Quiz \# 4
Math 101-Section 06 Calculus I
1 March, 2018, Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Bilkent University
Name: \qquad
Department: \qquad Student ID: \qquad

Q-1)

(i) The hypothenuse of a right triangle is increasing at the rate of $11 / 63 \mathrm{~cm} / \mathrm{s}$ when it is 5 cm , and at that time one of the legs is 4 cm and is decreasing at the rate of $2 / 9 \mathrm{~cm} / \mathrm{s}$. Find how fast the other leg is changing at that time.
(ii) Find the absolute \min / \max of $f(x)=x^{4}+4 x^{3}+4 x^{2}$ on $[-1.5,1]$.

Answer (i): Using the right triangle theorem, $x^{2}+y^{2}=z^{2}$, we find that the other leg is 3 cm at that time. $\left(3^{2}+4^{2}=5^{2}\right)$

Differentiating the above equation with respect to time, and cancelling out the 2 , we get

$$
x x^{\prime}+y y^{\prime}=z z^{\prime} .
$$

Putting in the values,

$$
3 x^{\prime}+(4)\left(-\frac{2}{9}\right)=(5)\left(\frac{11}{63}\right)
$$

we find that $x^{\prime}=\frac{37}{63} \mathrm{~cm} / \mathrm{s}$.
Answer (ii) : $f^{\prime}(x)=4 x^{3}+12 x^{2}+8 x=4 x(x+1)(x+2)=0$.
The critical points in the given domain are 0 and -1 . We evaluate f at these critical and end points.

$$
f(-3 / 2)=9 / 16 \approx 0.56, \quad f(-1)=1, \quad f(0)=0, \quad f(1)=9 .
$$

Therefore the absolute min is 0 , and the absolute max is 9 .

Here is the graph

