1. A function f that is twice-differentiable on the entire real line satisfies the following conditions:
(1) $f(0)=0, f(\sqrt[3]{2})=3 \sqrt[3]{4}, f(2)=8, f(\sqrt[3]{20})=0$
(2) $f^{\prime}(x)<0$ for $x<0$ and for $x>2 ; f^{\prime}(x)>0$ for $0<x<2$
(3) $f^{\prime \prime}(x)>0$ for $x<\sqrt[3]{2} ; f^{\prime \prime}(x)<0$ for $x>\sqrt[3]{2}$
a. Sketch the graph of $y=f(x)$ making sure that all important features are clearly shown.

b. Fill in the boxes to make the following a true statement. No explanation is required.

The function $f(x)=a x^{b}+c x^{d}$ satisfies the conditions (1)-8 if a, b, c and d are chosen as

$$
a=-\frac{1}{6}, \quad b=5 . \quad c=\frac{10}{3} \quad \text { and } \quad d=2 .
$$

We have $f(x)=a x^{b}+c x^{d}, f^{\prime}(x)=a b x^{b-1}+c d x^{d-1}$, and $f^{\prime \prime}(x)=a b(b-1) x^{b-2}+c d(d-1) x^{d-2}$.
If both of b and d are larger than 2 , then $f^{\prime \prime}(0)$ would be zero. Since $f^{\prime \prime}(0)>0$, we must have either $b=2$ or $d=2$. Let us take $d=2$. (The case for $b=2$ is similar.)

Now we have $f(x)=a x^{2}\left(x^{b-2}+\frac{c}{a}\right)$. Since $f\left(20^{1 / 3}\right)=0$, we have

$$
\begin{equation*}
\left(20^{1 / 3}\right)^{b-2}=-\frac{c}{a} \tag{1}
\end{equation*}
$$

We also have $f^{\prime}(x)=a b x\left(x^{b-2}+\frac{2 c}{a b}\right)$. Since $f^{\prime}(2)=0$, we have

$$
\begin{equation*}
2^{b-2}=-\frac{2 c}{a b} \tag{2}
\end{equation*}
$$

Dividing equation (1) by equation (2), and simplifying, we get

$$
\begin{equation*}
2\left(\frac{5}{2}\right)^{\frac{b-2}{3}}=b \tag{3}
\end{equation*}
$$

By inspection we see that $b=2$ and $b=5$ are two solutions. Since $y=2(5 / 2)^{(x-2) / 3}$ is concave up, and $y=x$ is a straight line, these two graphs can intersect at most at two points and we have just found all solutions. Here is the graph of these two functions:

Since b is assumed to be larger than 2, we must have $b=5$.
Now equation (1) becomes

$$
\begin{equation*}
20=-\frac{c}{a}, \quad \text { or equivalently, } \quad 20 a+c=0 \tag{3}
\end{equation*}
$$

On the other hand $f(2)=8$ gives

$$
\begin{equation*}
8 a+c=2 . \tag{4}
\end{equation*}
$$

Solving equations (3) and (4) together we get

$$
a=-\frac{1}{6}, \text { and } \quad c=\frac{10}{3} .
$$

If at the beginning, instead of $d=2$, we had chosen $b=2$, then we would find $d=5, a=10 / 3$ and $c=-1 / 6$.
2. An isosceles triangle $A B C$ with $|A B|=|B C|$ in the $x y$-plane satisfies the following conditions:
(1) The side $[B C]$ lies along the x-axis
(2) The side $[A B]$ passes through the point $P(0,6)$
(3) The side $[A C]$ passes through the point $Q(5,6)$

Determine the largest and smallest possible values of the area of the triangle $A B C$.
Let y be the y-coordinate of A and let S be the area of $A B C$. The area of $A P Q$ is $\frac{1}{2} \cdot 5 \cdot(y-6)$. Since $A B C$ is similar to $A P Q$ with a ratio of $\frac{y}{y-6}$, the area of $A B C$ is $\left(\frac{y}{y-6}\right)^{2} \cdot \frac{5}{2}(y-6)=\frac{5}{2} \cdot \frac{y^{2}}{y-6}$. (Although there are two different triangles for any given y with $6<y<11$, they both have the same area.) Since $|A P|=|P Q|=5$ and $|A P| \geqslant y-6$, y can be at most $5+6=11$. Hence we want to:

$$
\text { Maximize/Mininize } S=\frac{5}{2} \cdot \frac{y^{2}}{y-6} \text { for } 6<y \leqslant 11
$$

Critical points: $\frac{d S}{d y}=\frac{5}{2} \cdot\left(\frac{2 y}{y-6}-\frac{y^{2}}{(y-6)^{2}}\right)=\frac{5}{2} \cdot \frac{y(y-12)}{(y-6)^{2}}=0 \Rightarrow \underbrace{y=0 \text { or } y=12}_{\hat{i}}$ Not in the interval Endpoints: $y=6: \lim _{y \rightarrow 6^{+}} S=\infty$

$$
y=11 \Rightarrow S^{\prime}=\frac{121}{2}
$$

The smallest possible area is $\frac{121}{2}$. There is no largest possible area as the area can be made arbitrarily large by choosing y sufficiently close to 6.

