Math 101 Calculus - Midterm Exam I- Solutions

Q-1) Find the first derivatives of the following functions. Do not simplify your answers.
i) $f(x)=\left[\cos \left(x^{3}+7 x^{2}+1\right)\right]^{2}$.
ii) $f(x)=\frac{\cos x^{3}}{\sin x^{2}}$.
iii) $f(x)=\sin \frac{1}{x}+\cos \frac{1}{x}$.
iv) $f(x)=\tan (\sec (\cos x))$.
i) $f^{\prime}(x)=2\left[\cos \left(x^{3}+7 x^{2}+1\right)\right]\left[-\sin \left(x^{3}+7 x^{2}+1\right)\right]\left[3 x^{2}+14 x\right]$.
ii) $f^{\prime}(x)=\left(-\sin x^{3} \cdot 3 x^{2} \cdot \sin x^{2}-\cos x^{3} \cdot \cos x^{2} \cdot 2 x\right) /\left(\sin x^{2}\right)^{2}$.
iii) $f^{\prime}(x)=-\frac{1}{x^{2}} \cos \frac{1}{x}-\frac{1}{x^{2}}\left(-\sin \frac{1}{x}\right)$.
iv) $f^{\prime}(x)=\sec ^{2}(\sec (\cos x)) \cdot \sec (\cos x) \tan (\cos x) \cdot(-\sin x)$.

Q-2) i) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $t=0$ for the parameterized curve $x(t)=9 t^{2}+4 t+1, y(t)=t^{2}+7 t+8$.
ii) Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at the point $(1,1)$ for the curve $x^{3}-x y+y^{3}=1$.
i) $\frac{d x}{d t}=18 t+4, \frac{d y}{d t}=2 t+7, \frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{2 t+7}{18 t+4},\left.\frac{d y}{d x}\right|_{t=0}=\frac{7}{4}$.
$\frac{d}{d t}\left(\frac{d y}{d x}\right)=\frac{-118}{(18 t+4)^{2}}, \frac{d^{2} y}{d x^{2}}=\frac{\frac{d}{d t}(d y / d x)}{d x / d t}=\frac{-118}{(18 t+4)^{3}},\left.\frac{d^{2} y}{d x^{2}}\right|_{t=0}=-\frac{59}{32}$.
ii) Implicitly differentiating the given equation gives $3 x^{2}-y-x y^{\prime}+3 y^{2} y^{\prime}=0$. Putting in $x=1, y=1$ and solving for y^{\prime} gives $y^{\prime}=-1$. Differentiating implicitly once more gives $6 x-2 y^{\prime}-x y^{\prime \prime}+6 y\left(y^{\prime}\right)^{2}+3 y^{2} y^{\prime \prime}=0$. Putting in the values and solving for $y^{\prime \prime}$ gives $y^{\prime \prime}=-7$.

Q-3) i) Evaluate the limit $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}-x+1}{x^{3}-3 x+2}$.
ii) Evaluate the limit $\lim _{x \rightarrow 2} \frac{x^{3}-3 x-2}{x^{3}-4 x^{2}+5 x-2}$.
iii) Find the equation of the line through the point $(3,-2)$ perpendicular to the line $9 x+8 y=17$.
iv) Find the equation of the line through the points $(1,2)$ and $(3,5)$.
i) $\lim _{x \rightarrow 1} \frac{x^{3}-x^{2}-x+1}{x^{3}-3 x+2}=\lim _{x \rightarrow 1} \frac{(x-1)^{2}(x+1)}{(x-1)^{2}(x+2)}=\lim _{x \rightarrow 1} \frac{(x+1)}{(x+2)}=\frac{2}{3}$.
ii) $\lim _{x \rightarrow 2} \frac{x^{3}-3 x-2}{x^{3}-4 x^{2}+5 x-2}=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+2 x+1\right)}{(x-2)\left(x^{2}-2 x+1\right)}=\lim _{x \rightarrow 2} \frac{\left(x^{2}+2 x+1\right)}{\left(x^{2}-2 x+1\right)}=9$.
iii) $y=\frac{8}{9}(x-3)-2$, or $8 x-9 y=42$.
iv) $y=\frac{5-2}{3-1}(x-1)+2$, or $3 x-2 y=-1$.

Q-4) Consider the function

$$
f(x)= \begin{cases}x^{2} \sin \frac{1}{x^{2}+x} & \text { if } x \neq 0 \\ a & \text { if } x=0\end{cases}
$$

For which value of a does the derivative of f exist at $x=0$?
For that value of a calculate $f^{\prime}(0)$.

$$
\begin{aligned}
f^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h^{2}+h}-a}{h} \\
& =\lim _{h \rightarrow 0} h \sin \frac{1}{h^{2}+h}-\lim _{h \rightarrow 0} \frac{a}{h} \\
& =0-\lim _{h \rightarrow 0} \frac{a}{h} \quad \text { since sinus function is bounded } \\
& =0 \quad \text { when and only when } a=0 .
\end{aligned}
$$

Q-5) Water is poured at the constant rate of $11 \mathrm{~m}^{3} / \mathrm{min}$ into a container which is in the shape of an inverted right circular cone of base radius 18 m and height 9 m . How fast is the level of water rising when the water is 3 m high in the container?

Let $r(t)$ and $h(t)$ denote the radius and height of water in the tank at time t, respectively. Then $r(t) / h(t)=18 / 9=2$, so $r(t)=2 h(t)$. Volume of water in the tank at time t is $V(t)=(\pi / 3) r^{2}(t) h(t)=(4 \pi / 3) h^{3}(t)$. Differentiating both sides with respect to t gives $V^{\prime}(t)=$ $4 \pi h^{2}(t) h^{\prime}(t)$. Finally putting in $V^{\prime}=11 \mathrm{~m}^{3} / \mathrm{min}$ and $h(t)=3 \mathrm{~m}$ and solving for $h^{\prime}(t)$ we find $h^{\prime}(t)=\frac{11}{36 \pi} \mathrm{~m} / \mathrm{min}$.

