Bilkent University

## Solution Key

Q-1) Let $L$ be the line passing through the points $P=(1,2,3)$ and $Q=(4,-5,6)$. Write (a) a vector equation, (b) a parametric equation and (c) a symmetric equation for the line $L$.

Q-2) Let $\pi$ be the plane passing through the points $P=(1,-2,3), Q=(-1,-4,2)$ and $R=(5,1,2)$. Write the equation of $\pi$ in the form $A x+B y+C z=D$, where $A, B, C, D \in \mathbb{Z}, D>0$ and $\operatorname{gcd}(A, B, C, D)=1$.

Show your work in detail. Correct answers with no justification will not get any credit.
Grading: $(2+2+2)+4$ points
Solution: (Grader: melis.gezer@bilkent.edu.tr)
(1) Let $U=Q-P=(3,-7,3)$. Then a vector equation is of the form $L(t)=P+t U$ with $t \in \mathbb{R}$. The required equations are then of the form
(a) $L(t)=(1+3 t, 2-7 t, 3+3 t), \quad t \in \mathbb{R}$.
(b) $\quad x=1+3 t, y=2-7 t, z=3+3 t, t \in \mathbb{R}$.
(c) $\frac{x-1}{3}=\frac{y-2}{-7}=\frac{z-3}{3}$.
(2) Let $X=(x, y, z)$. Then an equation of $\pi$ is of the form

$$
((Q-P) \times(R-P)) \cdot(X-P)=0
$$

We see that $Q-P=(-2,-2,-1), R-P=(4,3,-1)$ and

$$
(Q-P) \times(R-P)=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
-2 & -2 & -1 \\
4 & 3 & -1
\end{array}\right|=(5,-6,2)
$$

Also note that $(5,-6,2) \cdot P=23$. Hence the required equation for $\pi$ is

$$
5 x-6 y+2 z=23
$$

