\qquad

Math 113 Calculus - Midterm Exam II - Solutions

Q-1) Prove or disprove: The function $f(x)=\sin x^{2}$ is uniformly continuous on \mathbb{R}.

Solution: This is clearly wrong! Assume that $f(x)$ is uniformly continuous on \mathbb{R}. Take $\epsilon=1 / 2$. In fact any $0<\epsilon<1$ will do.

First observe that $\sqrt{(n+1) \pi}-\sqrt{n \pi}=\frac{\pi}{\sqrt{(n+1) \pi}+\sqrt{n \pi}}$, and $\sqrt{n \pi}<\sqrt{(n+1 / 2) \pi}<\sqrt{(n+1) \pi}$.

Assume now that, since f is uniformly continuous, there is a $\delta>0$ such that for every x, y with $|x-y|<\delta$ we will have $|f(x)-f(y)|<\epsilon$.
Take $x=\sqrt{n \pi}, y=\sqrt{(n+1 / 2) \pi}$ where n is such that

$$
\sqrt{(n+1) \pi}-\sqrt{n \pi}=\frac{\pi}{\sqrt{(n+1) \pi}+\sqrt{n \pi}}<\delta .
$$

Then $|x-y|<\delta, f(x)=0$ and $f(y)=(-1)^{n}$, so $|f(x)-f(y)|=1$ which is not smaller than our chosen ϵ. This contradiction shows that f is not uniformly continuous on \mathbb{R}.

Q-2) Let $f(x)$ be differentiable on $[a, b]$, except possibly at $x_{0} \in(a, b)$. Assume that $\lim _{x \rightarrow x_{0}} f^{\prime}(x)=2007$.

Prove or disprove: $f(x)$ is differentiable also at x_{0} and in fact $f^{\prime}\left(x_{0}\right)=2007$.
Solution: This is clearly correct!

$$
\begin{aligned}
f^{\prime}\left(x_{0}\right) & \left.=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}, \text { (definition of derivative at } x_{0}\right) \\
& =\lim _{x \rightarrow x_{0}} f^{\prime}(c),\left(\text { for some } x_{0} \text { between } x \text { and } x_{0} ;\right. \text { MVT.) } \\
& =\lim _{c \rightarrow x_{0}} f^{\prime}(c),\left(\text { since } c \text { is between } x \text { and } x_{0} .\right) \\
& =2007, \text { (as given in the problem.). }
\end{aligned}
$$

Remark: This problem was intended to be an easy problem which I solved twice in class. In haste I forgot to state here that f is defined and continuous on $[a, b]$. As stated above the statement is false; think about any step function where x_{0} is any jump point. But if you solve the problem assuming continuity of f on all of $[a, b]$, I will certainly accept your solution.

Q-3) Our intelligent dog Elvis can run $5 \mathrm{~m} / \mathrm{min}$ on the shore and can swim at $3 \mathrm{~m} / \mathrm{min}$. He stands at a point A on the shore. We assume that the shore is a straight line. Elvis wants to get to a tennis ball which is floating still at a point B on the sea. The perpendicular line from B to the shore intersects the shore line at C. The distances are as follows: $A C=12 m$ and $B C=5 m$. Obviously Elvis will instinctively choose a point D on the line $A C$, then run up to D, and swim the distance $D B$ so as to minimize his time to reach the ball from where he is standing. Assuming that Elvis the dog intuitively makes correct choices, tell us precisely where D is.

Solution: Let D be x meters away from C towards A, and let $f(x)$ denote the time in minutes if Elvis chooses this point as D. Then the function to minimize is

$$
f(x)=\frac{12-x}{5}+\frac{\sqrt{25+x^{2}}}{3}, 0 \leq x \leq 12 .
$$

We find that $f^{\prime}(x)=-\frac{1}{5}+\frac{x}{3 \sqrt{25+x^{2}}}$. The only critical point in the given interval of the function is $x=15 / 4$.

We check that:
$f(0)=\frac{61}{15}>4$,
$f(12)=\frac{13}{3}>4$,
$f(15 / 4)=\frac{17}{10}+\frac{\sqrt{149}}{6}<1.7+13 / 6<1.7+2.2<4$,
so the minimum does occur at D which is $15 / 4$ meters away from C towards A.
If you do not want to calculate $f(15 / 4)$, then you can easily calculate

$$
f^{\prime \prime}(x)=\frac{25}{3\left(25+x^{2}\right)^{3 / 2}}>0
$$

so the given critical point is a local minimum. Since it is the only critical point, it must give the global minimum. This way you do not calculate f at the end points either.

