Math 113 Calculus - Midterm Exam I SOLUTIONS

Q-1) Prove by induction that $\sum_{k=1}^{n} k^{3}=\left(\frac{n(n+1)}{2}\right)^{2}$, for all integers $n \geq 1$.
Solution: For $n=1$, both sides are 1 . Assume for the induction hypothesis that $1^{3}+\cdots+n^{3}=$ $\left(\frac{n(n+1)}{2}\right)^{2}$. Add $(n+1)^{3}=n^{3}+3 n^{2}+3 n+1$ to both sides of this equality and simplify the right hand side to obtain

$$
\begin{aligned}
1^{3}+\cdots+n^{3}+(n+1)^{3} & =\left(\frac{n(n+1)}{2}\right)^{2}+(n+1)^{3} \\
& =\frac{1}{4}\left(n^{4}+6 n^{3}+13 n^{2}+12 n+4\right) \\
& =\left(\frac{(n+1)(n+2)}{2}\right)^{2} .
\end{aligned}
$$

Thus starting from an assumption on n, we established the expected formula for $n+1$. This completes the induction argument and proves the formula for all $n \geq 1$.

Q-2) Calculate the following limits:
i) $\lim _{x \rightarrow 0} \frac{1-\sqrt{1-3 x^{2}+7 x^{3}}}{x^{2}}$.

Solution i:

$$
\begin{aligned}
\frac{1-\sqrt{1-3 x^{2}+7 x^{3}}}{x^{2}} & =\frac{1-\sqrt{1-3 x^{2}+7 x^{3}} \cdot \frac{1+\sqrt{1-3 x^{2}+7 x^{3}}}{x^{2}}}{1+\sqrt{1-3 x^{2}+7 x^{3}}} \\
& =\frac{1-\left(1-3 x^{2}+7 x^{3}\right)}{x^{2}\left(1+\sqrt{1-3 x^{2}+7 x^{3}}\right)} \\
& =\frac{3 x^{2}-7 x^{3}}{x^{2}\left(1+\sqrt{1-3 x^{2}+7 x^{3}}\right)} \\
& =\frac{3-7 x}{1+\sqrt{1-3 x^{2}+7 x^{3}}} \rightarrow \frac{3}{2} \text { as } x \rightarrow 0 .
\end{aligned}
$$

ii) $\lim _{x \rightarrow 0} \frac{4 \sin ^{2} x+9 \sin x^{2}}{x^{2}}$.

Solution ii: $\frac{4 \sin ^{2} x+9 \sin x^{2}}{x^{2}}=4\left(\frac{\sin x}{x}\right)^{2}+9\left(\frac{\sin x^{2}}{x^{2}}\right) \rightarrow 4 \cdot 1^{2}+9 \cdot 1=13$ as $x \rightarrow 0$.

Q-3) Show that $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.
Solution: Assume that $\lim _{x \rightarrow 0} \sin \frac{1}{x}=A$ for some real number A. This means that for any $\epsilon>0$ there is a corresponding $\delta>0$ such that for all $x \in(-\delta, \delta)$ we have $\left|\sin \frac{1}{x}-A\right|<\epsilon$. Rewrite this last inequality as

$$
\begin{equation*}
-\epsilon<\sin \frac{1}{x}-A<\epsilon \tag{*}
\end{equation*}
$$

Similarly for any other $y \in(-\delta, \delta)$ we have

$$
\begin{equation*}
-\epsilon<A-\sin \frac{1}{y}<\epsilon \tag{**}
\end{equation*}
$$

Adding $(*)$ and $(* *)$ side by side we find that for any $x, y \in(-\delta, \delta)$ we should have

$$
-2 \epsilon<\sin \frac{1}{x}-\sin \frac{1}{y}<2 \epsilon . \quad(* * *)
$$

Now set $x_{n}=\frac{1}{2 n \pi+\pi / 2}$ and $y_{n}=\frac{1}{2 n \pi-\pi / 2}$, where n is an integer. No matter how small δ is we can find a large integer n such that both x_{n} and y_{n} are in $(-\delta, \delta)$. Clearly $\sin \frac{1}{x_{n}}-\sin \frac{1}{y_{n}}=2$, but this contradicts $(* * *)$ if we choose $0<\epsilon \leq 1$.

