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Math 113 Calculus – Midterm Exam I

1 2 3 4 5 Bonus TOTAL

20 20 20 20 20 (20) 100

Please do not write anything inside the above boxes!

PLEASE READ:
Check that there are 5+1 questions on your exam booklet. Write your name on the top of every
page. Show your work in reasonable detail but do not exaggerate. A correct answer without
proper reasoning may not get any credit. Similarly a unnecessarily long explanation may be
taken as an insult to intelligence and may not receive full credit. Moderation is the key word!

Q-1) Define a function on R as

f(x) =

{
x sin 1

x
if x 6= 0,

0 if x = 0.

Show that f is continuous at every x ∈ R.

Solution: Since x, 1/x and sine functions are continuous at every nonzero x, f itself
being a combination of these is continuous when x 6= 0.

Since for x 6= 0 we have −x ≤ f(x) ≤ x, and by the sandwich theorem limx→0 f(x) = 0 =
f(0), the function is continuous also at x = 0.
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Q-2) Find all positive integers n such that nn > (n + 2)!.

Hint: First show that if the relation holds for some n then it also holds for n + 1. Then
search for the first n for which it holds. You may use the results of some homework problems
if you need or remember them.

Solution: Assume nn > (n+2)!. Then: (n+1)n+1 = [(1+1/n)n](1+n)nn > [2](1+n)nn

where we use exercise 12b on page 45. Now the last expression is > 2(1 + n)(n + 2)! by
the induction hypothesis and this expression is > (n + 3)! when n > 1.

On the other hand check that:

22 = 4 6> (2 + 2)! = 4! = 24,

33 = 27 6> (3 + 2)! = 5! = 120,

44 = 256 6> (4 + 2)! = 6! = 720,

55 = 3125 6> (5 + 2)! = 7! = 5040,

66 = 46656 > (6 + 2)! = 8! = 40320.

Hence the relation holds for all integers n ≥ 6.
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Q-3) Show that

π2

4
≤

∫ 3π/4

π/4

x

sin x
dx ≤ π2

2
√

2
,

by using the weighted mean value theorem for integrals.

Solution: By the weighted mean value theorem we have

∫ 3π/4

π/4

x

sin x
dx =

1

sin c

∫ 3π/4

π/4

x dx =
1

sin c
· π2

4

for some c ∈ [π/4, 3π/4]. In this interval the minimum and the maximum values that
sin c can take are 1/

√
2 and 1, respectively. Hence the integral lies between the claimed

values.
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Q-4) Let f : [0,∞) → R be a strictly increasing, bounded and continuous function. Show
that f is uniformly continuous on this interval.

Solution: Let ε > 0 be chosen.

Let M = sup f(x) for x ∈ [0,∞). Since f is strictly increasing, it never takes M , but
there exists x0 ∈ [0,∞) such that for all x ≥ x0, M − f(x) < ε/4, by the definition of
supremum.

For any x, y ≥ x0, |f(x)− f(y)| ≤ (M − f(x)) + (M − f(y)) < ε/2.

On [0, x0], f is uniformly continuous since it is continuous on a closed and bounded
interval. Then there exists δ > 0 such that for all x, y ∈ [0, x0] with |x− y| < δ, we have
|f(x)− f(y)| < ε/2.

If x < x0 < y and |x − y| < δ, then (i) |f(x) − f(x0)| < ε/2 since x, x0 ∈ [0, x0] and
|x− x0| < δ, and (ii) |f(x0)− f(y)| < ε/2 since x0, y ∈ [x0,∞). Hence |f(x)− f(y)| < ε
by the triangle inequality.

This concludes the demonstration that f is uniformly continuous on this interval.

Here is another solution. Start with an ε > 0. Let M be the supremum of the values
of f(x) for x ∈ [0,∞), and m = f(0). Let n be the smallest positive integer satisfying
nε/2 ≥ M . Define a partition {y0, . . . , yn} of [m, M ] where yk = kε if 0 ≤ k < n, and
yn = M . Since f is strictly increasing, for every yk with 0 ≤ k < n, there exists a unique
xk ∈ [0,∞) with f(xk) = yk. Let Ik = [xk−1, xk] if k = 1, . . . , n− 1, and In = [xn−1,∞).