Q-4) The radius and height of a right circular cylinder of fixed volume of 6860π cubic meters are changing as functions of time. Find how much the radius is changing when the height is 35 m and is decreasing at a rate of $13 \mathrm{~m} / \mathrm{min}$.

Solution: $6860 \pi=\pi r^{2}(t) h(t)$, where $r(t)$ and $h(t)$ are the radius and height at time t, respectively. Take the derivative of this equation with respect to time to get,

$$
0=2 r(t) r^{\prime}(t) h(t)+r^{2}(t) h^{\prime}(t) .
$$

When $h(t)=35 \mathrm{~m}$, then $r(t)=14 \mathrm{~m}$. Putting these in, together with $h^{\prime}(t)=-13 \mathrm{~m} / \mathrm{min}$, we find $r^{\prime}(t)=(13 / 5) \mathrm{m} / \mathrm{min}$.

Q-5) Let $I_{n}=\int x^{2 n+1} \sin x^{2} d x$ for integers $n \geq 0$. Find a recursive formula for I_{n}, and using your formula find explicitly $\int_{0}^{\sqrt{2 \pi}} x^{5} \sin x^{2} d x$.

Solution: Use by-parts with $u=x^{2 n}$ to obtain

$$
I_{n}=-(1 / 2) x^{2 n} \cos x^{2}+n \int x^{2 n-1} \cos x^{2} d x
$$

For the new integral use again by-parts with $u=x^{2 n-2}$ to obtain the final recursive expression

$$
I_{n}=-(1 / 2) x^{2 n} \cos x^{2}+(n / 2) x^{2 n-2} \sin x^{2}-n(n-1) I_{n-2} .
$$

Clearly $I_{0}=-(1 / 2) \cos x^{2}+C$. Putting these together we find that

$$
I_{2}=-(1 / 2) x^{4} \cos x^{2}+x^{2} \sin x^{2}+\cos x^{2}+C,
$$

and we then immediately have

$$
\int_{0}^{\sqrt{2 \pi}} x^{5} \sin x^{2} d x=-2 \pi^{2}
$$

Bonus:) A sequence of polynomials, called the Bernoulli polynomials, is defined recursively as follows:

$$
P_{0}(x)=1, \quad P_{n}^{\prime}(x)=n P_{n-1}(x), \quad \text { and } \int_{0}^{1} P_{n}(x) d x=0 .
$$

It is known that for example $P_{1}(x)=x-1 / 2$, each $P_{n}(x)$ is a polynomial in x of degree n with leading coefficient 1 , and also that for $n \geq 2, P_{n}(0)=P_{n}(1)$. Show that $P_{n}(1-x)=(-1)^{n} P_{n}(x)$ for $n \geq 1$.

Solution: Define a function $\phi_{n}(x)=P_{n}(x)-(-1)^{n} P_{n}(1-x)$ for $n \geq 1$. Check that $\phi_{1}(x) \equiv 0$. Now assume that $\phi_{n-1}(x) \equiv 0$ for some $n \geq 2$. We want to show that $\phi_{n}(x) \equiv 0$.

$$
\begin{aligned}
\phi_{n}^{\prime}(x) & =P_{n}^{\prime}(x)+(-1)^{n} P_{n}^{\prime}(1-x) \\
& =n\left[P_{n-1}(x)-(-1)^{n-1} P_{n-1}(1-x)\right] \\
& =n \phi_{n-1}(x) \equiv 0
\end{aligned}
$$

by the induction assumption. Thus we now know that $\phi_{n}(x)$ is constant. We have to determine what that constant is by finding one particular value of $\phi_{n}(x)$.

We observe, using the fact that $P_{n}(0)=P_{n}(1)$ for $n \geq 2$, that

$$
\begin{aligned}
& \phi_{n+1}(0)=P_{n+1}(0)-(-1)^{n+1} P_{n+1}(1)= \begin{cases}2 P_{n+1}(0) & \text { if } n+1 \text { is odd, } \\
0 & \text { if } n+1 \text { is even. }\end{cases} \\
& \phi_{n+1}(1)=P_{n+1}(1)-(-1)^{n+1} P_{n+1}(0)= \begin{cases}2 P_{n+1}(0) & \text { if } n+1 \text { is odd, } \\
0 & \text { if } n+1 \text { is even. }\end{cases}
\end{aligned}
$$

This shows that $\phi_{n+1}(0)=\phi_{n+1}(1)$, so there must exist a point c between 0 and 1 such that $\phi_{n+1}^{\prime}(c)=0$. But $\phi_{n+1}^{\prime}(c)=(n+1) \phi_{n}(c)$. We found that $\phi_{n}(c)=0$, but $\phi_{n}(x)$ being constant, we conclude that $\phi_{n}(x) \equiv 0$, and this completes the induction and the proof.

