Math 113 Calculus - Second Midterm Exam - Solutions

Q-1) Do not simplify your answers in (a), (b), (c). No partial credits!
a) $f(x)=x^{x}+(\ln x)^{\cosh x}=e^{x \ln x}+e^{\cosh x \ln \ln x}$,
$f^{\prime}(x)=x^{x}(\ln x+1)+(\ln x)^{\cosh x}\left(\sinh x \ln \ln x+\cosh x \frac{1}{\ln x} \frac{1}{x}\right)$.
b) $f(x)=\arctan \left(\sqrt{1-x^{2}}\right) \cdot \sec \sqrt{1+x^{2}}$,
$f^{\prime}(x)=\frac{1}{1+\left(1-x^{2}\right)} \frac{-2 x}{2 \sqrt{1-x^{2}}} \sec \sqrt{1-x^{2}}+\arctan \sqrt{1-x^{2}} \sec \sqrt{1-x^{2}} \tan \sqrt{1-x^{2}} \frac{x}{\sqrt{1-x^{2}}}$.
c) $f(x)=\cos x \int_{\sec x}^{\tan x} \sin t d t$,
$f^{\prime}(x)=-\sin x \int_{\sec x}^{\tan x} \sin t d t+\cos x\left(\sin (\tan x) \sec ^{2} x-\sin (\sec x) \sec x \tan x\right)$.
d) Let $f(x)=g^{-1}(x)$ for $1 \leq x \leq 5$, where $g(x)=x^{3}-3 x^{2}+5$. Find the slope of the tangent line to the curve $y=f(x)$ at the point $(3,1)$.

Solution:

$f(3)=1 \Leftrightarrow g(1)=3$. The required slope is $f^{\prime}(3)$.
$f^{\prime}(3)=f^{\prime}(g(1))=1 / g^{\prime}(1)$.
$g^{\prime}(x)=3 x^{2}-6 x, g^{\prime}(1)=-3, f^{\prime}(3)=-1 / 3$.

Q-2) Find all values of $\alpha, \beta \in \mathbb{R}$ so that if f is defined as

$$
f(x)= \begin{cases}x^{\alpha} \sin \frac{1}{x} & \text { if } x>0 \\ \beta & \text { if } x \leq 0\end{cases}
$$

then
(i) f is continuous at $x=0$.
(ii) f is differentiable at $x=0$.

Solution:

(i) Since $-x^{\alpha} \leq x^{\alpha} \sin \frac{1}{x} \leq x^{\alpha}$, $\lim _{x \rightarrow 0^{+}} f(x)$ exists if and only if $\alpha>0$. In that case the limit is zero.

Hence f is continuous at $x=0$ when $\alpha>0$ and $\beta=0$.
(ii) For f to be differentiable at $x=0$, it must first be continuous there. So in particular $\beta=0$. $\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x}=\lim _{x \rightarrow 0^{+}} x^{\alpha-1} \sin \frac{1}{x}$ exists if and only if $\alpha>1$. In that case the limit is zero.

On the other hand with $\beta=0$ we have $\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x}=0$.
Hence f is differentiable at $x=0$ when $\alpha>1$ and $\beta=0$.

Q-3) Find the minimum and the maximum values of the function $f(x)$ on $[0,8]$, where

$$
f(x)= \begin{cases}x^{3}-4 x^{2}-3 x+8 & \text { if } \\ x^{2}-14 x+63 & \text { if } \\ x^{2} \leq x \leq 8\end{cases}
$$

Solution:

For $0 \leq x \leq 5, f^{\prime}(x)=3 x^{2}-8 x-3=0, x=3$ is the solution in the domain.
For $5 \leq x \leq 8, f^{\prime}(x)=2 x-14=0, x=7$
We calculate $f(0)=8, f(3)=-10, f(5)=18, f(7)=14, f(8)=15$.
Therefore minimum of f is -10 , and the maximum is 18 .

Q-4) Assume that $f^{\prime}(x)=\frac{x^{2}+2}{((x-1)(x-2))^{2}}$, and $f(0)=0$. Find $f(3)$.
By partial fractions we find
$\frac{x^{2}+2}{((x-1)(x-2))^{2}}=\frac{8}{x-1}+\frac{3}{(x-1)^{2}}-\frac{8}{x-2}+\frac{6}{(x-2)^{2}}$.

Solution:

Integrating this we find $f(x)=8 \ln |x-1|-\frac{3}{x-1}-8 \ln |x-2|-\frac{6}{x-2}+C$.
$f(0)=0$ gives $C=8 \ln 2-6$, and we find $f(3)=16 \ln 2-\frac{27}{2}$.

Q-5) Find $\int x^{2} \arctan x d x$.
First by using by parts with $u=\arctan x$ and $d v=x^{2} d x$ we obtain

$$
\int x^{2} \arctan x d x=\frac{1}{3} x^{3} \arctan x-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x
$$

Solution:

We have $\frac{x^{3}}{1+x^{2}}=x-\frac{1}{2} \frac{2 x}{1+x^{2}}$. Integrating this we find $\int \frac{x^{3}}{1+x^{2}} d x=\frac{1}{2} x^{2}-\frac{1}{2} \ln \left(1+x^{2}\right)+C$. Putting this back in the above integral we finally get

$$
\int x^{2} \arctan x d x=\frac{1}{3} x^{3} \arctan x-\frac{1}{6} x^{2}+\frac{1}{6} \ln \left(1+x^{2}\right)+C .
$$

