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Math 113 Calculus – Midterm Exam I
SOLUTIONS

Q-1) Prove by induction that
n∑

k=1

k3 =

(
n(n + 1)

2

)2

, for all integers n ≥ 1.

Solution: For n = 1, both sides are 1. Assume for the induction hypothesis that 13+· · ·+n3 =(
n(n+1)

2

)2

. Add (n + 1)3 = n3 + 3n2 + 3n + 1 to both sides of this equality and simplify the

right hand side to obtain

13 + · · ·+ n3 + (n + 1)3 =

(
n(n + 1)

2

)2

+ (n + 1)3

=
1

4
(n4 + 6n3 + 13n2 + 12n + 4)

=

(
(n + 1)(n + 2)

2

)2

.

Thus starting from an assumption on n, we established the expected formula for n + 1. This
completes the induction argument and proves the formula for all n ≥ 1.

Q-2) Calculate the following limits:

i) lim
x→0

1−√1− 3x2 + 7x3

x2
.

Solution i:

1−√1− 3x2 + 7x3

x2
=

1−√1− 3x2 + 7x3

x2
· 1 +

√
1− 3x2 + 7x3

1 +
√

1− 3x2 + 7x3

=
1− (1− 3x2 + 7x3)

x2(1 +
√

1− 3x2 + 7x3)

=
3x2 − 7x3

x2(1 +
√

1− 3x2 + 7x3)

=
3− 7x

1 +
√

1− 3x2 + 7x3
→ 3

2
as x → 0.

ii) lim
x→0

4 sin2 x + 9 sin x2

x2
.

Solution ii:
4 sin2 x + 9 sin x2

x2
= 4

(
sin x

x

)2

+ 9

(
sin x2

x2

)
→ 4 · 12 + 9 · 1 = 13 as x → 0.



Q-3) Show that lim
x→0

sin
1

x
does not exist.

Solution: Assume that limx→0 sin 1
x

= A for some real number A. This means that for any
ε > 0 there is a corresponding δ > 0 such that for all x ∈ (−δ, δ) we have | sin 1

x
− A| < ε.

Rewrite this last inequality as

−ε < sin
1

x
− A < ε. (∗)

Similarly for any other y ∈ (−δ, δ) we have

−ε < A− sin
1

y
< ε. (∗∗)

Adding (∗) and (∗∗) side by side we find that for any x, y ∈ (−δ, δ) we should have

−2ε < sin
1

x
− sin

1

y
< 2ε. (∗ ∗ ∗)

Now set xn =
1

2nπ + π/2
and yn =

1

2nπ − π/2
, where n is an integer. No matter how small δ is

we can find a large integer n such that both xn and yn are in (−δ, δ). Clearly sin
1

xn

−sin
1

yn

= 2,

but this contradicts (∗ ∗ ∗) if we choose 0 < ε ≤ 1.

This contradiction shows that our assumption of the existence of the above limit cannot hold.

Hence lim
x→0

sin
1

x
does not exist.

Q-4) A napkin-ring is obtained by drilling a cylindrical hole symmetrically through the center of
a solid sphere. If the length of the hole is 4 units, find the volume of the napkin-ring.

Solution: Assume that the solid sphere is given by the equation x2 + y2 + z2 = r2, where
r is its radius. With these coordinates assume that the cylindrical hole that is drilled out is
expressed by the equation x2 + y2 = c2 for some positive constant c. Now assume that we cut
this napkin-ring by the yz-plane, or equivalently by the x = 0 plane. The resulting picture
is depicted in the following figure. If however the napkin-ring is cut by a plane perpendicular
to the yz-plane along the line AC, the slice obtained would look like a ring, consisting of a
disk of radius AC out of which which a disk of radius AB is cut off. The area of this ring is
π(AC2 − AB2). So we set out to write this area explicitly:

Since the sphere x2 + y2 + z2 = r2 is cut off by the plane x = 0, the resulting circle of the figure
has the form y2 + z2 = r2.

Since the point (c, 2) is on this circle, we have c2 = r2 − 4. Observe that c = AB.

Since the point (y, z) is on the circle, we have as above y2 = r2 − z2. Observe again that
y = AC.

Thus the area of the slice is π(AC2 − AB2) = π(4− z2).

To find the volume we have to add/integrate all these areas as z changes from −2 to 2.

Volume =

∫ 2

−2

π(4− z2)dz

= π

(
4z − z3

3

∣∣∣∣
2

−2

)
=

32

3
π.
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The figure for the napkin-ring problem.

Q-5) Let f be a function such that |f(u)− f(v)| ≤ |u− v| for all u and v in an interval [a, b].
i) Prove that f is continuous at each point of [a, b].
ii) Assume that f is integrable on [a, b]. Prove that for any c in [a, b], we have

∣∣∣∣
∫ b

a

f(x)dx− (b− a)f(c)

∣∣∣∣ ≤
(b− a)2

2
.

Solution i: Let c ∈ [a, b]. Start with any ε > 0. For any x ∈ [a, b] we have |f(x) − f(c)| ≤
|x − c|. Let 0 < δ ≤ ε and set U = (c − δ, c + δ) ∩ [a, b] as the δ-neighbourhood of c in [a, b].
Then for all x ∈ U , we have |f(x) − f(c)| ≤ |x − c| < δ ≤ ε, which establishes the continuity
of f at c.

Solution ii:
∣∣∣∣
∫ b

a

f(x)dx− (b− a)f(c)

∣∣∣∣ =

∣∣∣∣
∫ b

a

(f(x)− f(c))dx

∣∣∣∣

≤
∫ b

a

|f(x)− f(c)| dx

≤
∫ b

a

|x− c| dx

=

∫ c

a

(c− x) dx +

∫ b

c

(x− c) dx

=

(
cx− 1

2
x2

∣∣∣∣
c

a

)
+

(
1

2
x2 − cx

∣∣∣∣
b

c

)

=
1

2
(b− a)2 + (a− c)(b− c)

≤ 1

2
(b− a)2, since (a− c)(b− c) ≤ 0.


