Date: October 20, 2007, Saturday
Time: 14:00-16:00
Ali Sinan Sertöz
\qquad

Math 113 Calculus - Midterm Exam I

1	2	3	4	5	Bonus	TOTAL
20	20	20	20	20	(20)	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are $5+1$ questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail but do not exaggerate. A correct answer without proper reasoning may not get any credit. Similarly a unnecessarily long explanation may be taken as an insult to intelligence and may not receive full credit. Moderation is the key word!

Q-1) Define a function on \mathbb{R} as

$$
f(x)= \begin{cases}x \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

Show that f is continuous at every $x \in \mathbb{R}$.
Solution: Since $x, 1 / x$ and sine functions are continuous at every nonzero x, f itself being a combination of these is continuous when $x \neq 0$.

Since for $x \neq 0$ we have $-x \leq f(x) \leq x$, and by the sandwich theorem $\lim _{x \rightarrow 0} f(x)=0=$ $f(0)$, the function is continuous also at $x=0$.

Q-2) Find all positive integers n such that $n^{n}>(n+2)!$.
Hint: First show that if the relation holds for some n then it also holds for $n+1$. Then search for the first n for which it holds. You may use the results of some homework problems if you need or remember them.

Solution: Assume $n^{n}>(n+2)!$. Then: $(n+1)^{n+1}=\left[(1+1 / n)^{n}\right](1+n) n^{n}>[2](1+n) n^{n}$ where we use exercise 12b on page 45 . Now the last expression is $>2(1+n)(n+2)$! by the induction hypothesis and this expression is $>(n+3)$! when $n>1$.

On the other hand check that:

$$
\begin{aligned}
2^{2}=4 & \ngtr(2+2)!=4!=24, \\
3^{3}=27 & \ngtr(3+2)!=5!=120, \\
4^{4}=256 & \ngtr(4+2)!=6!=720, \\
5^{5}=3125 & \ngtr(5+2)!=7!=5040, \\
6^{6}=46656 & >(6+2)!=8!=40320 .
\end{aligned}
$$

Hence the relation holds for all integers $n \geq 6$.

Q-3) Show that

$$
\frac{\pi^{2}}{4} \leq \int_{\pi / 4}^{3 \pi / 4} \frac{x}{\sin x} d x \leq \frac{\pi^{2}}{2 \sqrt{2}}
$$

by using the weighted mean value theorem for integrals.
Solution: By the weighted mean value theorem we have

$$
\int_{\pi / 4}^{3 \pi / 4} \frac{x}{\sin x} d x=\frac{1}{\sin c} \int_{\pi / 4}^{3 \pi / 4} x d x=\frac{1}{\sin c} \cdot \frac{\pi^{2}}{4}
$$

for some $c \in[\pi / 4,3 \pi / 4]$. In this interval the minimum and the maximum values that $\sin c$ can take are $1 / \sqrt{2}$ and 1 , respectively. Hence the integral lies between the claimed values.

Q-4) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be a strictly increasing, bounded and continuous function. Show that f is uniformly continuous on this interval.

Solution: Let $\epsilon>0$ be chosen.
Let $M=\sup f(x)$ for $x \in[0, \infty)$. Since f is strictly increasing, it never takes M, but there exists $x_{0} \in[0, \infty)$ such that for all $x \geq x_{0}, M-f(x)<\epsilon / 4$, by the definition of supremum.

For any $x, y \geq x_{0},|f(x)-f(y)| \leq(M-f(x))+(M-f(y))<\epsilon / 2$.
On $\left[0, x_{0}\right], f$ is uniformly continuous since it is continuous on a closed and bounded interval. Then there exists $\delta>0$ such that for all $x, y \in\left[0, x_{0}\right]$ with $|x-y|<\delta$, we have $|f(x)-f(y)|<\epsilon / 2$.

If $x<x_{0}<y$ and $|x-y|<\delta$, then (i) $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon / 2$ since $x, x_{0} \in\left[0, x_{0}\right]$ and $\left|x-x_{0}\right|<\delta$, and (ii) $\left|f\left(x_{0}\right)-f(y)\right|<\epsilon / 2$ since $x_{0}, y \in\left[x_{0}, \infty\right)$. Hence $|f(x)-f(y)|<\epsilon$ by the triangle inequality.

This concludes the demonstration that f is uniformly continuous on this interval.
Here is another solution. Start with an $\epsilon>0$. Let M be the supremum of the values of $f(x)$ for $x \in[0, \infty)$, and $m=f(0)$. Let n be the smallest positive integer satisfying $n \epsilon / 2 \geq M$. Define a partition $\left\{y_{0}, \ldots, y_{n}\right\}$ of $[m, M]$ where $y_{k}=k \epsilon$ if $0 \leq k<n$, and $y_{n}=M$. Since f is strictly increasing, for every y_{k} with $0 \leq k<n$, there exists a unique $x_{k} \in[0, \infty)$ with $f\left(x_{k}\right)=y_{k}$. Let $I_{k}=\left[x_{k-1}, x_{k}\right]$ if $k=1, \ldots, n-1$, and $I_{n}=\left[x_{n-1}, \infty\right)$.

For every $x, y \in I_{k}$ we have $|f(x)-f(y)|<y_{k}-y_{k-1}=\epsilon / 2<\epsilon$, where $k=1, \ldots, n$.
Let $\delta>0$ be the minimum of the values $x_{k}-x_{k-1}$ for $k=1, \ldots, n-1$.
For any $x, y \in[0, \infty)$ with $|x-y|<\delta$ we have the following two possibilities:
(i) $x, y \in I_{k}$ for some $1 \leq k \leq n$.

