Math 113 Calculus - Midterm Exam I - Solutions

Q-1) Calculate the following limits:
a) $\lim _{x \rightarrow 0} \frac{x^{21}+21 x+\sin x}{x \cos x+x}=\lim _{x \rightarrow 0}\left(\frac{1}{1+\cos x}\right)\left(x^{20}+21+\frac{\sin x}{x}\right)=\left(\frac{1}{2}\right)(22)=11$.
b) $\lim _{\theta \rightarrow 0} \frac{\sin (\sin 7 \theta)}{\sin \theta}=\lim _{\theta \rightarrow 0} \frac{\sin (\sin 7 \theta)}{\sin 7 \theta} \frac{\sin 7 \theta}{7 \theta}(7) \frac{\theta}{\sin \theta}=7$.
c) $\lim _{x \rightarrow 0} \frac{\sqrt{1+3 x^{2}+4 x^{4}}-\sqrt{1-5 x^{3}-6 x^{5}}}{x^{2}}$

$$
=\lim _{x \rightarrow 0} \frac{\sqrt{1+3 x^{2}+4 x^{4}}-\sqrt{1-5 x^{3}-6 x^{5}}}{x^{2}} \frac{\sqrt{1+3 x^{2}+4 x^{4}}+\sqrt{1-5 x^{3}-6 x^{5}}}{\sqrt{1+3 x^{2}+4 x^{4}}+\sqrt{1-5 x^{3}-6 x^{5}}}
$$

$=\lim _{x \rightarrow 0} \frac{3 x^{2}+9 x^{3}+6 x^{5}}{x^{2}\left(\sqrt{1+3 x^{2}+4 x^{4}}+\sqrt{1-5 x^{3}-6 x^{5}}\right)}$
$=\lim _{x \rightarrow 0} \frac{3+9 x+6 x^{3}}{\left(\sqrt{1+3 x^{2}+4 x^{4}}+\sqrt{1-5 x^{3}-6 x^{5}}\right)}=\frac{3}{2}$.
d) $\lim _{x \rightarrow 0} \frac{|\sin x|}{\sqrt{3 x^{2}-2 x^{3}+\sin ^{2} x}}=\lim _{x \rightarrow 0} \frac{|\sin x|}{|x|} \frac{\sqrt{x^{2}}}{\sqrt{3 x^{2}-2 x^{3}+\sin ^{2} x}} \quad$ Here we use $|x|=\sqrt{x^{2}}$.
$=\lim _{x \rightarrow 0} \frac{|\sin x|}{|x|} \frac{1}{\left(\frac{3 x^{2}-2 x^{3}+\sin ^{2} x}{x^{2}}\right)^{1 / 2}}$
$\lim _{x \rightarrow 0} \frac{|\sin x|}{|x|} \frac{1}{\sqrt{3-2 x+\left(\frac{\sin x}{x}\right)^{2}}}=\frac{1}{2}$.

Q-2) Find the volume cut from the top of a solid sphere of radius R by a plane h distance away from the center, $0 \leq h \leq R$.

Solution: Required volume is obtained by revolving the circle $x^{2}+y^{2}=R^{2}$ around x-axis, from $x=h$ to $x=R$.

$$
V=\pi \int_{h}^{R}\left(R^{2}-x^{2}\right) d x=\frac{\pi}{3}\left(2 R^{3}-3 R^{2} h+h^{3}\right) .
$$

Q-3) Find a reasonable approximation for the integral

$$
\int_{0}^{1} \frac{x^{6}}{\sqrt{1+3 x^{3}}} d x
$$

and give an estimate for your error.

Solution: Use the weighted mean value theorem for integrals: If f and g are continuous on $[a, b]$ and if g does not change sign on the interval, then

$$
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x, \text { for some } c \in[a, b]
$$

In this problem take $f(x)=1 / \sqrt{1+3 x^{3}}$ and $g(x)=x^{6}$. For every $c \in[0,1]$ we have $1 / 2 \leq$ $f(c) \leq 1$, so we get

$$
\frac{1}{14} \leq \int_{0}^{1} \frac{x^{6}}{\sqrt{1+3 x^{3}}} d x \leq \frac{1}{7}
$$

We may take the midpoint of the interval $[1 / 14,1 / 7]$ as a reasonable approximation for this integral. Then the error made cannot exceed half the length of this interval. Hence we have

$$
\int_{0}^{1} \frac{x^{6}}{\sqrt{1+3 x^{3}}} d x \approx \frac{3}{28}=0.107 \ldots
$$

with an error not exceeding $\frac{1}{28}=0.035 \ldots$. In fact the actual value of this integral is $0.082 \ldots$ which is in the predicted interval.

