by replacing (ϕ, ψ) with (ψ,−ϕ). Therefore it

can be similarly shown that d
dG

(
h
ψ

)
(x) exists and d

dG

(
h
ψ

)
(x) = − Ga(x)

W (ψ,ϕ)
(note that

W (−ϕ, ψ) = W (ψ, ϕ)).

Corollary 7.3 (Salminen [12], Theorem 4.7). Let h be continuous on [c, d]. Suppose

l and r are left– and right–boundary points of Γ, respectively, such that (l, r) ⊆ C.

Assume that h, ψ and ϕ are S(scale function)–differentiable on the set A , (l−ε, l]∪

[r, r + ε) for some ε > 0 such that A ⊆ Γ. Then on A, the functions Gb and Ga of

(7.7) are non–increasing and non–decreasing, respectively, and

Gb(l) = Gb(r), Ga(l) = Ga(r).

Proof. Proposition 7.4 implies that d
dF

(
h
ϕ

)
and d

dG

(
h
ψ

)
exist on A. Since l, r ∈ Γ and

(l, r) ⊆ C, Proposition 7.3(i) and (7.8) imply

Gb(l)

W (ψ, ϕ)
=

d

dF

(
h

ϕ

)
(l) =

d

dF

(
h

ϕ

)
(r) =

Gb(r)

W (ψ, ϕ)
,
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i.e. Gb(l) = Gb(r) (Remember also that the Wronskian W (ψ, ϕ) , dψ
dS
ϕ − ψ dϕ

dS
of ψ

and ϕ is constant and positive. See Chapter 2). From Remark 7.1, it also follows

Ga(l) = Ga(r).

On the other hand, observe that d
dF

(
V
ϕ

)
and d

dG

(
V
ψ

)
also exist and, are equal to

d
dF

(
h
ϕ

)
and d

dG

(
h
ψ

)
on A, respectively, by Corollary 7.1. Therefore

d

dF

(
V

ϕ

)
(x) =

Gb(x)

W (ψ, ϕ)
and

d

dG

(
V

ψ

)
(x) = − Ga(x)

W (ψ, ϕ)
, x ∈ A, (7.10)

by Proposition 7.8. Because V
ϕ

is F–concave, and V
ψ

is G–concave, Proposition A.6(i)

implies that both d
dF

(
V
ϕ

)
and d

dG

(
V
ψ

)
are non–increasing on A. Therefore (7.10) implies

that Gb is non–increasing, and Ga is non–decreasing on A.

Remark 7.2. All results of this chapter can exactly be translated for the opti-

mal stopping problem of Chapter 3 with no discounting by replacing ϕ and G with

1(constant) and S(scale function), (and, S and S,) respectively. They can also be

adapted to the optimal stopping problem of Chapter 5 with little more work. Re-

member that if one or both of the boundaries are natural, then V may be infinite,

or an optimal stopping time may not exist even if V is finite. In the latter case, it

is still possible to derive results similar to those above. However, we no longer can

refer to formulas for U(x) , Ex[e
−βτ∗h(Xτ∗)], derived in the proof of Proposition 5.8

for example, as we explicitly write V on C since τ ∗ of (5.17) is no longer an optimal

stopping time (Simply because U is not equal to V any more). Instead, we should

use Proposition B.2 in Appendix B when we need to write V explicitly on C.

7.2 Variational Inequalities

In this Section, we shall discuss the shortcomings of the Smooth–Fit principle when

used in conjunction with the variational inequalities in solving optimal stopping prob-

lems. To this end, we shall construct an example and try to understand why some-

times this principle fails. First, we shall give a brief
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7.2.1 Overview of the Method of Variational Inequalities

We stick to the same setup of Chapter 4. Namely, we have a stopped diffusion

process X in [c, d] where both c and d can be reached with probability one. The

reward function h is continuous on [c, d]. We shall further assume that h has as many

continuous derivatives in (c, d) as we need in the forthcoming discussion.

Proposition 4.2 and Proposition 4.4 guarantee the existence of the (finite) value

function V of (4.1) and an optimal stopping time.

Intuitively, there are two possible actions that a decision maker can take at any

point of state space. He either stops immediately, or continues for a while and acts

optimally thereafter. The first alternative leads to V ≤ h, whereas a formal argument

by using Taylor series suggests that

1

2
σ2V ′′ + µV ′ − βV ≥ 0.

Since at least one of those alternatives will be optimal, one expects that V should

formally solve the variational inequality

min

{
1

2
σ2(x)V ′′(x) + µ(x)V ′(x)− βV (x), h(x)− V (x)

}
= 0, for x ∈ I, (7.11)

and
(
A − β

)
V (x) ≡ 1

2
σ2(x)V ′′(x) + µ(x)V ′(x) − βV (x) = 0 holds in C, and V = h

holds in Γ. One common practice in the literature is to admit as an ansatz that

(1) V is sufficiently smooth, and (2) it should solve the variational inequality (7.11).

Later, a verification lemma guarantees, under further conditions, that the variational

inequality has a unique solution, which is by the first part equal to the value function.

Hence, if (l, r) or (r, l) ⊆ C and l ∈ Γ, we expect that v , V solves the boundary–

value problem

1

2
σ2(x)v′′(x) + µ(x)v′(x)− βv(x) = 0, x ∈ (l, r) or (r, l)

v(l) = h(l)

v′(l) = h′(l)


, (7.12)
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where the boundary conditions follow from Corollary 7.1. Denote the boundary value

problem in (7.12) by BVP(l, r) if l < r, and BVP(r, l) otherwise.

Lemma 7.1. Suppose that h is S–differentiable at l. Then the boundary value problem

in (7.12) has unique solution

v(x) =
Gb(l)

W (ψ, ϕ)
ψ(x) +

Ga(l)

W (ψ, ϕ)
ϕ(x), x ∈ (l, r) or (r, l), (7.13)

where Ga and Gb are given by (7.7).

Proof. Let us recall that ψ and ϕ are linearly independent solutions of (A − β)u ≡
1
2
σ2u′′ + µu′ − βu = 0. Therefore v(x) = α1ψ(x) + α2ϕ(x) for some constants α1 and

α2, which can be found by using the boundary conditions.

Proposition 7.5. Let c < l < r < d. Suppose that h is S–differentiable at l and/or

r.

(a) v(x) , Ex

[
e−βτrh(Xτr)

]
, x ∈ [c, r], is the unique solution of BVP(c, r) if and

only if Ga(r) + F (c) ·Gb(r) = 0.

(b) v(x) , Ex

[
e−βτlh(Xτl)

]
, x ∈ [l, d], is the unique solution of BVP(l, d) if and

only if G(d) ·Ga(l)−Gb(l) = 0.

(c) v(x) , Ex

[
e−βτl∧τrh(Xτl∧τr)

]
, x ∈ [l, r], is the unique solution of BVP(l, r) and

BVP(l, r) simultaneously if and only if Ga(l) = Ga(r) and Gb(l) = Gb(r).

Proof. It is clear from Lemma 4.3 that all three expectations satisfy the differential

equation Av = βv, and the first boundary condition of (7.12). Therefore, we only

need to verify the second boundary conditions.

Suppose v is defined as in (a). By Lemma 4.3,

dv

dS
(x) =

d

dS

(
ϕ(x)

h(r)

ϕ(r)
· F (x)− F (c)

F (r)− F (c)

)
=
h

S
(r)

1

F (r)− F (c)

(
dψ

dS
(x)− F (c)

dϕ

dS
(x)

)
,
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for every a < x < r. One can show easily that dv
dS

(r−) = dh
dS

(r) if and only if

Ga(r) + F (c) ·Gb(r) = 0. (b) can be proved similarly.

For (c), after the derivatives of v(x) , Ex

[
e−βτl∧τrh(Xτl∧τr)

]
, l < x < r given by

Lemma 4.3, are set to dh
dS

(l) and dh
dS

(r), respectively at x = l and x = r, we obtain

two equations

Gb(l)

W (ψ, ϕ)
· ψ(r) +

Ga(l)

W (ψ, ϕ)
· ϕ(r) = h(r) and

Gb(r)

W (ψ, ϕ)
· ψ(l) +

Ga(r)

W (ψ, ϕ)
· ϕ(l) = h(l),

respectively. Lemma 7.1 however implies that

Gb(r)

W (ψ, ϕ)
· ψ(r) +

Ga(r)

W (ψ, ϕ)
· ϕ(r) = h(r) and

Gb(l)

W (ψ, ϕ)
· ψ(l) +

Ga(l)

W (ψ, ϕ)
· ϕ(l) = h(l).

