Math 113 Calculus – Midterm Exam I SOLUTIONS

Q-1) Prove by induction that $\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$, for all integers $n \ge 1$.

Solution: For n = 1, both sides are 1. Assume for the induction hypothesis that $1^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$. Add $(n+1)^3 = n^3 + 3n^2 + 3n + 1$ to both sides of this equality and simplify the right hand side to obtain

$$1^{3} + \dots + n^{3} + (n+1)^{3} = \left(\frac{n(n+1)}{2}\right)^{2} + (n+1)^{3}$$
$$= \frac{1}{4}(n^{4} + 6n^{3} + 13n^{2} + 12n + 4)$$
$$= \left(\frac{(n+1)(n+2)}{2}\right)^{2}.$$

Thus starting from an assumption on n, we established the expected formula for n + 1. This completes the induction argument and proves the formula for all $n \ge 1$.

Q-2) Calculate the following limits:

i)
$$\lim_{x \to 0} \frac{1 - \sqrt{1 - 3x^2 + 7x^3}}{x^2}$$
.

Solution i:

$$\frac{1 - \sqrt{1 - 3x^2 + 7x^3}}{x^2} = \frac{1 - \sqrt{1 - 3x^2 + 7x^3}}{x^2} \cdot \frac{1 + \sqrt{1 - 3x^2 + 7x^3}}{1 + \sqrt{1 - 3x^2 + 7x^3}}$$
$$= \frac{1 - (1 - 3x^2 + 7x^3)}{x^2(1 + \sqrt{1 - 3x^2 + 7x^3})}$$
$$= \frac{3x^2 - 7x^3}{x^2(1 + \sqrt{1 - 3x^2 + 7x^3})}$$
$$= \frac{3 - 7x}{1 + \sqrt{1 - 3x^2 + 7x^3}} \rightarrow \frac{3}{2} \text{ as } x \rightarrow 0.$$

ii)
$$\lim_{x \to 0} \frac{4\sin^2 x + 9\sin x^2}{x^2}.$$

Solution ii:
$$\frac{4\sin^2 x + 9\sin x^2}{x^2} = 4\left(\frac{\sin x}{x}\right)^2 + 9\left(\frac{\sin x^2}{x^2}\right) \to 4 \cdot 1^2 + 9 \cdot 1 = 13 \text{ as } x \to 0.$$

Q-3) Show that $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.

Solution: Assume that $\lim_{x\to 0} \sin \frac{1}{x} = A$ for some real number A. This means that for any $\epsilon > 0$ there is a corresponding $\delta > 0$ such that for all $x \in (-\delta, \delta)$ we have $|\sin \frac{1}{x} - A| < \epsilon$. Rewrite this last inequality as

$$-\epsilon < \sin\frac{1}{x} - A < \epsilon. \tag{(*)}$$

Similarly for any other $y \in (-\delta, \delta)$ we have

$$-\epsilon < A - \sin\frac{1}{y} < \epsilon. \tag{**}$$

Adding (*) and (**) side by side we find that for any $x, y \in (-\delta, \delta)$ we should have

$$-2\epsilon < \sin\frac{1}{x} - \sin\frac{1}{y} < 2\epsilon. \qquad (***)$$

Now set $x_n = \frac{1}{2n\pi + \pi/2}$ and $y_n = \frac{1}{2n\pi - \pi/2}$, where *n* is an integer. No matter how small δ is

we can find a large integer n such that both x_n and y_n are in $(-\delta, \delta)$. Clearly $\sin \frac{1}{x_n} - \sin \frac{1}{y_n} = 2$, but this contradicts (* * *) if we choose $0 < \epsilon \le 1$.

This contradiction shows that our assumption of the existence of the above limit cannot hold. Hence $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.

Q-4) A napkin-ring is obtained by drilling a cylindrical hole symmetrically through the center of a solid sphere. If the length of the hole is 4 units, find the volume of the napkin-ring.

Solution: Assume that the solid sphere is given by the equation $x^2 + y^2 + z^2 = r^2$, where r is its radius. With these coordinates assume that the cylindrical hole that is drilled out is expressed by the equation $x^2 + y^2 = c^2$ for some positive constant c. Now assume that we cut this napkin-ring by the yz-plane, or equivalently by the x = 0 plane. The resulting picture is depicted in the following figure. If however the napkin-ring is cut by a plane perpendicular to the yz-plane along the line AC, the slice obtained would look like a ring, consisting of a disk of radius AC out of which which a disk of radius AB is cut off. The area of this ring is $\pi(AC^2 - AB^2)$. So we set out to write this area explicitly:

Since the sphere $x^2 + y^2 + z^2 = r^2$ is cut off by the plane x = 0, the resulting circle of the figure has the form $y^2 + z^2 = r^2$.

Since the point (c, 2) is on this circle, we have $c^2 = r^2 - 4$. Observe that c = AB.

Since the point (y, z) is on the circle, we have as above $y^2 = r^2 - z^2$. Observe again that y = AC.

Thus the area of the slice is $\pi(AC^2 - AB^2) = \pi(4 - z^2)$.

To find the volume we have to add/integrate all these areas as z changes from -2 to 2.

Volume =
$$\int_{-2}^{2} \pi (4 - z^2) dz$$

= $\pi \left(4z - \frac{z^3}{3} \Big|_{-2}^{2} \right) = \frac{32}{3} \pi.$

The figure for the napkin-ring problem.

- **Q-5)** Let f be a function such that $|f(u) f(v)| \le |u v|$ for all u and v in an interval [a, b]. i) Prove that f is continuous at each point of [a, b].
 - ii) Assume that f is integrable on [a, b]. Prove that for any c in [a, b], we have

$$\left|\int_{a}^{b} f(x)dx - (b-a)f(c)\right| \le \frac{(b-a)^2}{2}.$$

Solution i: Let $c \in [a, b]$. Start with any $\epsilon > 0$. For any $x \in [a, b]$ we have $|f(x) - f(c)| \le |x - c|$. Let $0 < \delta \le \epsilon$ and set $U = (c - \delta, c + \delta) \cap [a, b]$ as the δ -neighbourhood of c in [a, b]. Then for all $x \in U$, we have $|f(x) - f(c)| \le |x - c| < \delta \le \epsilon$, which establishes the continuity of f at c.

Solution ii:

$$\begin{split} \left| \int_{a}^{b} f(x) dx - (b-a) f(c) \right| &= \left| \int_{a}^{b} (f(x) - f(c)) dx \right| \\ &\leq \int_{a}^{b} |f(x) - f(c)| \, dx \\ &\leq \int_{a}^{b} |x - c| \, dx \\ &= \int_{a}^{c} (c-x) \, dx + \int_{c}^{b} (x-c) \, dx \\ &= \left| \left(cx - \frac{1}{2} x^{2} \right|_{a}^{c} \right) + \left(\frac{1}{2} x^{2} - cx \right|_{c}^{b} \right) \\ &= \frac{1}{2} (b-a)^{2} + (a-c) (b-c) \\ &\leq \frac{1}{2} (b-a)^{2}, \text{ since } (a-c) (b-c) \leq 0. \end{split}$$