Date: 7 July 2003, Monday
Instructor: Ali Sinan Sertöz
Time: 10:00-12:00

Math 102 Calculus - Midterm Exam II Solutions

Q-1) Find $\frac{d w}{d t}$ at $t=1$, where

$$
\begin{aligned}
w(x, y) & =x^{7} e^{y}+\cos (x y)+y^{3} \\
x(t) & =2 t^{2}-\frac{t}{2}+\arctan t-\left(\frac{\pi}{4}-\frac{3}{2}\right) \\
y(t) & =t^{4}+2 t+\arcsin \frac{t}{\sqrt{2}}-\left(3+\frac{\pi}{4}\right) .
\end{aligned}
$$

Solution:

$$
\begin{aligned}
\frac{d w}{d t} & =\frac{\partial w}{\partial x} \frac{d x}{d t}+\frac{\partial w}{\partial y} \frac{d y}{d t} \\
\frac{\partial w}{\partial x} & =7 x^{6} e^{y}-y \sin (x y) \\
\frac{\partial w}{\partial y} & =x^{7} e^{y}-x \sin (x y)+3 y^{2} \\
x^{\prime}(t) & =4 t-\frac{1}{2}+\frac{1}{1+t^{2}} \\
y^{\prime}(t) & =4 t^{3}+2+\frac{1}{\sqrt{1-\left(t^{2} / 2\right)}} \frac{1}{\sqrt{2}} \\
x^{\prime}(1) & =4 \\
y^{\prime}(1) & =7 \\
x(1) & =3 \\
y(1) & =0 \\
\left.\frac{\partial w}{\partial x}\right|_{t=1} & =\frac{\partial w}{\partial x}(3,0)=7 \cdot 3^{6} \\
\left.\frac{\partial w}{\partial y}\right|_{t=1} & =\frac{\partial w}{\partial y}(3,0)=3^{7} \\
\left.\frac{d w}{d t}\right|_{t=1} & =\left(\left.\frac{\partial w}{\partial x}\right|_{t=1}\right) x^{\prime}(1)+\left(\left.\frac{\partial w}{\partial y}\right|_{t=1}\right) y^{\prime}(1) \\
& =\left(7 \cdot 3^{6}\right)(4)+\left(3^{7}\right)(7) \\
& =\left(7 \cdot 3^{6}\right)(4+3) \\
& =7^{2} 3^{6} \\
& =35721 .
\end{aligned}
$$

Q-2) Find $\left(\frac{\partial w}{\partial x}\right)_{y}$ at the point $(x, y, z)=(0,0,1)$, where

$$
\begin{equation*}
w=3 x+x^{3}+5 y+y^{5}+7 z+z^{7} \tag{1}
\end{equation*}
$$

and x, y, z are related by the equation

$$
\begin{equation*}
\ln \left(x^{2}+z^{2}\right)+\ln \left(y^{2}+z^{2}\right)+x y z-8 x=0 \tag{2}
\end{equation*}
$$

Solution:

Differentiating both sides of (1) with respect to x, treating y as constant, we get

$$
\begin{equation*}
\left(\frac{\partial w}{\partial x}\right)_{y}=3\left(1+x^{2}\right)+7\left(1+z^{6}\right) \frac{\partial z}{\partial x} \tag{3}
\end{equation*}
$$

Next differentiate both sides of (2) with respect to x, again treating y as constant, to get

$$
\begin{equation*}
\left(\frac{1}{x^{2}+z^{2}}\right)\left(2 x+2 z \frac{\partial z}{\partial x}\right)+\left(\frac{1}{y^{2}+z^{2}}\right)\left(2 z \frac{\partial z}{\partial x}\right)+y z+x y \frac{\partial z}{\partial x}-8=0 . \tag{4}
\end{equation*}
$$