By subtracting the latter equations from the former, we obtain[
Gb(r)

W (ψ, ϕ)
− Gb(l)

W (ψ, ϕ)

]
· ψ(r) +

[
Ga(r)

W (ψ, ϕ)
− Ga(l)

W (ψ, ϕ)

]
· ϕ(r) = 0,

and [
Gb(r)

W (ψ, ϕ)
− Gb(l)

W (ψ, ϕ)

]
· ψ(l) +

[
Ga(r)

W (ψ, ϕ)
− Ga(l)

W (ψ, ϕ)

]
· ϕ(l) = 0.

After we multiply the first equation with ϕ(l) and the second equation with −ϕ(r),

we sum the resulting equations. By rearranging the terms, we obtain[
Gb(r)

W (ψ, ϕ)
− Gb(l)

W (ψ, ϕ)

]
·
[
ψ(r)

ϕ(r)
− ψ(l)

ϕ(l)

]
= 0.

Since ψ(·)
ϕ(·) is strictly increasing, this implies Gb(l) = Gb(r). Similarly, Ga(l) =

Ga(r). Conversely, if those equalities hold, then both equations above hold, thanks

to Lemma 7.1. Therefore the second boundary condition is satisfied.

Since we know that the value function must coincide with one of the expectations

in the form of Ex

[
e−βτlh(Xτl)

]
, Ex

[
e−βτrh(Xτr)

]
and Ex

[
e−βτl∧τrh(Xτl∧τr)

]
for some

c ≤ l < r ≤ d, we can eliminate the free boundary problem in (7.12), and directly

work with BVP(c, r) for Ga(r)+F (c)Gb(r) = 0, BVP(l, d) for G(d)Ga(l)−Gb(l) = 0,
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and, BVP(l, r) and BVP(l, r) for Ga(l) − Ga(r) = Gb(l) − Gb(r) = 0. Salminen[12,

Theorem 4.7 and its remarks] also arrives at the same conclusion. In order to find

the value function and optimal stopping rule, it is enough to compare solutions of

boundary value problems against h and each other.

7.2.2 Why does and does not the Method of Variational In-

equalities work?

Suppose that, after a brief study of the reward function h(·), we thought that it is

is quite likely that (l, r) ⊂ C with some c < l < r < d being the boundaries of

optimal stopping region. Namely, once the process X starts in (l, r), we have reasons

to believe that, it is optimal to let the process diffuse until it exits the interval. We

expect to calculate three unknowns, l and r and V (·) on [l, r], by solving the free

boundary problem

Av = βv in (l, r) with v(x) = h(x) and v′(x) = h′(x), x = l, r, (7.14)

for some piecewise twice continuously differentiable3 v on (c, d). Thanks to the

Smooth–Fit principle v′ = h′ at the boundaries of (l, r), (7.14) has unique solution

v(·) for fixed l and r if and only if

Gb(l) = Gb(r) and Ga(l) = Ga(r)

by Proposition 7.5(c), where Ga(·) and Gb(·) are defined in (7.7). However the same

system of equations is equivalent to

d

dF

(
h

ϕ

)
(l) =

d

dF

(
h

ϕ

)
(r) and

d

dG

(
h

ψ

)
(l) =

d

dG

(
h

ψ

)
(r), (7.15)

3i.e. continuously differentiable everywhere, and twice continuous differentiable everywhere ex-

cept on at most a countable subset N of (c, d). Still left– and right–limits of second derivatives exist

and are finite at every point in N .
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by Proposition 7.4. We prefer however to work with only one of the pairs (F, h/ϕ)

and (G, h/ψ) since we shall soon turn to the graphs and we do not want to bother

with two different graphs for each pair. By using (7.6) however we can rewrite the

second equation in (7.15) as

F (l) · d

dF

(
h

ϕ

)
(l)− h

ϕ
(l) = F (r) · d

dF

(
h

ϕ

)
(r)− h

ϕ
(r)

F (r) · d

dF

(
h

ϕ

)
(r)− F (l) · d

dF

(
h

ϕ

)
(l) =

h

ϕ
(r)− h

ϕ
(l)

(
F (r)− F (l)

)
· d

dF

(
h

ϕ

)
(l) =

h

ϕ
(r)− h

ϕ
(l)

by using the first equality in (7.15). Therefore the system of equations in (7.15) is

equivalent to

d

dF

(
h

ϕ

)
(l) =

d

dF

(
h

ϕ

)
(r) =

h
ϕ
(r)− h

ϕ
(l)

F (r)− F (l)
(7.16)

which are in the mean time the same equations in Proposition 7.3(i) about the nec-

essary conditions on the boundaries of optimal stopping region. Finally, if we define

H : [F (c), F (d)] → R by

H(y) ,
h

ϕ
◦ F−1(y), y ∈ [F (c), F (d)],

as in Proposition 4.3, then Corollary 7.2(i) implies that l and r satisfy (7.16) if and

only if

H ′(F (l)) =
H(F (r))−H(F (l))

F (r)− F (l)
= H ′(F (r)). (7.17)

In summary, the boundary value problem for fixed l and r of (7.14) has unique

solution if and only if l and r solve (7.17). Therefore success of method of variational

inequalities often relies on the expectation that (7.17) has unique solution.

In the case that (7.17) has more than one solution, we still have to deal with

selection of the “best” pair(s) of (l, r): Not every solution, (l, r), of (7.17) necessarily

gives a connected component of the optimal continuation region. We shall investigate,

in the rest of this section, how exactly the solutions of the free boundary value problem

are related to the optimal stopping problem.
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We can rewrite (7.17) as

H(F (r)) = H(F (l))+(F (r)−F (l))H ′(F (l)) and H(F (l)) = (F (l)−F (r))H ′(F (r)).

These two equations tell us nothing more than that the straight line

Ll,r(y) , H(F (l)) · F (r)− y

F (r)− F (l)
+H(F (r)) · y − F (l)

F (r)− F (l)
, y ∈ [F (c), F (d)], (7.18)

is tangent to H at F (l) and F (r).

Hence solving the free boundary problem of (7.14) is exactly the attempt to find

points l and r in (c, d) such that the straight line Ll,r of (7.18) on [F (l), F (r)] is

tangent (i.e. smoothly fits to) H at F (l) and F (r).

We have not yet made a word about v(·), which is also to be determined as

part of the the same free boundary problem. It is however not unreasonable to

expect that the line Ll,r itself gives rise to v(·). Remembering how the smallest

nonnegative concave majorant W of H is related to the value function V , by the

identity V (x) = ϕ(x)W (F (x)), x ∈ [c, d] (cf. Proposition 4.3), suggests that

v(x) , ϕ(x)Ll,r(F (x)), x ∈ [l, r], (7.19)

should solve the ODE in (7.14), as well as, satisfy the boundary conditions at l and

r. Observe that v of (7.19) is smooth enough, and

v(x) = ϕ(x) ·
[
H(F (l)) · F (r)− F (x)

F (r)− F (l)
+H(F (r)) · F (x)− F (l)

F (r)− F (l)

]
= Aψ(x) + Bϕ(x),

x ∈ [l, r], for some constants A and B, is a linear combination of β–harmonic functions

ψ and ϕ (remember they are independent solutions of Au = βu). Hence v(·) of (7.19)

is itself β–harmonic, i.e. solves Av = βv. On the other hand

v(x) = ϕ(x)Ll,r(F (x)) = ϕ(x)H(F (x)) = h(x) for both x = l and x = r.

We can now summarize our findings as in
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Proposition 7.6. The free–boundary problem of (7.14) admits the triplet (l, r, v(·))

as a solution if and only if the straight line Ll,r of (7.18) on [F (c), F (d)] is tangent

to H at F (l) and F (r), and v(·) is given by (7.19).

This connection in conjunction with Proposition 4.3 will now reveal why any so-

lution (l, r, v(·)) of the free–boundary problem may not correctly match with optimal

stopping boundaries and the value function V .

