Date: June 28, 2007, Thursday
Time: 9:30-11:30
Ali Sinan Sertöz

NAME: \qquad
STUDENT NO: \qquad

Math 102 Calculus II - Midterm Exam II

1	2	3	4	5	TOTAL
10	30	10	20	30	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit.

Q-1) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{6}+y^{2}}$, if the limit exists. If it does not exit, then explain why .

Solution:

$$
\frac{x^{3} y}{x^{6}+y^{2}}=\frac{\lambda}{1+\lambda^{2}}
$$

when $y=\lambda x^{3}$, so the limit does not exist.

Q-2) Let $f(x, y, z)=x^{2}+x y+y z, x(s, t)=s^{2}-s t+2 t+2 s-2, y(s, t)=t^{2}+s^{2} t+s-8$, $z(s, t)=s^{2} t-1$. Find the directional derivative of $h(s, t)=f(x(s, t), y(s, t), z(s, t))$ at the point $(s, t)=(1,2)$ in the direction of the vector $\vec{u}=(3,4)$.

Solution: $\quad h_{s}=\nabla f \cdot\left(x_{s}, y_{s}, z_{s}\right), h_{t}=\nabla f \cdot\left(x_{t}, y_{t}, z_{t}\right)$.
$\nabla f=(2 x+y, x+z, y)$.
$x(1,2)=3, y(1,2)=-1, z(1,2)=1$, so $\nabla f(3,-1,1)=(5,4,-1)$.
$x_{s}=2 s-t+2=2$ at $(s, t)=(1,2)$.
$y_{s}=2 s t+1=5$ at $(s, t)=(1,2)$.
$z_{s}=2 s t=4$ at $(s, t)=(1,2)$.
$h_{s}=(5,4,-1) \cdot(2,5,4)=26$.
$x_{t}=-s+2=1$ at $(s, t)=(1,2)$.
$y_{t}=2 t+s^{2}=5$ at $(s, t)=(1,2)$.
$z_{t}=s^{2}=1$ at $(s, t)=(1,2)$.
$h_{t}=(5,4,-1) \cdot(1,5,1)=24$.
$\nabla h(1,2)=(26,24), \nabla h(1,2) \cdot(3,4)=(26,24) \cdot(3,4)=174,|\vec{u}|=5$
Finally we have $D_{\vec{u}} h(1,2)=\frac{1}{5} \nabla h(1,2) \cdot(3,4)=\frac{174}{5}$.

Q-3) Find an equation for the tangent line of the plane curve $x^{2}+x y+y^{3}=11$ at the point $(1,2)$. Is the point $(4,1)$ on this tangent line?

Solution: Let $f(x, y)=x^{2}+x y+y^{3}-11$. Check that $f(1,2)=0$ so the given point is on the curve. $\nabla f=\left(2 x+y, x+3 y^{2}\right) . \nabla f(1,2)=(4,13)$.

An equation for the tangent line at $(1,2)$ is $(4,13) \cdot(x-1, y-2)=0$ or equivalently

$$
4 x+13 y=30
$$

Check that $4 \cdot 4+13 \cdot 1=29$ so the point $(4,1)$ is not on this line.

Q-4) Find and classify all the critical points of the function $f(x, y)=x^{3}-2 x y^{2}-x+2 y^{2}$.

Solution:

$f_{x}=3 x^{2}-2 y^{2}-1=0$
$f_{y}=-4 x y+4 y=4 y(1-x)=0$
Case 1: $y=0$. From $f_{x}=0$ we get $x= \pm 1 / \sqrt{3}$. The critical points in this case are $(\pm 1 / \sqrt{3}, 0)$.

Case 2: $y \neq 0$. Then $x=1$ and from $f_{x}=0$ we get $y= \pm 1$. The critical points of this case are $(1, \pm 1)$.
$f_{x x}=6 x, f_{y y}=4(1-x), f_{x y}=-4 y, \Delta=8\left[3 x(1-x)-2 y^{2}\right]$.
At $(1 / \sqrt{3}, 0), \Delta>0, f_{x x}>0$, so this is a local minimum point.
At the other critical points $\Delta<0$, so they are all saddle points.

Q-5) Find the minimum and the maximum values of the function $f(x, y, z)=x^{2}-y^{3}+3 z^{2}$ on the sphere $x^{2}+y^{2}+z^{2}=25$.

Solution: Let $g(x, y, z)=x^{2}+y^{2}+z^{2}-25 . \nabla f=\lambda \nabla g$ gives $\left(2 x,-3 y^{2}, 6 z\right)=\lambda(x, y, z)$, or:
$x(\lambda-2)=0$
$y(\lambda+3 y)=0$
$z(\lambda-6)=0$.
Case 1: $x=0$.
Case 1.1: $y=0$. Then $g(0,0, z)=0$ gives $z= \pm 5, f(0,0, \pm 5)=75$.
Case 1.2: $y \neq 0$. Then $y=-\lambda / 3$.
Case 1.2.1: $z=0$. From $g(0, y, 0)=0$ we get $y= \pm 5 . f(0,5,0)=-125, f(0,-5,0)=125$.
Case 1.2.2: $z \neq 0$. Then $\lambda=6$ and hence $y=-2$. From $g(0,-2, z)=0$ we get $z= \pm \sqrt{21} . f(0,-2, \pm \sqrt{21})=71$.
Case 2: $x \neq 0$. Then $\lambda=2$ and this forces $z=0$.
Case 2.1: $y=0$. Then $g(x, 0,0)=0$ gives $x= \pm \sqrt{5} . f(\pm \sqrt{5}, 0,0)=25$.
Case 2.2: $y \neq 0$. Then $y=-\lambda / 3=-2 / 3 . \quad g(x,-2 / 3,0)=0$ gives $x= \pm \sqrt{25-4 / 9}$. $f(\pm \sqrt{25-4 / 9},-2 / 3,0)=25-4 / 27$.

Thus we see that the maximal value is 125 and the minimal value is -125 .

