MATH 102 MIDTERM I-Solutions

Date: June 18, 2004 Goncharov & Sertoz
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Since / g(x)dz converges, the given integral also converges by direct comparison.
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The sum is then found as lim S,, = TR

3. Determine if each of the following series is convergent or divergent.
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Since lim Inlnn = oo, we have Inlnn > 1 for large n.
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Similarly since lim = 0, we have (Inn)* < n for large n.
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(inn) > —, and the series diverges by comparing with the harmonic series.
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Then the series converges by direct comparison with the converging p-series.
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For convergence we need 3|z| < 1, so the radius of convergence is 1/3.
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5. Evaluate the limit lim,_ (@ — 1) 22

Using the Taylor expansions of sint, cost and e’ we get

sin(x?) — x? cosx
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