Let W be the smallest nonnegative concave majorant of H on [F (c), F (d)]. Propo-

sition 4.3 shows that V (x) = ϕ(x)W (F (x)), x ∈ [c, d]. Therefore a solution (l, r, v(·))

of (7.14) is a pair of optimal stopping region boundaries such that (l, r) ⊂ C, and the

value function on [l, r], if and only if

Ll,r ≡ W > H on (F (l), F (r)), and W (y) = H(y) for y = F (l) and F (r).

(7.20)

Is it possible to find sufficient conditions that will identify the solution for the

optimal stopping problem among the solutions (l, r, v(·)) of (7.14)?

Suppose (7.20) holds. Since W is concave, and Ll,r is a straight line intersecting

with W at (l,W (F (l))) ≡ (l, H(F (l))) and (r,W (F (r))) ≡ (r,H(F (r))), Proposi-

tion A.3 implies that Ll,r ≥ W outside [F (l), F (r)]. However W is a nonnegative

majorant of H. Therefore (7.20) implies that

Ll,r ≥ max{H, 0} on [F (c), F (d)], with strict inequality in (F (l), F (r)). (7.21)

Note now that (7.21) also implies (7.20). Since Ll,r is a nonnegative concave

majorant of H on [F (c), F (d)] under (7.21), we have Ll,r ≥ W on [F (c), F (d)]. On

the other hand

Ll,r(y) = H(F (l)) · F (r)− y

F (r)− F (l)
+H(F (r)) · y − F (l)

F (r)− F (l)

≤ W (F (l)) · F (r)− y

F (r)− F (l)
+W (F (r)) · y − F (l)

F (r)− F (l)
≤ W (y), y ∈ [F (l), F (r)],
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since W is concave, and majorizes H. Therefore Ll,r ≡ W on [F (l), F (r)]. This

implies H(y) = Ll,r(y) = W (y) ≥ H(y) at y = F (l) and y = F (r). Therefore

W (y) = H(y) at y = F (l) and y = F (r). Since Ll,r > H on (F (l), F (r)) by (7.21),

we also have Ll,r ≡ W > H in (F (l), F (r)). This proves (7.20). Hence (7.20) and

(7.21) are one and the same conditions. Therefore

Proposition 7.7. A solution (l, r, v(·)) of (7.14) is a pair of optimal stopping region

boundaries such that (l, r) ⊂ C and the value function on [l, r], if and only if, Ll,r of

(7.18) on [F (c), F (d)] is tangent to H at F (l) and F (r), and (7.21) holds.

This conclusion will soon lead us to the necessary and sufficient conditions for a

solution of the free boundary problem in (7.14) to be the solution for the optimal

stopping problem at hand.

Let (l, r, v(·)) be a solution of (7.14). Although v is found as a solution of Av = βu

in (l, r), it is merely the restriction to [l, r] of some continuous solution ṽ(·) of the

same ODE in (c, d). To show that there exists indeed such ṽ(·) on [c, d], remember

that v(·) is necessarily related to Ll,r of (7.18) as in (7.19), and Ll,r is defined on the

whole [c, d]. Hence if we define ṽ : [c, d] → R by

ṽ(x) , ϕ(x)Ll,r(F (x)), x ∈ [c, d],

then ṽ = Aψ + Bϕ, for some constants A and B, i.e. it is a linear combination of β–

harmonic functions on [c, d], and therefore is itself β–harmonic on [c, d]. Furthermore,

ṽ ≡ v on [l, r].

As a matter of fact, ṽ(·) is unique. If v̂(·) is another continuous solution ofAu = βu

on [c, d] that coincides with v(·) on [l, r], then v̂(·) − ṽ(·) ≡ 0 on [l, r]. Since v̂ − ṽ

also solves Au = βu in (c, d), v̂− ṽ = Cψ+ Dϕ for some constants C and D on [c, d].

Therefore, we have Cψ + Dϕ ≡ 0 on [l, r], l < r. This however implies C = D = 0

since ψ and ϕ are independent solutions of Au = βu.
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Since ṽ(·) is unique, we shall omit the “tilde”, and denote it also by v(·). Because

v is related to Ll,r by (7.19), and we also have h(x) = ϕ(x)H(F (x)), x ∈ [c, d], we

can rewrite (7.21) in terms of v and h as

v ≥ max{h, 0} on [c, d], with strict inequality in (l, r), (7.22)

and Proposition 7.7 implies

Proposition 7.8. Let (l, r, v(·)) be a solution of (7.14). Then v(·) can continuously

and uniquely be extended onto [c, d] such that Av = βv on (c, d). Moreover (l, r, v(·))

is a pair of optimal stopping region boundaries such that (l, r) ⊂ C, and the value

function on [l, r], if and only if, (7.22) holds.

Finally, observe that we no longer need a verification lemma in order to show that

the solution, described as in Proposition 7.8, coincides with the value function of the

stopping problem in [l, r].

An illustration of the connection between the solutions of

the free boundary problem of (7.14) and the optimal stopping

problem.

We shall now illustrate what we have done so far in an example which is deliber-

ately constructed with the features that cause trouble when we use the method of

variational inequalities.

Let B the standard one–dimensional Brownian motion in [c, d] stopped, whenever

it reaches c , (1/2) log 2π or d , (1/2) log 8π. Consider the optimal stopping problem

V (x) , sup
τ≥0

Ex[e
−τ/2h(Xτ )], x ∈ [c, d],

with the reward function

h(x) , e−x
(
5π − e2x

)
sin e2x, x ∈ [c, d] (7.23)
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(we choose the discount rate β = 1/2). The infinitesimal generator is A = 1
2
d2

dx2 , and

the positive increasing and decreasing solutions of Au = u (β = 1/2) are given by

ψ(x) = ex and ϕ(x) = e−x, x ∈ R,

respectively. Therefore

F (x) ,
ψ(x)

ϕ(x)
= e2x, x ∈ R, and F−1(y) =

1

2
log y, y ∈ [2π, 8π]. (7.24)

Figure 7.3 is a (scaled) graph of h. The x–axis is labeled in terms of F−1 of (7.24)

in order to relate it later with the graph of H. h has zeros at zk , F−1(kπ), for

every k = 1, . . . , 8. There are three minima at m1 , F−1(3.5π), m2 , F−1(5π) and

m3 , F−1(6.5π).

When the process starts at any of m1, m2 or m3, there is nothing to lose by letting

the process diffuse for some time. Therefore, m1, m2 and m3 must be contained in

optimal continuation region. It is however not clear if there are one– or two– or

three– disconnected intervals of continuation region about those minima. Consider

for example m2. Should the connected component of C containing m2 necessarily be

larger than [z3, z7]? Or is it optimal to stop if the process can make almost at the top

of any immediate small hills rising on [z4, z6] (cf. Figure 7.3)?

First one is considered possible since the process will eventually reach either of

two highest tops rising on [z2, z3] ∪ [z7, z8] in finite expected time. However, it may

still take quite some time to cross over the valleys at either side of m2 before it starts

climbing higher tops. Therefore the possible gain earned by waiting, can be eroded

by the discount factor. This is the rationale behind the second possibility.

In the first case, all three mi, i = 1, 2, 3 would have been contained in a single

connected component of the optimal continuation region. There might however be

more than one connected components, if the second possibility turned out to be the

fact. Therefore, when we attempt to solve the free–boundary problem of (7.14),
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Figure 7.3: Reward function h of (7.23). z1, . . . z8 are the zeros, and

m1,m2,m3 are the minima of h, respectively. When the process starts at

m2, there are two sensible optimal stopping strategies. We may choose ei-

ther (i) to wait until the process reaches near the top of the first two highest

hills, or (ii) to stop as soon as the process reaches near the top of either of

the closest hills. The cost of waiting due to depreciation of the money value

may wipe the additional expected gain of action (i) over (ii), and therefore

we may favor (ii).

we should expect to find one or more solutions (l, r, v(·)) depending on the actual

topological properties of the optimal continuation region.

We shall not attack (7.14) itself. In order to learn about its solution(s), and

to identify both the value function and the connected components of the optimal

continuation region, we shall use Proposition 7.6 and Proposition 7.7. Note that

H(y) ,
h

ϕ
◦ F−1(y) = (5π − y) sin y, y ∈ [F (c), F (d)] ≡ [2π, 8π].

