Bilkent University

Solution Key

Q-1) Consider the function $f(x)=x^{3}+2 x^{2}+x+1$ on $[-2,1]$.
(i) Find the critical points of f. (2 pts)
(ii) Find the inflection points of f. (1 pt)
(iii) Find the local min/max points of f. (2 pts)
(iv) Find global min/max values of f. (2 pts)
(v) Find regions where the graph of $y=f(x)$ is concave up/down. (2 pts)
(vi) Plot $y=f(x)$. (1 pt)

Solution:

(i) $f^{\prime}(x)=3 x^{2}+4 x+1=0$ gives $x=-1 / 3$ and $x=-1$ as critical points.
(ii) $f^{\prime \prime}(x)=6 x+4=0$ gives $x=-2 / 3$. At this point $f^{\prime \prime}(x)$ changes sign, so this is an inflection point.
(iii) $f(-1)=1, f^{\prime \prime}(-1)=-2$, so $x=-1$ is a local max point.
$f(-1 / 3)=22 / 27, f^{\prime \prime}(-1 / 3)=2$, so $x=-1 / 3$ is a local min point.
(iv) $f(-2)=-1, f(-1)=1, f(-1 / 3)=22 / 27, f(1)=5$. Hence the max value of f is 5 , and the \min value is -1 .
(v) $f^{\prime \prime}(x)<0$ on $[-2,-2 / 3)$, so here the graph is concave down, and $f^{\prime \prime}(x)>0$ on $(-2 / 3,1]$, so here the graph is concave up.
(vi)

Here is a graph of $y=f(x)$.

