Bilkent University
Quiz \# 03
Math 102 Section 08 Calculus II
26 February 2024 Monday
Instructor: Ali Sinan Sertöz

Solution Key

Q-1)
(a) Determine if the series $\sum_{n=1}^{\infty} \frac{\ln n}{n}$ converges or diverges.
(b) Determine if the series $\sum_{n=2}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ converges or diverges.
(c) Find all values of x for which the series $\sum_{n=3}^{\infty} \frac{(x-3)^{n}}{\ln n}$ converges.

Show your work in detail. Correct answers with no justification will not get any credit.
Grading: $2+2+6=10$ points
Solution: (Grader: melis.gezer@bilkent.edu.tr)
(a) $\quad a_{n}=f(n)$, where $f(x)=\frac{\ln x}{x}$, and $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}<0$, for $x \geq 3$.

Hence we can use the Integral Test.

$$
\int_{3}^{\infty} \frac{\ln x}{x} d x=\left(\left.\frac{(\ln x)^{2}}{2}\right|_{3} ^{\infty}\right)=\infty
$$

Thus our series diverges by the Integral Test.
(b) Let $a_{n}=\frac{1}{n^{1+\frac{1}{n}}}$ and $b_{n}=\frac{1}{n}$. We then have $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n}{n^{1+\frac{1}{n}}}=\lim _{n \rightarrow \infty} \frac{1}{n^{\frac{1}{n}}}=1$.

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, our series also diverges by the Limit Comparison Test.
(c) We first use the Ratio Test to check for absolute convergence. Let $a_{n}=\frac{(x-3)^{n}}{\ln n}$. For absolute convergence we need

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{\ln n}{\ln (n+1)}|x-3|=|x-3|<1
$$

This gives $x \in(2,4)$ for absolute convergence. We need to check the end points separately.
When $x=2$, the series becomes $\sum_{n=3}^{\infty} \frac{(-1)^{n}}{\ln n}$ and converges by the Alternating Series Test.
When $x=3$, the series becomes $\sum_{n=3}^{\infty} \frac{1}{\ln n}$, and the series diverges by Direct Comparison with the harmonic series since $\frac{1}{\ln n}>\frac{1}{n}$. Thus our series converges only for $x \in[2,4)$.