Figure 7.4(a) is a scaled graph of H. The diagonal lines are L1(y) , 5π − y and

L2(y) , −5π + y. H oscillates between them. Note that H touches the lines at the



CHAPTER 7. SMOOTH–FIT, VARIATIONAL INEQUALITIES 123

F (l3)F (l∗)

L∗

L3

L2

L1

H

L1

F (r2)F (r1)F (l2)F (l1)

F (r∗)

L2

(b)(a)

c
c

c
c

c
c

c
c

c
c

c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

S
S

S
S

S
S

S
S

S

�
�

�
�

�
�

�
�

�

F (r3)

�
�
�
�
�
�
�
�
�
�
��
DD
EE
EE
E
E
E
E
E
E
E
E
EE
EE
DD ��

��
��
�
�
�
�
�
�
�
�
��
��
�� EE
E
E
E
E
E
E
E
E
E
E �

�
�
�
�
�
�
�
�
�
��
DD
EE
EE
E
E
E
E
E
E
E
E
EE
EE
DD ��

��
��
�
�
�
�
�
�
�
�
��
��
�� EE
E
E
E
E
E
E
E
E
E
E

−4

7π6π5π4π3π2π

8

6

4

2

0

−2

−4

8π7π6π5π4π3π2π

8

6

4

2

0

−2

8π

Figure 7.4: (a) H, (b) Some of the (many) tangent lines of H. In (b), we draw

and label only four (out of ten) tangent lines of H. For readability, we replace

Llk,rk with Lk, and Ll∗,r∗ with L∗. Every Lk corresponds to a unique solution

(l, r, v(·)) of the free–boundary problem (7.14), and vice versa, according to

Proposition 7.6 (more precisely, Lk gives rise to the solution (lk, rk, vk(·)),

where vk(·) coincides with (7.19)). It is however easy to see that exactly one

Ll,r, namely L∗, majorizes max{H, 0} on [F (c), F (d)]. Furthermore, Proposi-

tion 7.7 implies that the value function V coincides with v∗ on [F (l∗), F (r∗)]

and (l∗, r∗) ⊆ C, {l∗, r∗} ⊂ Γ.

Note also that smallest nonnegative concave majorant W of H on

[F (c), F (d)] is obtained by piecing the restriction of L∗ to [F (l∗), F (r∗)] with

H elsewhere. Therefore Proposition 4.3 and Corollary 4.1 also give the same

result.

multiples of π/2 alternatingly. In particular, L1 is tangent to H at 2.5π, 4.5π and

6.5π. L2 is tangent to H at 3.5π, 5.5π, and 7.5π.

According to Proposition 7.6, solutions (l, r, v) of the free–boundary problem
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(7.14) are in one–to–one correspondence with the lines Ll,r on [F (c), F (d)] that are

tangent to H at F (l) and F (r). When Figure 7.4(b) is inspected, it is seen that H

has a lot of tangent lines (once labeled pairwise with respect to the points where

they are tangent to H, there are in total ten Ll,r, i.e. the free–boundary problem

(7.14) has exactly ten solutions). For convenience, we identified only four of them in

Figure 7.4(b). A brief inspection of Figure 7.4(b) reveals that none of the lines Ll,r,

except Ll∗,r∗ ≡ L∗, can majorize max{H, 0} on [F (c), F (d)]. Note also that L∗ > H

on (F (l∗), F (r∗)). If we define

v∗(x) , ϕ(x)L∗(F (x)), x ∈ [l∗, r∗],

as in (7.19), then Proposition 7.7 guarantees that (l, r, v(·)) = (l∗, r∗, v∗(·)) is the only

solution of (7.14) such that (l, r) ⊆ C, l, r ∈ Γ and V ≡ v∗ on [l, r].

Independently, it is also clear from Figure 7.4(b) that the smallest nonnegative

concave majorant of H on [F (c), F (d)] becomes

W (y) =


H(y), y /∈ (F (l∗), F (r∗)),

L∗(y), y ∈ (F (l∗), F (r∗)).

Proposition 4.3 implies that V (x) = ϕ(x)W (F (x)), x ∈ [c, d]. In particular, V (x) =

ϕ(x)W (F (x)) = ϕ(x)L∗(F (x)) = v∗(x) for x ∈ [l∗, r∗]. Since on the other hand

W > H on (F (l∗), F (r∗)), Corollary 4.1 implies (l∗, r∗) ⊆ C.

One may still wonder if the remaining Ll,r’s, equivalently solutions (l, r, v(·)) of

(7.14) have any probabilistic meaning. The answer of this question was already given

by Proposition 7.5(c) in Subsubection 7.2.1: If we let τl,r , inf{t ≥ 0 : Xt /∈ (l, r)},

then

v(x) = Ex[e
−βτl,rh(Xτl,r)], x ∈ [l, r].

This observation suggests a criterion in order to eliminate the uninteresting so-

lutions of the free–boundary problem. Suppose (l1, r1, v1(·)) and (l2, r2, v2(·)) are
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two solutions of (7.14) such that (l1, r1) and (l2, r2) have non–empty intersection.

If v1(x) > v2(x) for some x ∈ (l1, r1) ∩ (l2, r2), then we can eliminate (l2, r2, v2(·))

since, at least for one state, the stopping time τl1,r1 returns better payoff than τl2,r2 .

Equivalently V (x) ≥ v1(x) > v2(x) for some x ∈ (l2, r2) which implies V 6= v2 on

[l2, r2].

In this Section, we learned that solving the free–boundary problem of (7.14) is

equivalent to identifying tangent lines of H as summarized in Proposition 7.6. This

was also a part of our task (see Examples in Chapter 6) in finding the smallest non-

negative concave majorant for H of Proposition 4.3. The approach however shortfalls

since a post–analysis is required in order to eliminate the unfit solutions.

Another difficulty with the method of variational inequalities is that the reward

function h may not be differentiable at one of the optimal stopping boundaries. See

Section 6.7 for an example and how our approach can still solve the problem.
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Appendix A

Concave Functions

Let F : [c, d] → R be a strictly increasing function. A real–valued function u is called

F–concave on [c, d] if, for every a ≤ l < r ≤ b and x ∈ [l, r], we have

u(x) ≥ u(l)
F (r)− F (x)

F (r)− F (l)
+ u(r)

F (x)− F (l)

F (r)− F (l)
. (A.1)

Here, we shall state many facts about the properties of F–concave functions without

proofs. Missing proofs can be reproduced from those for F (x) = x, which are available

in many basic textbooks.

Lemma A.1. The following are equivalent:

(i) u is F–concave on [c, d].

(ii) For every c ≤ x < y < z ≤ d, we have: u(y)−u(x)
F (y)−F (x)

≥ u(z)−u(y)
F (z)−F (y)

.

(iii) For every c ≤ x < y < z ≤ d: u(y)−u(x)
F (y)−F (x)

≥ u(z)−u(x)
F (z)−F (x)

.

(iv) For every c ≤ x < y < z ≤ d: u(z)−u(x)
F (z)−F (x)

≥ u(z)−u(y)
F (z)−F (y)

.

Proposition A.1. Suppose u is real-valued F–concave and F is continuous on [c, d].

Then u is continuous in (c, d) and

u(c) ≤ lim inf
x↓c

u(x), and u(d) ≤ lim inf
x↑d

u(x).
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Let I ⊆ R be an interval with endpoints −∞ ≤ a < b ≤ +∞. These endpoints

may or may not be contained in I. Suppose U : I → R is F–concave on I (i.e.,

for every closed and bounded interval [c, d] ⊆ I, the restriction of U to [c, d] is F–

concave on [c, d]). Proposition A.1 implies that U must be continuous in the interior

of I, provided that it is F–continuous in I. In other words, U cannot oscillate in the

interior of I. Proposition A.2 shows that U cannot oscillate near the end–points of I

either, by the following

Proposition A.2. Let I be as described above, and U : I → R be F–concave on I.

Then both limx↓a U(x) and limx↑b U(x) exist (possibly equal to ±∞).

Proof. Let α , lim supx↓a U(x) and β , lim infx↓a U(x). Both may be infinite. As-

sume on the contrary β < α. We can always find two decreasing sequences (xn) and

(yn) in I with limits a such that limn→+∞ U(xn) = α and limn→+∞ U(yn) = β.

Fix any γ ∈ R such that β < γ < α. There exists then some N > 0 such that

n ≥ N =⇒ U(yn) < γ < U(xn). (∗)

Let n1, n2, n3 ≥ N such that xn3 < yn2 < xn1 . Because U is F–concave, and F is

strictly increasing on I, we have

γ > U(yn2) ≥ U(xn3)
F (xn1)− F (yn2)

F (xn1)− F (xn3)
+ U(xn1)

F (yn2)− F (xn3)

F (xn1)− F (xn3)
> γ.

by (∗) above. Contradiction. Therefore, we must have β = α. We can similarly show

that lim supx↑b U(x) = lim infx↑b U(x).