Put $(x, y, z)=(0,0,1)$ in (4) to get $\frac{\partial z}{\partial x}=2$.
Finally putting $(x, y, z)=(0,0,1)$ and $\frac{\partial z}{\partial x}=2$ in (3) we get

$$
\left(\frac{\partial w}{\partial x}\right)_{y}=31 \text { at }(0,0,1)
$$

Q-3) Write the equation of the tangent plane and the normal line to the surface $f(x, y, z)=0$ at the point $(x, y, z)=(1,2,-1)$, where

$$
f(x, y, z)=x^{3}+x^{2} y+x z^{2}+y^{3}+y z+z^{5}-9 .
$$

Solution:

$$
\begin{aligned}
f_{x}=3 x^{2}+2 x y+z^{2}, & f_{x}(1,2,-1)=8 \\
f_{y}=x^{2}+3 y^{2}+z, & f_{y}(1,2,-1)=12 \\
f_{z}=2 x z+y+5 z^{4}, & f_{z}(1,2,-1)=5
\end{aligned}
$$

The equation of the tangent plane is

$$
\begin{gathered}
8(x-1)+12(y-2)+5(z+1)=0, \quad \text { or equivalently } \\
8 x+12 y+5 z=27
\end{gathered}
$$

Normal line is given by the parametric equations,
$x=1+8 t$,
$y=2+12 t$, $z=-1+5 t, t \in \mathbb{R}$.

Q-4) Let

$$
f(x, y)=x^{2}+4 x y+5 y^{2}+6 x-2 y
$$

Find the critical points of f and determine if they give minimum, maximum or saddle points. If f has a global minimum or maximum value calculate it explicitly.

Solution:

Solving

$$
f_{x}=2 x+4 y+6=0, \quad \text { and } \quad f_{y}=4 x+10 y-2=0
$$

we find that $(x, y)=(-17,7)$ is the only critical point.
Next apply the second derivative test:
$f_{x x}=2>0, f_{y y}=10, f_{x y}=4$, and
$\nabla=f_{x x} f_{y y}-f_{x y}^{2}=4>0$.
Hence $(-17,7)$ is a minimum point. Since this is the only critical point, this gives the global minimum.

The global minimum value of f can now be easily calculated:

$$
\begin{aligned}
f(x, y) & =x(x+2 y+6)+y(2 x+5 y-2) \\
f(-17,7) & =(-17)(-17+14+6)+(7)(-34+35-2) \\
& =(-17)(3)+(7)(-1) \\
& =-51-7 \\
& =-58 .
\end{aligned}
$$

Q-5) Consider the curve obtained by intersecting the paraboloid surface

$$
x^{2}+y^{2}-z=25 \text { with the vertical plane } y=3
$$

Find the points on this curve which are closest to the origin.

Solution:

We want to minimize the square of the distance function:

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}
$$

subject to the constraints

$$
g_{1}(x, y, z)=0 \text { and } g_{2}(x, y, z)=0
$$

where

$$
g_{1}=x^{2}+y^{2}-z-25 \text { and } g_{2}=y-3 .
$$

Use Lagrange multipliers method:

$$
\nabla f=\lambda \nabla g_{1}+\mu \nabla g_{2}
$$

which gives

$$
\begin{aligned}
2 x & =2 \lambda x \\
2 y & =2 \lambda y+\mu \\
2 z & =-\lambda
\end{aligned}
$$

The first equation implies that either $\lambda=1$ or else $x=0$.
Case 1: Assume $\lambda=1$. Then from the third equation $z=-1 / 2$. From $g_{2}=0$ we have $y=3$. $\overline{\text { Putting }}$ these into $g_{1}=0$ we get $x= \pm \sqrt{31 / 2}$.
The critical points supplied by this case are $\left(\pm \sqrt{\frac{31}{2}}, 3,-\frac{1}{2}\right)$.
Case 2: Assume $\lambda \neq 1$. Then from the first equation we get $x=0$. From $g_{2}=0$ we get $y=3$. Putting these into $g_{1}=0$ we get $z=-16$.
The critical point supplied by this case is $(0,3,-16)$.
Evaluating f at these critical points we find
$f\left(\pm \sqrt{\frac{31}{2}}, 3,-\frac{1}{2}\right)=\frac{99}{4}$,
$f(0,3,-16)=265$.
Hence the points on this curve nearest the origin are $\left(\pm \sqrt{\frac{31}{2}}, 3,-\frac{1}{2}\right)$.

