Quiz \# 02
Math 102 Section 08 Calculus II
19 February 2024 Monday
Instructor: Ali Sinan Sertöz
Solution Key

Q-1) (a) Assume the fact that the function $f(x)=\frac{\ln x}{x^{2}}$ is positive, continuous and decreasing for $x \geq 3$. Use the Integral Test to decide if the series $\sum_{n=3}^{\infty} \frac{\ln n}{n^{2}}$ converges or diverges.
(b) Use the Direct Comparison Test to decide if the series $\sum_{n=3}^{\infty} \frac{\ln n}{n^{2}}$ converges or diverges.
(c) Use the Limit Comparison Test to decide if the series $\sum_{n=3}^{\infty} \frac{\ln n}{n^{2}}$ converges or diverges.

Show your work in detail. Correct answers with no justification will not get any credit.
Grading: $4+3+3=10$ points
Solution: (Grader: melis.gezer@bilkent.edu.tr)
(a)

$$
\int \frac{\ln x}{x^{2}} d x=-\frac{\ln x}{x}+\int \frac{d x}{x^{2}}=-\left(\frac{1+\ln x}{x}\right)
$$

where we used integration by parts with $u=\ln x$ and $d v=d x / x^{2}$. Then

$$
\int_{3}^{\infty} \frac{\ln x}{x^{2}} d x=-\lim _{R \rightarrow \infty}\left(\left.\frac{1+\ln x}{x}\right|_{3} ^{R}\right)=\frac{1+\ln 3}{3}<\infty
$$

Hence by the Integral Test $\sum_{n=3}^{\infty} \frac{\ln n}{n^{2}}$ converges.
(b) Since $\lim _{x \rightarrow \infty} \frac{\ln x}{x^{\alpha}}=0$ for any $\alpha>0$, we have $\ln x<x^{\alpha}$ for all large x. Let $\alpha=1 / 2$. Since

$$
0<\frac{\ln n}{n^{2}}<\frac{n^{1 / 2}}{n^{2}}=\frac{1}{n^{3 / 2}}, \text { for all large } n
$$

and since $\sum \frac{1}{n^{3 / 2}}$ converges by p-test, our series $\sum_{n=3}^{\infty} \frac{\ln n}{n^{2}}$ converges by the Direct Comparison Test.
(c) Let $a_{n}=\frac{\ln n}{n^{2}}$ and $b_{n}=\frac{1}{n^{3 / 2}}$. Then since

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1 / 2}}=0
$$

and since $\sum b_{n}$ converges by p-test, our series $\sum_{n=3}^{\infty} \frac{\ln n}{n^{2}}$ converges by the Limit Comparison Test.