Remark A.1. If a ∈ I, then Proposition A.2 does not imply U(a) = limx↓a U(x) by

no means. In fact, Proposition A.1 implies limx↓a U(x) ≥ U(a) in this case. Same

precaution also extends to b when b ∈ I.

Proposition A.3. Let u be F–concave on [c, d]. Fix c ≤ l < r ≤ d and define

L : [c, d] → R by

L(x) , u(l)
F (r)− F (x)

F (r)− F (l)
+ u(r)

F (x)− F (l)

F (r)− F (l)
, ∀x ∈ [c, d].
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Then we have L ≤ u on (l, r), and L ≥ u outside (l, r).

Proposition A.4. Let U : [c, d] → R be F–concave. Given c ≤ l < r1 < r2 ≤ d, let

L(i) : [c, d] → R be defined by

L(i)(x) , U(l) · F (ri)− F (x)

F (ri)− F (l)
+ U(ri) ·

F (x)− F (l)

F (ri)− F (l)
, i = 1, 2,

respectively. Then L(1)(x) ≥ L(2)(x) for every x ∈ [l, d], and, L(1)(x) ≤ L(2)(x) for

every x ∈ [c, l]

Proposition A.5. Let (uα)α∈Λ is a family of F–concave functions on [c, d]. Then

u , ∧α∈Λuα is also F–concave on [c, d].

Let v : [c, d] → R be any function. Since F is strictly increasing, for every c ≤

x < y ≤ d, the quotients v(x)−v(y)
F (x)−F (y)

are well-defined. Let x ∈ [c, d). If limy↓x
v(x)−v(y)
F (x)−F (y)

exists, then we say that v has right-derivative with respect to F at x, and denote the

limit by

d+v

dF
(x) , lim

y↓x

v(x)− v(y)

F (x)− F (y)
.

We similarly define the left-derivative of v with respect to F at x ∈ (c, d] by

d−v

dF
(x) , lim

y↑x

v(x)− v(y)

F (x)− F (y)
.

provided that the limit on the right-hand side exists. If both d+v
dF

(x) and d−v
dF

(x) exist

and are equal , then we say that v is F -differentiable at x and denote their common

value by

dv

dF
(x) , lim

y→x

v(x)− v(y)

F (x)− F (y)
.

Proposition A.6. Suppose u : [c, d] → R is F–concave. Then we have the following:

(i) d+u
dF

and d−u
dF

exist in (c, d). Both are non–increasing and

d+u

dF
(l) ≥ d−u

dF
(x) ≥ d+u

dF
(x) ≥ d−u

dF
(r), c < l < x < r < d. (A.2)
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(ii) Let x0 ∈ (c, d). For every d+u
dF

(x0) ≤ θ ≤ d−u
dF

(x0), we have

u(x0) + θ[F (x)− F (x0)] ≥ u(x), ∀x ∈ [c, d].

(iii) Suppose F is continuous on [c, d]. Then there exist sequences (αn)n≥1 and

(βn)n≥1 such that

u(x) = inf
n≥1

[
αnF (x) + βn

]
, ∀x ∈ (c, d).

(iv) If F is continuous on [c, d], then d+u
dF

is right–continuous, and d−u
dF

is left–

continuous.

Lemma A.2. Suppose F : [c, d] → R is strictly increasing and continuous. Let

u : [c, d] → R be F–differentiable at x ∈ [c, d]. Then u is continuous at x.

Lemma A.3. Suppose F : [c, d] → 0 is strictly increasing. Suppose u : [c, d] → R

has a local maximum or minimum at a point x ∈ (c, d), and du
dF

(x) exists. Then

du
dF

(x) = 0.

Lemma A.4. Let F : [c, d] → R be strictly increasing and continuous. Suppose

u : [c, d] → R is a continuous function which is F–differentiable in (c, d). Then there

exists some x ∈ (c, d) such that

u(d)− u(c) =
du

dF
(x)
(
F (d)− F (c)

)
. (A.3)

Lemma A.5. Suppose F : [c, d] → R is strictly increasing and continuous. Suppose

u : [c, d] → R is a continuous function. If du
dF

exists and identically equals zero in

(c, d), then u is constant on [c, d].

Suppose F : R → R is strictly increasing. A function u : R → R is called

F–concave if the restriction of u to [−n, n] is F–concave for every n ≥ 1.
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Lemma A.6 (Adapted from Karatzas and Shreve [7], Page 213, Problem 6.20). Let

F : R → R be strictly increasing and continuous, and v : R → R be non–increasing.

Define

v±(x) , lim
y→x±

v(y), V (x) ,
∫ x

0

v(y)F (dy),

where the integral is understood in Lebesgue–Stieltjes sense.

(i) The functions v+ and v− are right– and left–continuous, respectively, and

v+(x) ≤ v(x) ≤ v−(x), ∀x ∈ R. (A.4)

(ii) The functions v± have the same set of continuity points, and equality holds in

(A.4) on this set. In particular, except for x in a countable set N , we have

v±(x) = v(x).

(iii) The function V is F–concave, and

d+V

dF
(x) = v+(x) ≤ v(x) ≤ v−(x) =

d−V

dF
(x), ∀x ∈ R.

(iv) If u : R → R is any other F–concave function for which

d+u

dF
(x) ≤ v(x) ≤ d−u

dF
(x), ∀x ∈ R, (A.5)

then we have u(x) = u(0) + V (x), for all x ∈ R.

Proof. Proofs are similar to those of Problem 6.21 and Problem 6.22, Karatzas and

Shreve [7, page 213–214].

Proposition A.7. Suppose F is strictly increasing and continuous on [c, d]. Let

U : [c, d] → R be F–concave on [c, d], and F–differentiable in (c, d). Then dU
dF

is

continuous in (c, d).

Proof. Since F is continuous on [c, d], and U is F–concave on [c, d], Proposition A.6(i)

and (iv) imply that d−U
dF

and d+U
dF

exist, and are left– and right–continuous in (c, d),
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respectively. Since U is F–differentiable in (c, d) by hypothesis,d
±U
dF

agree with dU
dF

everywhere in (c, d). Therefore,

dU

dF
(x) =

d+U

dF
(x) = lim

y↓x

d+U

dF
(y) = lim

y↓x

dU

dF
(y),

dU

dF
(x) =

d−U

dF
(x) = lim

y↑x

d−U

dF
(y) = lim

y↑x

dU

dF
(y),

for every x ∈ (c, d), i.e. dU
dF

is both left– and right– continuous, therefore continuous

in (c, d).
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Appendix B

Properties of Nonnegative Concave

Majorants

Let I denote an interval contained in R with end–points a and b, −∞ ≤ a < b ≤ +∞.

The end–points a and b may or may not be contained in I. Suppose ψ : I → (0,∞)

and ϕ : I → (0,∞) are continuous functions that are strictly increasing and strictly

decreasing, respectively. Then

F (x) ,
ψ(x)

ϕ(x)
and G(x) , −ϕ(x)

ψ(x)
, x ∈ I,

are well–defined, continuous and strictly increasing functions on I. Note that F ·G =

−1.

Let h : I → R be a continuous function. In this chapter, we shall study the small-

est nonnegative F–concave (G–concave, respectively) majorant of h
ϕ

( h
ψ
, respectively)

on I. We shall adopt the following

Convention B.1. Every concave function on I is real–valued. Hence U ≡ +∞ or

U ≡ −∞ on I will not be regarded as concave functions.

Therefore, we first need to address existence of smallest nonnegative F–concave

and G–concave majorants of h
ϕ

and h
ψ
, respectively. We will see that their existence
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are tied to

`a , lim sup
x↓a

h+(x)

ϕ(x)
and `b , lim sup

x↑b

h+(x)

ψ(x)
(B.1)

where h+ , max{0, h} on I. Note that h+ is itself continuous on I. Before stating

the main results, we need some preliminary work which we now present in a sequence

of Lemmata.

Lemma B.1. A function U : I → R is F–concave on I if and only if (−G) · U is

G–concave on I. Similarly, U is G–concave if and only if F · U is F–concave.