Q-4) Is it possible to construct a continuous function $f:[0,1] \longrightarrow[0,1]$ with the property that for every $y_{0} \in[0,1]$ there are exactly two distinct $x_{1}, x_{2} \in[0,1]$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)=y_{0}$?
Solution: No!. The proof is an exercise in repeated use of the intermediate value property of continuous functions.

Let $a_{1}<a_{2}$ and $b_{1}<b_{2}$ be those points in $[0,1]$ with $f\left(a_{1}\right)=f\left(a_{2}\right)=0$ and $f\left(b_{1}\right)=f\left(b_{2}\right)=1$.
Case 1: Assume $b_{1}, b_{2} \notin\left[a_{1}, a_{2}\right]$. Without loss of generality we may assume that $b_{1}<a_{1}<a_{2}$. Let $M=\frac{1}{2} \max \left\{f(x) \mid x \in\left[a_{1}, a_{2}\right]\right\}$ and denote by c the point in $\left[a_{1}, a_{2}\right]$ where $f(c)=M$. Then f takes the value M at least three times; once in each of the intervals $\left[b_{1}, a_{1}\right],\left[a_{1}, c\right]$ and $\left[c, a_{2}\right]$. This is a contradiction. (Observe that the case $a_{1}<a_{2}<b_{1}$ is treated exactly the same.)

Case 2: Assume that only one of b_{1}, b_{2} is in $\left[a_{1}, a_{2}\right]$. Without loss of generality we may assume that $a_{1}<b_{1}<a_{2}<b_{2}$ Take any number $0<T<1$. Then f takes T at least three times; once in each of the intervals $\left[a_{1}, b_{1}\right],\left[b_{1}, a_{2}\right]$ and $\left[a_{2}, b_{2}\right]$. This is a contradiction. (Observe that the case $b_{1}<a_{1}<b_{2}<a_{2}$ is treated exactly the same.)

If both of the points b_{1}, b_{2} are in $\left[a_{1}, a_{2}\right]$, then this is equivalent to the first case above with the roles of a_{i} 's and b_{i} 's switched.

This shows that no such continuous function exists.

Q-5) Let $\phi=\frac{1+\sqrt{5}}{2}$. Also let $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for every integer $n>2$.
Prove that $\phi^{n}=\phi F_{n}+F_{n-1}$ for every $n \geq 2$.
Solution: We prove this by induction.
$n=2$ case: On the one hand we have $\phi^{2}=\frac{3+\sqrt{5}}{2}$. On the other hand $\phi F_{2}+F_{1}=\phi+1=$ $\frac{3+\sqrt{5}}{2}$. So the claimed equality for $n=2$, i.e. $\phi^{2}=\phi+1$ holds.

Now we assume that the claimed equality holds for every $k \leq n$. We start with the right hand side of the claimed equality for the $n+1$ case and obtain the left hand side:

$$
\begin{aligned}
\phi F_{n+1}+F_{n} & =\phi\left(F_{n}+F_{n-1}\right)+\left(F_{n-1}+F_{n-2}\right), \text { property of the } F_{n}^{\prime} \mathrm{s} \\
& =\left(\phi F_{n}+F_{n-1}\right)+\left(\phi F_{n-1}+F_{n-2}\right) \\
& =\phi^{n}+\phi^{n-1}, \quad k=n \text { and } k=n-1 \text { cases } \\
& =\phi^{n-1}(\phi+1) \\
& =\phi^{n-1}\left(\phi^{2}\right), \quad k=2 \text { case } \\
& =\phi^{n+1} .
\end{aligned}
$$

This completes the proof.

