Solution Key

Q-1) Prove the following magical formula

$$
\frac{1}{2}=1-\frac{\pi^{2}}{2!3^{2}}+\frac{\pi^{4}}{4!3^{4}}-\cdots+(-1)^{n} \frac{\pi^{2 n}}{(2 n)!3^{2 n}}+\cdots
$$

Hint: First find the Taylor expansion of $\sin x$ at $x=\pi / 2$ and then see what you can do from there.
Grading: 10 points

Solutions:

Let $f(x)=\sin x$. Then we have

$$
\begin{array}{rlrl}
f(x) & =\sin x & f(\pi / 2) & =1 \\
f^{\prime}(x) & =\cos x & f^{\prime}(\pi / 2) & =0 \\
f^{\prime \prime}(x) & =-\sin x & f^{\prime \prime}(\pi / 2) & =-1 \\
f^{\prime \prime \prime}(x) & =-\cos x & f^{\prime \prime \prime}(\pi / 2) & =0
\end{array}
$$

and the pattern repeats. Hence we have

$$
\sin x=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}
$$

where we can take $a_{n}=(-1)^{n} \frac{1}{(2 n)!}\left(x-\frac{\pi}{2}\right)^{2 n}$ and

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{(2 n+2)!}{(2 n)!}\left|x-\frac{\pi}{2}\right|=(2 n+1)(2 n+2)\left|x-\frac{\pi}{2}\right| \rightarrow 0<1 \text { as } n \rightarrow \infty \text { for all } x
$$

Hence the series converges for all x. In particular substituting $x=\pi / 6$ we get the above magical formula.