Proof. Let x ∈ [l, r] ⊆ I, l < r. By using F (·) ·G(·) = −1, we obtain

U(l)
F (r)− F (x)

F (r)− F (l)
+ U(r)

F (x)− F (l)

F (r)− F (l)

=
1

(−G)(x)

[
(−G · U)(l)

G(r)−G(x)

G(r)−G(l)
+ (−G · U)(r)

G(x)−G(l)

G(r)−G(l)

]
. (B.2)

If U is F–concave, then left-hand side is smaller than or equal to U(x). Since −G is

positive, by multiplying both sides of inequality with (−G)(x) we obtain

(−G · U)(x) ≥ (−G · U)(l)
G(r)−G(x)

G(r)−G(l)
+ (−G · U)(r)

G(x)−G(l)

G(r)−G(l)
, (B.3)

i.e. (−G) · U is G–concave on I.

Now suppose that (−G) · U is G–concave on I. Then we have (B.3). By dividing

both sides with positive −G(x), we realize that the right–hand side of (B.2) is smaller

than or equal to U(x). Hence U is F–concave on I.

As of the proof of the second statement, note that U ≡ (−G) ·(F ·U) is G–concave

(since F ·G = −1) if and only if F · U is F–concave, according to the first part.

Lemma B.2. h
ϕ

has a nonnegative F–concave majorant on I if and only if h
ψ

has a

nonnegative G–concave majorant on I.

In particular, if U is a nonnegative F–concave majorant of h
ϕ

on I, then (−G) ·U

is a nonnegative G–concave majorant of h
ψ

on I. Similarly, if Ũ is a nonnegative

G–concave majorant of h
ψ

on I, then F · Ũ is a nonnegative F–concave majorant of

h
ϕ

on I.
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Proof. Let U be a nonnegative F–concave majorant of h
ϕ

on I. Then (−G) · U is

nonnegative and G–concave by Lemma B.1. Furthermore since U ≥ h
ϕ

on I, and −G

is positive, we have

(−G) · U ≥ −G · h
ϕ

=
ϕ

ψ
· h
ϕ

=
h

ψ
, on I.

Hence (−G) · U is a nonnegative G–concave majorant of h
ψ

on I.

Let Ũ be a nonnegative G–concave majorant of h
ψ

on I. Then F · Ũ is nonnegative

and F–concave by Lemma B.1. Since Ũ majorizes h
ψ
, we have

F · h
ψ

=
ψ

ϕ
· h
ψ

=
h

ϕ
.

Therefore, F · Ũ is a nonnegative F–concave majorant of h
ϕ

on I.

Lemma B.2 shows that exactly one of

A ,



both h
ϕ and h

ψ

have (smallest)1nonnegative

F– and G–concave

majorants

on I, respectively


and B ,



neither h
ϕ nor h

ψ

have (smallest) nonnegative

F– and G–concave

majorants

on I, respectively


(B.4)

must be true. Observe also that both `a and `b of (B.1) are contained in [0,+∞].

Our result on existence of nonnegative concave majorants is

Proposition B.1. At least one of `a and `b of (B.1) is equal to +∞ if and only if B

of (B.4) holds. In other words, both `a and `b are finite if and only if A holds.

1Define M ,
{
f
∣∣f : I → R is a nonnegative F–concave majorant of h

ϕ

}
. Let U(x) ,

inff∈M f(x), x ∈ I (inf ∅ ≡ +∞). By Proposition A.5, we know that U is a nonnegative F–

concave majorant of h
ϕ on I, if the set on the right–hand side is not empty. Minimality of U is also

evident. Hence U is the smallest nonnegative F–concave majorant of h
ϕ .

This proves that the smallest nonnegative concave majorant exist if and only if a nonnegative

concave majorant exists. Hence addition of “(smallest)” in the definitions of A and B in (B.4) do

not impose any burden.
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Suppose A holds. Let Ua (Ub, respectively) be the smallest nonnegative F–concave

(G–concave, respectively) majorant of h
ϕ

( h
ψ
, respectively) on I. Then limx↓a Ua(x)

and limx↑b Ub(x) exist, and

`a ≤ lim
x↓a

Ua(x) < +∞ and `b ≤ lim
x↑b

Ub(x) < +∞. (B.5)

Proof. Suppose `a = +∞. Assume on the contrary that h
ϕ

has a nonnegative F–

concave majorant, denoted by U , on I. Fix any x ∈ int(I). For every [l, r] ⊂ I that

contains x, we have

U(x) ≥ U(l) · F (r)− F (x)

F (r)− F (l)
+ U(r) · F (x)− F (l)

F (r)− F (l)
≥ h+(l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
.

First inequality follows from F–concavity of U whereas second inequality is valid since

U ≥ max{0, h/ϕ} on I. Since F is strictly increasing, F (a+) exist and 0 ≤ F (a+) <

F (r) <∞. By taking limit supremum of both sides as l ↓ a, we find

U(x) ≥
(

lim sup
l↓a

h+(l)

ϕ(l)

)
· F (r)− F (x)

F (r)− F (a+)
= `a ·

F (r)− F (x)

F (r)− F (a+)
= +∞.

Hence U ≡ +∞ in the interior of I. By our Convention B.1, U is not a concave

function. Contradiction. Therefore A cannot be true.

Suppose `b = +∞, assume on the contrary that h
ψ

has a nonnegative G–concave

majorant, denoted by Ũ , on I. Fix any x ∈ int(I). For every [l, r] ⊂ I containing x,

we have

Ũ(x) ≥ Ũ(l) · G(r)−G(x)

G(r)−G(l)
+ Ũ(r) · G(x)−G(l)

G(r)−G(l)
≥ h+(r)

ψ(r)
· G(x)−G(l)

G(r)−G(l)
.

Since G is strictly increasing and negative on I, G(b−) exists and −∞ < G(l) <

G(b−) ≤ 0. Therefore

Ũ(x) ≥
(

lim sup
r↑b

h+(r)

ψ(r)

)
· G(x)−G(l)

G(b−)−G(l)
= `b ·

G(x)−G(l)

G(b−)−G(l)
= +∞.

Therefore Ũ ≡ +∞ in the interior of I, and is not a concave function by Conven-

tion B.1. Contradiction. Hence A cannot be true.
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Now suppose that both `a and `b are finite. We shall prove that there exists a

nonnegative F–concave majorant of h
ϕ

on I. This will imply that B cannot be correct,

i.e. A must hold because of the dilemma in (B.4).

Since h
ϕ
(a+) = `a ∈ [0,+∞), there exists some l ∈ (a, b) such that h

ϕ
(x) ≤ 1 + `a

for every x ∈ I ∩ (−∞, l). On the other hand

h

ϕ
=
h

ψ
· ψ
ϕ

=
h

ψ
· F.

Since h
ψ
(b−) = `b ∈ [0,+∞), there exists some r ∈ (l, b) such that h

ψ
(x) ≤ 1+`b for all

x ∈ I ∩ (r,∞). Therefore h(x)
ϕ(x)

≤ (1 + `b)F (x) for every x ∈ I ∩ (r,∞). Finally, since

h
ϕ

is continuous on I, it is bounded on [l, r] ⊂ I. Therefore there are real numbers

c1 ≥ 1 + `a > 0 and c2 ≥ 1 + `b > 0 such that h
ϕ
≤ c1 + c2F on I. Hence c1 + c2F is a

nonnegative F–concave majorant of h
ϕ

on I.

Now suppose A holds, and let Ua and Ub be as described in statement of Propo-

sition. limx↓a Ua(x) and limx↑b Ub(x) exist by Proposition A.2 in Appendix A. Since

Ua and Ub majorize max{0, h/ϕ} and max{0, h/ψ}, respectively, the first inequalities

in (B.5) are clear. It remains to show that the limits are finite. We proved in the

previous paragraph that there is a nonnegative F–concave majorant U , c1 + c2F of

h
ϕ

on I for some positive real numbers c1 and c2. Therefore Ua ≤ U on I, and

lim
x↓a

Ua(x) ≤ lim
x↓a

U(a) = c1 + c2F (a+) <∞.

By Lemma B.2, Ũ , (−G) · U = −c1G+ c2 is a nonnegative G–concave majorant of

h
ψ
. Therefore Ub ≥ Ũ , and

lim
x↑b

Ub(x) ≤ lim
x↑b

Ũ(x) = −c1G(b−) + c2 < +∞.

