Math 102 Calculus II – Midterm Exam I SOLUTIONS

1-a) Calculate
$$\lim_{n \to \infty} \left(1 + \frac{1}{n^2} \right)^n$$
.

Solution 1-a) Let $a_n = (1 + 1/n^2)^n$. $\ln a_n = n \ln \left(1 + \frac{1}{n^2}\right) = \frac{\ln \left(1 + \frac{1}{n^2}\right)}{\frac{1}{n}}$. Now applying L'Hopital's rule to this gives $\lim_{n \to \infty} \ln a_n = \lim_{x \to \infty} \frac{\frac{x^2}{1 + x^2} \cdot \frac{-2}{x^3}}{\frac{-1}{x^2}} = \lim_{x \to \infty} \frac{2x^4}{x^5 + x^3} = 0$. Since $\lim_{n \to \infty} \ln a_n = 0$, we get $\lim_{n \to \infty} a_n = 1$.

1-b) Check for convergence the series $\sum_{n=1}^{\infty} \left(\frac{2}{n}\right)^n n!$.

Solution 1-b) Let $a_n = \frac{2^n}{n^n} n!$. Apply the ratio test $\frac{a_{n+1}}{a_n} = \frac{2^{n+1}(n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{2^n n!} = \frac{2(n+1)n^n}{(n+1)^{n+1}}$

$$= 2\left(\frac{n}{n+1}\right)^n = 2\left(\frac{1}{\left(1+\frac{1}{n}\right)^n}\right) \to \frac{2}{e} \text{ as } n \to \infty.$$

Since $\frac{2}{e} < 1$, the series converges by the ratio test.

2-a) Check for convergence the series
$$\sum_{n=1}^{\infty} \frac{5 \cdot 8 \cdot 11 \cdots (3n+5)}{3 \cdot 5 \cdot 7 \cdots (2n+3)} \frac{2^n}{3^n}.$$

Solution 2-a) Let $a_n = \frac{5 \cdot 8 \cdot 11 \cdots (3n+5)}{3 \cdot 5 \cdot 7 \cdots (2n+3)} \frac{2^n}{3^n}$. The ratio test fails. But observe that $a_{n+1}/a_n = \frac{6n+16}{6n+15} > 1$. So $\lim_{n \to \infty} a_n \neq 0$, and the series diverges by the divergence test.

2-b) Find the radius of convergence of the power series $\sum_{n=2}^{\infty} (n \ln n) x^n$. Check also the end points.

Solution 2-b) Let $a_n = (n \ln n)x^n$. Apply the ratio test; $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = |x|$. For convergence we must have |x| < 1. When |x| = 1, the general term does not go to zero as n goes to infinity, so the series diverges. So the interval of convergence is -1 < x < 1.

3) Assume that f(x) is an analytic function of x with f(0) = 0 and $f'(x) = (1 - x^2)^{-2/3}$. Calculate the limit $\lim_{x \to 0} \frac{f(x) - x}{x^3}$.

Solution 3) The binomial theorem gives $(1+t)^m = 1 + mt + \frac{m(m-1)}{2!}t^2 + \frac{m(m-1)(m-2)}{3!}t^3 + \cdots$ Putting $t = -x^2$, we get $(1-x^2)^{2/3} = 1 + \frac{2}{3}x^2 - \frac{5}{9}x^4 + \cdots = f'(x)$. Integrating all sides term by term we get $f(x) = x + \frac{2}{9}x^3 - \frac{1}{9}x^5 + \cdots$. From this we get $\frac{f(x) - x}{x^3} = \frac{2}{9} - \frac{1}{9}x^2 + \cdots$. Hence $\lim_{x \to 0} \frac{f(x) - x}{x^3} = \frac{2}{9}$.

4) Find a power series solution for $y' + y = 3x^2$ with y(0) = 0. Recognize the function in terms of elementary functions.

Solution 4) Since y(0) = 0, $y = a_1x + a_2x^2 + \cdots + a_nx^n + \cdots$. Putting this into the above DE we get $3x^2 = a_1 + (a_1 + 2a_2)x + (a_2 + 3a_3)x^2 + \cdots + (a_n + (n+1)a_{n+1})x^n + \cdots$. From this we find $a_1 = 0$, $a_2 = 0$, $a_3 = 1$, $a_4 = -1/4$, $a_5 = 1/20$, and in general we claim that $a_n = (-1)^{n+1}3!/n!$, for $n \ge 3$. Putting this claim into the coefficient of x^n we get, after simplifying, $a_{n+1} = (-1)^{n+2}3!/(n+1)!$, as claimed. This gives $y = 3! \sum_{n=3}^{\infty} (-1)^{n+1} \frac{x^n}{n!}$. Adding and subtracting $6 - 6x + 3x^2$ to this we get $y = 6 - 6x + 3x^2 - 6e^{-x}$.

5) Calculate $\lim_{x \to 0} \frac{2 - x^4 - 2\cos x^2}{24x^8 + 8x^{24}}$.

Recall that $\cos x^2 = 1 - x^4/2 + x^8/24 - x^{12}/120 + \cdots$ Putting this into the above expression we get

 $\lim_{x \to 0} \frac{2 - x^4 - 2\cos x^2}{24x^8 + 8x^{24}} = \lim_{x \to 0} \frac{-x^8/12 + x^{12}/60 - \dots}{24x^8 + 8x^{24}} = -\frac{1}{288}.$