We showed already that in this case $|f(x)-f(y)|<\epsilon$.
(ii) $x \in I_{k}$ and $y \in I_{k+1}$ for some $1 \leq k<n$.

Then $|f(x)-f(y)| \leq\left|f(x)-f\left(x_{k}\right)\right|+\left|f\left(x_{k}\right)-f(y)\right|<\epsilon / 2+\epsilon / 2=\epsilon$.
This shows uniform continuity of f on $[0, \infty)$.

Q-5) Prove or disprove: The function f defined as

$$
f(x)= \begin{cases}\sin ^{2} \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is integrable on $[0,100]$.
Solution: We prove that f is integrable here.
Since f is bounded here, it remains to show that its upper and lower integrals agree.
For any $0<\epsilon<200$, the function is continuous and hence integrable on $[\epsilon / 2,100]$. So there exist step functions s^{\prime} and t^{\prime} such that $s^{\prime}(x) \leq f(x) \leq t^{\prime}(x)$ for all $x \in[\epsilon / 2,100]$ such that

$$
0 \leq \int_{\epsilon / 2}^{100} t^{\prime}(x) d x-\int_{\epsilon / 2}^{100} s^{\prime}(x) d x<\epsilon / 2 .
$$

Define new step functions s and t on $[0,100]$ as

$$
s(x)= \begin{cases}0 & \text { if } 0 \leq x<\epsilon / 2, \\ s^{\prime}(x) & \text { if } x>\epsilon / 2,\end{cases}
$$

and

$$
t(x)= \begin{cases}1 & \text { if } 0 \leq x<\epsilon / 2 \\ t^{\prime}(x) & \text { if } x>\epsilon / 2\end{cases}
$$

Then, $s(x) \leq f(x) \leq t(x)$ for all $x \in[0,100]$ and if \bar{I} and $\underline{\mathrm{I}}$ represent the lower and upper integrals of f on this interval, we have

$$
\begin{aligned}
0 \leq \bar{I}-\underline{\mathrm{I}} & \leq \int_{0}^{100} t(x) d x-\int_{0}^{100} s(x) d x \\
& =\int_{0}^{\epsilon / 2} 1 d x+\int_{\epsilon / 2}^{100} t^{\prime}(x) d x-\int_{0}^{\epsilon / 2} 0 d x-\int_{\epsilon / 2}^{100} s^{\prime}(x) d x \\
& <\epsilon / 2+\epsilon / 2=\epsilon
\end{aligned}
$$

Hence f is integrable on this interval.

Bonus:) Find the volume of the common region of two right circular cylinders, each with base radius R, which intersect orthogonally.

Hint: Let the cylinders be $x^{2}+z^{2}=R^{2}$ and $y^{2}+z^{2}=R^{2}$ in \mathbb{R}^{3}. Draw what is happening when $x, y, z \geq 0$.

Solution: Let S be the common part of these cylinders. If we intersect the part of S lying in the region $x, y, z \geq 0$ with a plane perpendicular to z-axis at a height of h from the $x y$-plane, we obtain a square of area $R^{2}-h^{2}$. The total volume of S is 8 times the volume seen in the region $x, y, z \geq 0$. Hence

$$
V(S)=8 \int_{0}^{R}\left(R^{2}-h^{2}\right) d h=\frac{16}{3} R^{3} .
$$

The first figure shows the intersection viewed from the behind. You are actually viewing the inside of the intersection with the plane perpendicular to z-axis cutting the figure. The second figure shows the contours of the intersection, viewed from some point in the region $x, y, z \geq 0$.

The first figure is obtained from Maple by the command:

```
plot3d({sqrt(49-x^2),sqrt(49-y^2), 3},x=0..7,y=0..7,orientation=[210,60]);
```

The second one is obtained from Maple by the command:
with(plots) ;
$\mathrm{k}:=2$;m:=3/2;
spacecurve(\{[k*m*t, 0, 0], [0,k*m*t,0], $[0,0, k * m * t],[k * \sin (t), k * \sin (t), k * \cos (t)],[k * t, k * 1,0]$, $[\mathrm{k} * \cos (\mathrm{t}), 0, \mathrm{k} * \sin (\mathrm{t})],[\mathrm{k} * 1, \mathrm{k} * \mathrm{t}, 0],[0, \mathrm{k} * \cos (\mathrm{t}), \mathrm{k} * \sin (\mathrm{t})]\}$, $t=0$..Pi/2, orientation=[25,55]);

Here is another solution. Intersect the figure with a plane perpendicular to the x -axis at the point $(x, 0,0)$. The result is the gray shaded region in the above figure. The area of the shaded region is the area under the function $y=\sqrt{R^{2}-z^{2}}$ between $z=0$ and $z=\sqrt{R^{2}-x^{2}}$. Then to find the volume we have to integrate this area from $x=0$ to $x=R$. Remembering that the figure above is only one-eighth of the whole figure we find that the total volume is

$$
V=8 \int_{x=0}^{x=R}\left(\int_{z=0}^{z=\sqrt{R^{2}-x^{2}}} \sqrt{R^{2}-z^{2}} d z\right) d x .
$$

This integral evaluates precisely to $\frac{16}{3} R^{3}$, but we will do that later.