This completes the proof.

In the remaining part of this Chapter, we shall assume that

the quantities `a and `b of (B.1) are finite. (B.6)
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By Proposition B.1, A of (B.4) holds. Suppose

Ua : I → R is

the smallest nonnegative

F–concave majorant

of h
ϕ

on I.


and



Ub : I → R is

the smallest nonnegative

G–concave majorant

of h
ψ

on I.


.

Lemma B.3. We have

ϕ(x)Ua(x) = ψ(x)Ub(x), x ∈ I. (B.7)

Proof. Lemma B.2 implies that (−G) · Ua is a nonnegative G–concave majorant of

h
ψ

on I. Since Ub is the smallest of the functions with the same properties, we have

(−G) · Ua ≥ Ub, i.e. ϕUa ≥ ψ Ub.

By the same Lemma B.2, F · Ub is a nonnegative F–concave majorant of h
ϕ

on I.

Since Ua is the smallest nonnegative F–concave majorant, we have F · Ub ≥ Ua, i.e.

ϕUa(x) ≤ ψ Ub.

We shall denote the common value of ϕ · Ua and ψ · Ub by V , ϕ · Ua ≡ ψ · Ub.

Thus V : I → R enjoys the following properties:

V
ϕ
(≡ Ua) is the smallest

nonnegative

F–concave majorant

of h
ϕ

on I.


and



V
ψ
(≡ Ub) is the smallest

nonnegative

G–concave majorant

of h
ψ

on I.


.

Furthermore, Proposition B.1 shows that limx↓a
V (x)
ϕ(x)

and limx↑b
V (x)
ψ(x)

exist, and

`a ≤ lim
x↓a

V (x)

ϕ(x)
< +∞ and `b ≤ lim

x↑b

V (x)

ψ(x)
< +∞. (B.8)

Define

Γ ,
{
x ∈ I

∣∣V (x) = h(x)
}

and C , I\Γ =
{
x ∈ I

∣∣V (x) > h(x)
}
.

Since V
ϕ

is F–concave on I, Proposition A.1 implies that V
ϕ

is lower semi–continuous

on I (in fact, it is continuous in (a, b) and lower semi–continuous at the boundaries
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of I which are contained in I). Since ϕ and F are continuous and positive on I, this

implies that V is itself lower semi–continuous on I. Finally, since h is continuous on

I, V − h is lower semi–continuous on I. Therefore C is open relative to I2.

Since C is open relative to I, it is union of a countable family of disjoint and open,

relative to I, subintervals of I. We shall denote this family by (Jα)α∈Λ. Observe that

Jα can take at most three different forms: (i) Jα = (l, r) ⊆ C, for some l, r ∈ Γ, or

(ii) Jα = I ∩ (−∞, r) for some r ∈ Γ or (iii) Jα = I ∩ (l,∞) for some l ∈ Γ, for all

α ∈ Λ. Observe that I ∩ (−∞, r) becomes [a, r) if a ∈ I, or (a, r) if a /∈ I. Similarly

I ∩ (l,∞) becomes (l, b] if b ∈ I, or (l, b) if b /∈ I.

Proposition B.2. Let V be defined as above. Then V = h on Γ. C can be parti-

tioned into countable disjoint open (relative to I) subintervals of I. The followings

summarize all three possible forms of subintervals, and the form of V in each case:

(i) Suppose (l, r) ⊆ C for some l, r ∈ Γ, l < r. Then

V (x)

ϕ(x)
=
h(l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
+
h(r)

ϕ(r)
· F (x)− F (l)

F (r)− F (l)
, x ∈ [l, r].

Equivalently,

V (x)

ψ(x)
=
h(l)

ψ(l)
· G(r)−G(x)

G(r)−G(l)
+
h(r)

ψ(r)
· G(x)−G(l)

G(r)−G(l)
, x ∈ [l, r].

(ii) Suppose I ∩ (−∞, r) ⊆ C for some r ∈ Γ. Then

V (x)

ϕ(x)
= `a ·

F (r)− F (x)

F (r)− F (a+)
+
h(r)

ϕ(r)
· F (x)− F (a+)

F (r)− F (a+)
, x ∈ I ∩ (−∞, r].

If a ∈ I, then we have F (a+) = F (a) by continuity of F on I. If a /∈ I, then

F (a+) still exists, and is finite since F is strictly increasing and positive on I.

2A function f : I → R is called lower semi–continuous at x ∈ I if f(x) ≤ lim infy→x f(y). It

is called a lower semi–continuous function if it is lower semi–continuous at every x ∈ I. f is lower

semi–continuous if and only if for every λ ∈ R, {x ∈ I : f(x) > λ} is open relative to I.
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(iii) Suppose I ∩ (l,∞) ⊆ C for some l ∈ Γ. Then

V (x)

ψ(x)
=
h(l)

ψ(l)
· G(b−)−G(x)

G(b−)−G(l)
+ `b ·

G(x)−G(l)

G(b−)−G(l)
, x ∈ I ∩ [l,∞).

If b ∈ I, then we have G(b−) = G(b) by continuity of G on I. If b /∈ I, then

G(b−) still exists, and is finite since G is strictly increasing and negative on I.

Proof. We shall start by proving the first identity in (i). Define the F–linear function

L(x) ,
V (l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
+
V (r)

ϕ(r)
· F (x)− F (l)

F (r)− F (l)
, x ∈ I.

Since l, r ∈ Γ, we have V (l) = h(l) and V (r) = h(r). Thus L is same as the right–

hand side of the the first expression in (i). To prove the identity, we therefore need

to show L = V
ϕ

on [l, r].

Since V
ϕ

is F–concave, Proposition A.3 immediately implies L ≤ V
ϕ

on [l, r]. In

order to show the reverse inequality, remember first that V
ϕ

is the smallest nonnegative

F–concave majorant of h
ϕ

on I. It is therefore enough to show that L is a nonnegative

F–concave majorant of h
ϕ

on I.

Proposition A.3 implies that L ≥ V
ϕ
≥ 0 on I\[l, r] since V is nonnegative. How-

ever L is also nonnegative on [l, r] since both V (l)
ϕ(l)

and V (r)
ϕ(r)

are nonnegative. Since it

is F–linear, L is F–concave on I. It remains to show that L majorizes h
ϕ

on I.

Assume on the contrary that L < h
ϕ

somewhere in I. Therefore

θ , sup
x∈I

[
h(x)

ϕ(x)
− L(x)

]
> 0. (B.9)

Proposition A.3 in fact implies that L ≥ V
ϕ
≥ h

ϕ
on I\[l, r]. On the other hand, h

ϕ
−L

is continuous. Therefore “supx∈I” in (B.9) can be replaced with “maxx∈[l,r]”. This

implies that θ > 0 is finite, and is attained in [l, r].

Because θ is finite, θ+L is a nonnegative F–concave majorant of h
ϕ

on I. Therefore

θ + L ≥ V
ϕ

on I. Let x0 ∈ (l, r) be where θ is attained (Since l, r ∈ Γ, h
ϕ
(l)− L(l) =

h
ϕ
(r)− L(r) = 0. Because θ > 0, we must therefore have x0 /∈ {l, r}). Thus

h(x0)

ϕ(x0)
= θ + L(x0) ≥

V (x0)

ϕ(x0)
≥ h(x0)

ϕ(x0)
.
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Hence h(x0) = V (x0) or x0 ∈ Γ. However x0 ∈ (l, r)∩Γ ⊆ C∩Γ = ∅. Contradiction.

Therefore L is a nonnegative F–concave majorant of h
ϕ

on I. Therefore L ≥ V
ϕ

on

[l, r]. Together with the reserve inequality on [l, r] proved above, this completes the

proof of the first identity in (i). Second identity can be proven similarly. Alternatively,

it also follows from the first identity after some simple algebra using definitions of F

and G.

We shall next prove (ii). The proof is easier if a ∈ I. To deal with the case a /∈ I,

especially when a = −∞, we need to specialize. However, same approach also solves

the case a ∈ I. Therefore, we would like to prove all cases at once despite of the

expense of some little nuisance. Define this time the F–linear function L as in

L(x) , `a ·
F (r)− F (x)

F (r)− F (a+)
+
V (r)

ϕ(r)
· F (x)− F (a+)

F (r)− F (a+)
, x ∈ I.