This contradiction shows that our assumption of the existence of the above limit cannot hold. Hence $\lim _{x \rightarrow 0} \sin \frac{1}{x}$ does not exist.

Q-4) A napkin-ring is obtained by drilling a cylindrical hole symmetrically through the center of a solid sphere. If the length of the hole is 4 units, find the volume of the napkin-ring.

Solution: Assume that the solid sphere is given by the equation $x^{2}+y^{2}+z^{2}=r^{2}$, where r is its radius. With these coordinates assume that the cylindrical hole that is drilled out is expressed by the equation $x^{2}+y^{2}=c^{2}$ for some positive constant c. Now assume that we cut this napkin-ring by the $y z$-plane, or equivalently by the $x=0$ plane. The resulting picture is depicted in the following figure. If however the napkin-ring is cut by a plane perpendicular to the $y z$-plane along the line $A C$, the slice obtained would look like a ring, consisting of a disk of radius $A C$ out of which which a disk of radius $A B$ is cut off. The area of this ring is $\pi\left(A C^{2}-A B^{2}\right)$. So we set out to write this area explicitly:

Since the sphere $x^{2}+y^{2}+z^{2}=r^{2}$ is cut off by the plane $x=0$, the resulting circle of the figure has the form $y^{2}+z^{2}=r^{2}$.

Since the point $(c, 2)$ is on this circle, we have $c^{2}=r^{2}-4$. Observe that $c=A B$.
Since the point (y, z) is on the circle, we have as above $y^{2}=r^{2}-z^{2}$. Observe again that $y=A C$.

Thus the area of the slice is $\pi\left(A C^{2}-A B^{2}\right)=\pi\left(4-z^{2}\right)$.
To find the volume we have to add/integrate all these areas as z changes from -2 to 2 .

$$
\begin{aligned}
\text { Volume } & =\int_{-2}^{2} \pi\left(4-z^{2}\right) d z \\
& =\pi\left(4 z-\left.\frac{z^{3}}{3}\right|_{-2} ^{2}\right)=\frac{32}{3} \pi
\end{aligned}
$$

The figure for the napkin-ring problem.

Q-5) Let f be a function such that $|f(u)-f(v)| \leq|u-v|$ for all u and v in an interval $[a, b]$.
i) Prove that f is continuous at each point of $[a, b]$.
ii) Assume that f is integrable on $[a, b]$. Prove that for any c in $[a, b]$, we have

$$
\left|\int_{a}^{b} f(x) d x-(b-a) f(c)\right| \leq \frac{(b-a)^{2}}{2}
$$

Solution i: Let $c \in[a, b]$. Start with any $\epsilon>0$. For any $x \in[a, b]$ we have $|f(x)-f(c)| \leq$ $|x-c|$. Let $0<\delta \leq \epsilon$ and set $U=(c-\delta, c+\delta) \cap[a, b]$ as the δ-neighbourhood of c in $[a, b]$. Then for all $x \in U$, we have $|f(x)-f(c)| \leq|x-c|<\delta \leq \epsilon$, which establishes the continuity of f at c.

Solution ii:

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) d x-(b-a) f(c)\right| & =\left|\int_{a}^{b}(f(x)-f(c)) d x\right| \\
& \leq \int_{a}^{b}|f(x)-f(c)| d x \\
& \leq \int_{a}^{b}|x-c| d x \\
& =\int_{a}^{c}(c-x) d x+\int_{c}^{b}(x-c) d x \\
& =\left(c x-\left.\frac{1}{2} x^{2}\right|_{a} ^{c}\right)+\left(\frac{1}{2} x^{2}-\left.c x\right|_{c} ^{b}\right) \\
& =\frac{1}{2}(b-a)^{2}+(a-c)(b-c) \\
& \leq \frac{1}{2}(b-a)^{2}, \operatorname{since}(a-c)(b-c) \leq 0
\end{aligned}
$$