For every x, y ∈ Ik we have |f(x)− f(y)| < yk − yk−1 = ε/2 < ε, where k = 1, . . . , n.

Let δ > 0 be the minimum of the values xk − xk−1 for k = 1, . . . , n− 1.

For any x, y ∈ [0,∞) with |x− y| < δ we have the following two possibilities:
(i) x, y ∈ Ik for some 1 ≤ k ≤ n.
We showed already that in this case |f(x)− f(y)| < ε.
(ii) x ∈ Ik and y ∈ Ik+1 for some 1 ≤ k < n.
Then |f(x)− f(y)| ≤ |f(x)− f(xk)|+ |f(xk)− f(y)| < ε/2 + ε/2 = ε.

This shows uniform continuity of f on [0,∞).
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Q-5) Prove or disprove: The function f defined as

f(x) =

{
sin2 1

x
if x 6= 0,

0 if x = 0.

is integrable on [0, 100].

Solution: We prove that f is integrable here.

Since f is bounded here, it remains to show that its upper and lower integrals agree.

For any 0 < ε < 200, the function is continuous and hence integrable on [ε/2, 100]. So
there exist step functions s′ and t′ such that s′(x) ≤ f(x) ≤ t′(x) for all x ∈ [ε/2, 100]
such that

0 ≤
∫ 100

ε/2

t′(x) dx−
∫ 100

ε/2

s′(x) dx < ε/2.

Define new step functions s and t on [0, 100] as

s(x) =

{
0 if 0 ≤ x < ε/2,
s′(x) if x > ε/2,

and

t(x) =

{
1 if 0 ≤ x < ε/2,
t′(x) if x > ε/2.

Then, s(x) ≤ f(x) ≤ t(x) for all x ∈ [0, 100] and if I and I represent the lower and upper
integrals of f on this interval, we have

0 ≤ I − I ≤
∫ 100

0

t(x) dx−
∫ 100

0

s(x) dx

=

∫ ε/2

0

1 dx +

∫ 100

ε/2

t′(x) dx−
∫ ε/2

0

0 dx−
∫ 100

ε/2

s′(x) dx

< ε/2 + ε/2 = ε.

Hence f is integrable on this interval.
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Bonus:) Find the volume of the common region of two right circular cylinders, each with base
radius R, which intersect orthogonally.

Hint: Let the cylinders be x2 + z2 = R2 and y2 + z2 = R2 in R3. Draw what is happening
when x, y, z ≥ 0.

Solution: Let S be the common part of these cylinders. If we intersect the part of S
lying in the region x, y, z ≥ 0 with a plane perpendicular to z-axis at a height of h from
the xy-plane, we obtain a square of area R2 − h2. The total volume of S is 8 times the
volume seen in the region x, y, z ≥ 0. Hence

V (S) = 8

∫ R

0

(R2 − h2) dh =
16

3
R3.

The first figure shows the intersection viewed from the behind. You are actually viewing
the inside of the intersection with the plane perpendicular to z-axis cutting the figure.
The second figure shows the contours of the intersection, viewed from some point in the
region x, y, z ≥ 0.

The first figure is obtained from Maple by the command:
plot3d({sqrt(49-x^2),sqrt(49-y^2), 3},x=0..7,y=0..7,orientation=[210,60]);

The second one is obtained from Maple by the command:
with(plots);

k:=2;m:=3/2;

spacecurve({[k*m*t,0,0],[0,k*m*t,0],

[0,0,k*m*t],[k*sin(t),k*sin(t),k*cos(t)],[k*t,k*1,0],

[k*cos(t),0,k*sin(t)],[k*1,k*t,0],[0,k*cos(t),k*sin(t)]},

t=0..Pi/2,orientation=[25,55]);



Here is another solution. Intersect the figure with a plane perpendicular to the x-axis at
the point (x, 0, 0). The result is the gray shaded region in the above figure. The area
of the shaded region is the area under the function y =

√
R2 − z2 between z = 0 and

z =
√

R2 − x2. Then to find the volume we have to integrate this area from x = 0 to
x = R. Remembering that the figure above is only one-eighth of the whole figure we find
that the total volume is

V = 8

∫ x=R

x=0

(∫ z=
√

R2−x2

z=0

√
R2 − z2 dz

)
dx.

This integral evaluates precisely to
16

3
R3, but we will do that later.