Since r ∈ Γ, we have V (r) = h(r). Therefore, the right–hand side of the expression in

(ii) coincides with L on I ∩ (−∞, r]. Thus, our aim is to prove L = V
ϕ

on I ∩ (−∞, r].

It follows from (B.5) and F–concavity of V
ϕ

that

L(x) = `a ·
F (r)− F (x)

F (r)− F (a+)
+
V (r)

ϕ(r)
· F (x)− F (a+)

F (r)− F (a+)

≤
(

lim
l↓a

V (l)

ϕ(l)

)
· F (r)− F (x)

F (r)− F (a+)
+
V (r)

ϕ(r)
· F (x)− F (a+)

F (r)− F (a+)

= lim
l↓a

[
V (l)

ϕ(l)
· F (r)− F (x)

F (r)− F (l)
+
V (r)

ϕ(r)
· F (x)− F (l)

F (r)− F (l)

]
≤ V (x)

ϕ(x)
, x ∈ (a, r).

If a ∈ I, then L(a) = `a = h+(a)
ϕ(a)

≤ V (a)
ϕ(a)

by continuity of h on I. Hence V
ϕ
≥ L on

I ∩ (−∞, r].

We need to prove the reverse inequality. We shall do this by showing that L

is a nonnegative F–concave majorant of h
ϕ

on I. Let (an)n≥1 ⊂ (a, r) be a strictly

decreasing sequence with limit a. Introduce

Ln(x) ,
V (an)

ϕ(an)
· F (r)− F (x)

F (r)− F (an)
+
V (r)

ϕ(r)
· F (x)− F (an)

F (r)− F (an)
, x ∈ I, n ≥ 1,

and define L0(x) , limn→+∞ Ln(x), x ∈ I (L0 is well-defined because of (B.8)).
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Hence

L0(x) =

(
lim
y↓a

V (y)

ϕ(y)

)
· F (r)− F (x)

F (r)− F (a+)
+
V (r)

ϕ(r)
· F (x)− F (a+)

F (r)− F (a+)
, x ∈ I,

Proposition A.4 shows that (Ln(x))n≥1 is decreasing at every x ∈ I ∩ (−∞, r], and

increasing at every x ∈ I ∩ [r,∞).

Since Proposition A.3 implies that Ln ≥ V
ϕ

on I ∩ [r,∞) for every n ≥ 1, we have

L0 ≥ V
ϕ

on I ∩ [r,∞). On the other hand for every x ∈ (a, r) there exists some N =

N(x) > 0 such that for every n ≥ N , we have x ∈ (an, r), i.e. L0(x) ≤ Ln(x) ≤ V (x)
ϕ(x)

by Proposition A.3.

Since limy↓a
V (x)
ϕ(x)

≥ `a by (B.8), it is obvious that L ≤ L0 on I ∩ (−∞, r], and

L ≥ L0 on I ∩ [r,∞). Therefore L ≤ L0 ≤ V
ϕ

on (a, r), and L ≥ L0 ≥ V
ϕ

on I ∩ [r,∞)

following the discussion in the previous paragraph. Using these properties of L, we

shall now show that L is a nonnegative F–concave majorant of h
ϕ

on I.

L is nonnegative on I ∩ [r,+∞) since V is nonnegative and L ≥ V
ϕ

on I ∩ [r,+∞).

On the other hand, because V (r)
ϕ(r)

≥ 0 and `a ≥ 0, L is obviously nonnegative on

I ∩ (−∞, r].

Since L is F–linear, it is obviously F–concave on I. It remains to prove that L

majorizes h
ϕ

on I. Assume on the contrary that h
ϕ
> L somewhere in I. Then

θ , sup
x∈I

[
h(x)

ϕ(x)
− L(x)

]
= sup

x∈I∩(−∞,r]

[
h(x)

ϕ(x)
− L(x)

]
> 0.

We have the equality above since L ≥ V
ϕ
≥ h

ϕ
on I ∩ [r,+∞). Since lim supx↓a

h(x)
ϕ(x)

≤

lim supx↓a
h+(x)
ϕ(x)

= `a < ∞, there exists some r̃ ∈ (a, r) such that h
ϕ
< 1 + `b in

I ∩ (−∞, r̃). Because h
ϕ

is continuous in I ⊃ [r̃, r], it is bounded on [r̃, r]. Hence h
ϕ

is

bounded on I ∩ (−∞, r]. Since furthermore L ≥ 0, it is easy to see that θ is finite.

Therefore θ + L is a nonnegative F–concave majorant of h
ϕ

on I. Hence θ + L ≥ V
ϕ

on I.

We claim that θ is attained in (a, r). Since lim supx↓a
h(x)
ϕ(x)

−L(x) ≤ lim supx↓a
h+(x)
ϕ(x)

−
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`a = 0, there exists some l ∈ (a, r) such that

h(x)

ϕ(x)
− L(x) ≤ θ

2
, ∀ x ∈ I ∩ (−∞, l).

Thus θ = supx∈[l,r]

[
h(x)
ϕ(x)

− L(x)
]
. Since h

ϕ
−L is continuous in I ⊇ [l, r], θ is attained

in [l, r]. In fact, because r ∈ Γ, we have h(r)
ϕ(r)

− L(r) = 0 < θ, i.e. θ must be attained

at some x0 ∈ [l, r) ⊆ I ∩ (−∞, r). However

h(x0)

ϕ(x0)
= θ + L(x0) ≥

V (x0)

ϕ(x0)
≥ h(x0)

ϕ(x0)
.

Hence h(x0) = V (x0) or x0 ∈ Γ. This means x0 ∈ I ∩ (−∞, r) ∩ Γ ⊆ C ∩ Γ = ∅.

Contradiction.

This proves that L is indeed a nonnegative F–concave majorant of h
ϕ

on I. There-

fore L ≥ V
ϕ
. Together with the reverse inequality on I ∩ (−∞, r] proved above, we

conclude L = V
ϕ

on I ∩ (−∞, r].

The proof of (iii) is very similar to that of (ii). We leave it to the reader.

Proposition B.2 shows that V
ψ

isG–linear, and V
ϕ

is F–linear over the “continuation

region” C.

Corollary B.1. V is continuous on I. Moreover

lim
x→a

V (x)

ϕ(x)
= `a and lim

x→b

V (x)

ψ(x)
= `b.

Proof. F–concavity of V
ϕ

and continuity of F on I imply that V is continuous in

the interior of I (Proposition A.1). We need to show that V is continuous at the

boundaries if they are contained in I.

Suppose a ∈ I. By Proposition B.2 there are three possibilities: (1) a ∈ Γ and

there exists some r ∈ Γ such that (a, r) ⊆ C, or there exists some ε > 0 such that

(2) [a, ε) ⊆ C, or (3) [a, ε) ⊆ Γ. Proposition B.2 identifies V explicitly in each case.

Note that V is continuous at a in all of the cases (Continuity of V follow in cases (1)
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and (2) from (i) and (ii) of Proposition B.2 whereas in case (3) it follows from the

continuity of h at a).

The results about the limits can also be proved by studying V case by case and

by using Proposition B.2 in each case. Consider again a. If for some r > a, I ∩

(−∞, r) ⊆ Γ, then h
ϕ

= V
ϕ
≥ 0 on I ∩ (−∞, r). Therefore limx→a

V (x)
ϕ(x)

= limx→a
h(x)
ϕ(x)

=

limx→a
h+(x)
ϕ(x)

= `a.

If I∩(−∞, r) ⊆ C, then Proposition B.2(ii) immediately implies limx→a
V (x)
ϕ(x)

= `a.

If a ∈ I, then there is one more possibility: Suppose a ∈ Γ, and for some r ∈ Γ,

r > a, (a, r) ⊆ C. By replacing every l in the first expression in (i) of Proposition B.2,

we find

V (x)

ϕ(x)
=
h(a)

ϕ(a)
· F (r)− F (x)

F (r)− F (a)
+
h(r)

ϕ(r)
· F (x)− F (a)

F (r)− F (a)
, x ∈ [a, r].

Thus

0 ≤ lim
x→a

V (x)

ϕ(x)
=
h(a)

ϕ(a)
=
h+(a)

ϕ(a)
= lim

x→a

h+(x)

ϕ(x)
= `a.

The second equality follows since h is nonnegative by the first equality. Third equality

follows from continuity of h on I 3 a.

Similar arguments for b will give the proof for the other half of the Corollary.
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