Quiz \# 03
Math 101-Section 04 Calculus I
12 October 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1)

(a) Let $f(x)=\tan ^{2}\left[\left(x^{3}-7 x^{2}+1\right)^{4}\right]$. Calculate $f^{\prime}(x)$. Do not simplify!
(b) Let y be a differentiable function of x satisfying $x^{3}+y^{3}+x^{2} y+1=3 y^{2}$. Write an equation for the tangent line of the curve defined by this equation at the point $(x, y)=(1,2)$

Show your work in detail unless asked otherwise. Correct answers without detailed explanation do not get any credit.
Grading: 5+5=10

Solution:

(a)

$$
f^{\prime}(x)=2 \tan \left[\left(x^{3}-7 x^{2}+1\right)^{4}\right] \cdot \sec ^{2}\left[\left(x^{3}-7 x^{2}+1\right)^{4}\right] \cdot\left(4\left(x^{3}-7 x^{2}+1\right)^{3}\right) \cdot\left(3 x^{2}-14 x\right)
$$

(b) Implicitly differentiating the given equation we get

$$
3 x^{2}+3 y^{2} y^{\prime}+2 x y+x^{2} y^{\prime}=6 y y^{\prime}
$$

Putting in $x=1$ and $y=2$ we find that $y^{\prime}=-7$.
Hence an equation for the tangent line at $(2,1)$ is

$$
y=(-7)(x-1)+2
$$

