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Math 113 Calculus – Midterm Exam II – Solutions

Q-1) Prove or disprove: The function f(x) = sin x2 is uniformly continuous on R.

Solution: This is clearly wrong! Assume that f(x) is uniformly continuous on R. Take
ε = 1/2. In fact any 0 < ε < 1 will do.

First observe that
√

(n + 1)π −√nπ =
π√

(n + 1)π +
√

nπ
, and

√
nπ <

√
(n + 1/2)π <

√
(n + 1)π.

Assume now that, since f is uniformly continuous, there is a δ > 0 such that for every
x, y with |x− y| < δ we will have |f(x)− f(y)| < ε.

Take x =
√

nπ, y =
√

(n + 1/2)π where n is such that

√
(n + 1)π −√nπ =

π√
(n + 1)π +

√
nπ

< δ.

Then |x − y| < δ, f(x) = 0 and f(y) = (−1)n, so |f(x) − f(y)| = 1 which is not smaller
than our chosen ε. This contradiction shows that f is not uniformly continuous on R.
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Q-2) Let f(x) be differentiable on [a, b], except possibly at x0 ∈ (a, b). Assume that
lim

x→x0

f ′(x) = 2007.

Prove or disprove: f(x) is differentiable also at x0 and in fact f ′(x0) = 2007.

Solution: This is clearly correct!

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0

, (definition of derivative at x0)

= lim
x→x0

f ′(c), ( for some x0 between x and x0; MVT.)

= lim
c→x0

f ′(c), ( since c is between x and x0. )

= 2007, (as given in the problem.).

Remark: This problem was intended to be an easy problem which I solved twice in class.
In haste I forgot to state here that f is defined and continuous on [a, b]. As stated above
the statement is false; think about any step function where x0 is any jump point. But if
you solve the problem assuming continuity of f on all of [a, b], I will certainly accept your
solution.
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Q-3) Our intelligent dog Elvis can run 5 m/min on the shore and can swim at 3 m/min.
He stands at a point A on the shore. We assume that the shore is a straight line.
Elvis wants to get to a tennis ball which is floating still at a point B on the sea. The
perpendicular line from B to the shore intersects the shore line at C. The distances
are as follows: AC = 12m and BC = 5m. Obviously Elvis will instinctively choose
a point D on the line AC, then run up to D, and swim the distance DB so as to
minimize his time to reach the ball from where he is standing. Assuming that Elvis
the dog intuitively makes correct choices, tell us precisely where D is.

Solution: Let D be x meters away from C towards A, and let f(x) denote the time in
minutes if Elvis chooses this point as D. Then the function to minimize is

f(x) =
12− x

5
+

√
25 + x2

3
, 0 ≤ x ≤ 12.

We find that f ′(x) = −1

5
+

x

3
√

25 + x2
. The only critical point in the given interval of

the function is x = 15/4.

We check that:

f(0) =
61

15
> 4,

f(12) =
13

3
> 4,

f(15/4) =
17

10
+

√
149

6
< 1.7 + 13/6 < 1.7 + 2.2 < 4,

so the minimum does occur at D which is 15/4 meters away from C towards A.

If you do not want to calculate f(15/4), then you can easily calculate

f ′′(x) =
25

3(25 + x2)3/2
> 0

so the given critical point is a local minimum. Since it is the only critical point, it must
give the global minimum. This way you do not calculate f at the end points either.
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Q-4) The radius and height of a right circular cylinder of fixed volume of 6860π cubic meters
are changing as functions of time. Find how much the radius is changing when the
height is 35m and is decreasing at a rate of 13m/min.

Solution: 6860π = πr2(t)h(t), where r(t) and h(t) are the radius and height at time t,
respectively. Take the derivative of this equation with respect to time to get,

0 = 2r(t)r′(t)h(t) + r2(t)h′(t).

When h(t) = 35m, then r(t) = 14m. Putting these in, together with h′(t) = −13m/min,
we find r′(t) = (13/5)m/min.
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Q-5) Let In =

∫
x2n+1 sin x2 dx for integers n ≥ 0. Find a recursive formula for In, and

using your formula find explicitly

∫ √
2π

0

x5 sin x2 dx.

Solution: Use by-parts with u = x2n to obtain

In = −(1/2)x2n cos x2 + n

∫
x2n−1 cos x2 dx.

For the new integral use again by-parts with u = x2n−2 to obtain the final recursive
expression

In = −(1/2)x2n cos x2 + (n/2)x2n−2 sin x2 − n(n− 1)In−2.

Clearly I0 = −(1/2) cos x2 + C. Putting these together we find that

I2 = −(1/2)x4 cos x2 + x2 sin x2 + cos x2 + C,

and we then immediately have

∫ √
2π

0

x5 sin x2 dx = −2π2.
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Bonus:) A sequence of polynomials, called the Bernoulli polynomials, is defined recursively as
follows:

P0(x) = 1, P ′
n(x) = nPn−1(x), and

∫ 1

0

Pn(x) dx = 0.

It is known that for example P1(x) = x − 1/2, each Pn(x) is a polynomial in x of
degree n with leading coefficient 1, and also that for n ≥ 2, Pn(0) = Pn(1). Show that
Pn(1− x) = (−1)nPn(x) for n ≥ 1.

Solution: Define a function φn(x) = Pn(x) − (−1)nPn(1 − x) for n ≥ 1. Check that
φ1(x) ≡ 0. Now assume that φn−1(x) ≡ 0 for some n ≥ 2. We want to show that
φn(x) ≡ 0.

φ′n(x) = P ′
n(x) + (−1)nP ′

n(1− x)

= n[Pn−1(x)− (−1)n−1Pn−1(1− x)]

= nφn−1(x) ≡ 0

by the induction assumption. Thus we now know that φn(x) is constant. We have to
determine what that constant is by finding one particular value of φn(x).

We observe, using the fact that Pn(0) = Pn(1) for n ≥ 2, that

φn+1(0) = Pn+1(0)− (−1)n+1Pn+1(1) =

{
2Pn+1(0) if n + 1 is odd,
0 if n + 1 is even.

φn+1(1) = Pn+1(1)− (−1)n+1Pn+1(0) =

{
2Pn+1(0) if n + 1 is odd,
0 if n + 1 is even.

This shows that φn+1(0) = φn+1(1), so there must exist a point c between 0 and 1 such
that φ′n+1(c) = 0. But φ′n+1(c) = (n + 1)φn(c). We found that φn(c) = 0, but φn(x) being
constant, we conclude that φn(x) ≡ 0, and this completes the induction and the proof.


