Date: 25 July 2003, Friday
Instructor: Ali Sinan Sertoz

Math 102 Calculus — Final Exam—Solutions
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Q-2) Evaluate the integral / / dy dz.

Solution: The integral cannot be evaluated in this order. Changing the order of integration

we get
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Q-3) Find the value of the sum Z

Solution: By partial fractions techmque we get
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By using telescoping sums we find
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from where it follows that the sum is lim S, = 60"
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Q-4) Find the interval of convergence of the power series Z %—)
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Solution: Letting a,, = “onn and using ratio test
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or equivalently —1 < x < 3. Next we examine the end points:

When z = —3, a,, = 1/n and the series diverges.

When x = —1, a, = (—1)"/n and the series converges.

The interval of convergence is [—1, 3).

To recognize the function observe that f'(z) = 1/(3 — x). Integrating f’ and deciding on the
integration factor using the fact that f(1) = 0, we find that f(z) =In2 —In(3 — ).

Q-5) Find the volume of the region which remains inside the cyclinder z* + y* = 2y, and is
bounded from above by the paraboloid surface 2% 4+ 3?4+ z = 1 and from below by the plane
z=0.

Solution: Let V denote the required volume. Using the symmetry of the set up and changing

to cylindrical coordinates we get
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Next we compute these integrals separately:
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where for the last integral we used the formula given on the last page of the exam booklet.
Next we calculate the second integral:
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It then follows that