Ba. Suppose that a continuous function f satisfies the equation

$$
f^{\prime}(x)=f(x) \int_{0}^{x} f(t) d t
$$

for all x.
(1) In this part assume that $f(0)=-1$. Show that f has a critical point at $x=0$, and determine whether it is a local maximum, a local minimum, or neither.
$f^{\prime}(0)=f(0) \int_{0}^{0} f(t) d t=-1 \cdot 0=0 \Rightarrow f \frac{\text { han a critical point at } x=0}{}$
$f^{4}(x)=f^{\prime}(x) \int_{0}^{x} f(t) d t+f(x) \cdot\left(\int_{0}^{\pi} f(t) d t\right)^{\prime}=f^{\prime}(x) \int_{0}^{x} f(t) d t+f(x)^{2}$
$\Rightarrow f^{\prime \prime}(0)=f^{\prime}(0) \cdot \int_{0}^{0} f(t) d t+f(0)^{2}=0 \cdot 0+(-1)^{2}=1>0$
\Rightarrow f has a local minimum at $x=0$
(2) In this part assume that $f^{\prime \prime}(2)=0$. Express $f(2)$ in terms of $A=f^{\prime}(2)$ only.

$$
\begin{aligned}
& \Rightarrow f(x) f^{\prime \prime}(x)=f^{\prime}(x) \cdot f(x) \int_{0}^{x} f(t) d t+f(x)^{3} \Rightarrow f(x) f^{\prime \prime}(x)=f^{\prime}(x)^{2}+f(x)^{3} \\
& \Rightarrow f(2) f^{\prime \prime}(2)=f^{\prime}(2)^{2}+f(2)^{3} \Rightarrow 0=A^{2}+f(2)^{3} \Rightarrow f(2)=-A^{2 / 3}
\end{aligned}
$$

ab. Suppose that a function g with continuous second derivative on $[0,1]$ satisfies:

$$
g(0)=2, \quad g^{\prime}(0)=3, \quad g^{\prime \prime}(0)=4, \quad g(1)=-4, \quad g^{\prime}(1)=-3, \quad g^{\prime \prime}(1)=-2
$$

Evaluate $\int_{0}^{1} g(x) g^{\prime}(x)\left(1+g^{\prime}(x)^{2}+g(x) g^{\prime \prime}(x)\right) d x$.

$$
\begin{aligned}
& \left.\int_{0}^{1} g(x) g^{\prime}(x) d x=\int_{g(0)}^{g(1)} u d u=\frac{u^{2}}{2}\right]_{2}^{-4}=\frac{(-4)^{2}-2^{2}}{2}=6 \\
& \begin{array}{l}
u=g(x) \\
d u=g^{\prime}(x) d x
\end{array} \begin{array}{l}
u=g(x) g^{\prime}(x) \\
d u=\left(g^{\prime}(x)^{2}+g(x) g^{\prime \prime}(x)\right) d x \\
\left.\int_{0} g(x) g^{\prime}(x)\left(g^{\prime}(x)^{2}+g(x) g^{\prime \prime}(x)\right) d x=\int_{g(1)}^{(-4) \cdot(-3)} u d u=\frac{u^{2}}{2}\right]_{2 \cdot 3}=\frac{12^{2}-6^{2}}{2}=54 \\
\int_{0}^{1} g(0)
\end{array} \\
& \int_{0}^{1} g g^{\prime}(x)\left(1+g^{\prime}(x)^{2}+g(x) g^{\prime \prime}(x)\right) d x=6+54=60
\end{aligned}
$$

4. Evaluate the following integrals:
a. $\int_{-1}^{2}(|2 x-3|-2|x|+3) d x=6 \cdot 1+\frac{1}{2} \cdot 6 \cdot \frac{3}{2}=\frac{21}{2}$

b. $\int \frac{\tan \theta \sec ^{2} \theta}{\left(1-\tan ^{2} \theta\right)^{2}} d \theta \overline{\bar{T}} \frac{1}{2} \int d u=\frac{1}{2} u+C=\frac{1}{2 \cdot\left(1-\tan ^{2} \theta\right)}+C$.
