\qquad
\qquad

Math 102 Calculus II - Midterm Exam II - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail, if that is necessary. A correct answer without proper reasoning may not get any credit, except in the fill-in-the-blanks type problems.

Q-1) Let R be the region in the plane bounded by the curve $(y-3)^{2}+x=4$ and the y-axis. Sketch this region and write the limits of integration in the following integrals, into the given boxes.
(Grading: sketch=4 points, each correctly filled box=2 points.)

Solution:

Q-2 Consider the function $f(x, y)=x^{3}+x^{2}+y^{2}-4 x y$ defined on \mathbb{R}^{2}. Find its critical points and classify the critical points using the second derivative test. Decide if the function has global maximum and minimum values.
(Grading: critical points=9 points, Second derivative test=9 points, global min/max=2 points.)

Solution: $\quad f_{x}=3 x^{2}+2 x-4 y=0, f_{y}=2 y-4 x=0$.
$f_{y}=0$ gives $y=2 x$. Putting this into $f_{x}=0$ gives $x=0$ or $x=2$.
Hence the critical points are $(0,0)$ and $(2,4)$.
$f_{x x}=6 x+2, f_{y y}=2, f_{x y}=-4 . \nabla=f_{x x} f_{y y}-f_{x y}^{2}=12 x-12$.
$\nabla(0,0)=12<0$, so $(0,0)$ is a saddle point.
$\nabla(2,4)=12>0$ and $f_{y y}(2,4)=2>0$, so $(2,4)$ is a local minimum point.

Since the dominating term in f is x^{3}, the function is unbounded.

Q-3) Let R be the region in \mathbb{R}^{3} lying in the first octant, i.e. $x, y, z \geq 0$, and bounded by the cylindrical surfaces $x^{2}+y^{2}=1$ and $x^{2}+z^{2}=1$. Write the limits of integration into the following boxes and evaluate the integral.
(Grading: each box=1 point, evaluation=8 points.)

Solution:

The first integral is easier to evaluate:

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}}} d z d y d x & =\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \sqrt{1-x^{2}} d y d x \\
& =\int_{0}^{1}\left(\left.y \sqrt{1-x^{2}}\right|_{0} ^{\sqrt{1-x^{2}}}\right) d x \\
& =\int_{0}^{1}\left(1-x^{2}\right) d x \\
& =\left(x-\left.\frac{x^{3}}{3}\right|_{0} ^{1}\right) \\
& =\frac{2}{3}
\end{aligned}
$$

Q-4) Assume that the equation $x^{2}+y^{3}+x y+x^{2} z+y z^{2}+z^{5}=11$ defines z as a C^{∞} function of x and y around the point $(x, y, z)=(1,2,-1)$.
a) Write the equation of the tangent plane, at the point $(x, y, z)=(1,2,-1)$, to the surface defined by the above equation. (10 points)
b) Calculate the value of $z_{x x}$ at the point $(x, y, z)=(1,2,-1)$. (10 points)

Solution:

Let $f(x, y, z)=x^{2}+y^{3}+x y+x^{2} z+y z^{2}+z^{5}-11 . \nabla f(1,2,-1)=(2,14,2)$. The equation of the tangent plane at the given point is

$$
(2,14,2) \cdot(x-1, x-2, x+1)=0
$$

which gives

$$
x+7 y+z=14 .
$$

For the second part, differentiating f woth respect to x and treating z as a function of x and y gives

$$
\begin{equation*}
(2 x+y+2 x z)+\left(x^{2}+2 y z+5 z^{4}\right) z_{x}=0 . \tag{*}
\end{equation*}
$$

Substituting $(x, y, z)=(1,2,-1)$ gives

$$
z_{x}=-1
$$

Now differentiating both sides of $(*)$ again with respect to x we get

$$
\left(2+2 z+2 x z_{x}\right)+\left(2 x+2 y z_{x}+20 z^{3} z_{x}\right) z_{x}+\left(x^{2}+2 y z+5 z^{4}\right) z_{x x}=0
$$

and substituting $(x, y, z)=(1,2,-1)$ and $z_{x}=-1$ we get

$$
z_{x x}=10
$$

Q-5) Find the maximum and minimum values of $f(x, y, z)=x+\frac{y}{2}+\frac{z}{3}$ on the sphere $x^{2}+y^{2}+z^{2}=(42)^{2}$.

Solution:

$\nabla f=\left(1, \frac{1}{2}, \frac{1}{3}\right)=\lambda(x, y, z)$ gives $x=\frac{1}{\lambda}, y=\frac{1}{2 \lambda}$ and $z=\frac{1}{3 \lambda}$.
Putting these into the equation of the sphere we get $\lambda^{2}=\frac{1}{(36)^{2}}$. Hence $\lambda= \pm \frac{1}{36}$, and $(x, y, z)= \pm(36,18,12)$.

The maximum value is $f(36,18,12)=49$ and the minimum value is $f(-36,-18,-12)=$ -49 .

