Bilkent University
Quiz \# 05
Math 101-Section 05 Calculus I
26 October 2023 Thursday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1) Let $h(x)=5-\frac{2}{x^{2}+1}$ on the interval $[-1,2]$.
(a) Find the absolute minimum and the absolute maximum values of h on the given interval.
(b) Let f be a function such that $f^{\prime}(x)=h(x)$ on the given interval. Show that

$$
9 \leq f(2)-f(-1) \leq \frac{69}{5}
$$

Grading: 5+5=10 points

Solution:

(a) $h^{\prime}(x)=\frac{4 x}{\left(x^{2}+1\right)^{2}}=0$ gives $x=0$ as the only critical point.

We evaluate h at the critical and end points.

$$
h(-1)=4, \quad h(0)=3, \quad h(2)=\frac{23}{5} .
$$

Hence the absolute minimum value of h is 3 at $x=0$, and the absolute maximum value of h is $\frac{23}{5}$ at $x=2$.
(b) Using the Mean Value Theorem for f on the interval $[-1,2]$ we get

$$
\frac{f(2)-f(-1)}{2-(-1)}=f^{\prime}(c), \quad \text { for some } c \in(-1,2)
$$

But $f^{\prime}(c)=h(c)$ and $3 \leq h(c) \leq \frac{23}{5}$. Thus we get

$$
3 \leq \frac{f(2)-f(-1)}{2-(-1)} \leq \frac{23}{5}
$$

which simplifies to

$$
9 \leq f(2)-f(-1) \leq \frac{69}{5}
$$

as claimed.

