NAME:....

Ali Sinan Sertöz

STUDENT NO:....

Math 113 Calculus – Homework 1 – Solutions

1	2	3	4	TOTAL
25	25	25	25	100
25	25	25	25	100

Please do not write anything inside the above boxes!

Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Consider the function $f(x) = \frac{1}{x}$ for x > 0.

For each given $\epsilon > 0$ and for each $x_0 > 0$, find explicitly a $\delta > 0$ (which usually depends both on ϵ and x_0) such that for all x > 0 with $|x - x_0| < \delta$ we will have $|f(x) - f(x_0)| < \epsilon$.

Solution:

Fix an $\epsilon > 0$ and any $x_0 > 0$. Choose a small $\delta > 0$ such that $x - \delta > 0$. We want to find out how small δ should be such that whenever we choose a point y with $|x_0 - y| < \delta$, we will have $|f(x_0) - f(y)| < \epsilon$.

Since $0 < x_0 - \delta < y < x_0 + \delta$, we have $\frac{1}{x_0 + \delta} < \frac{1}{y} < \frac{1}{x_0 - y}$.

Now we examine how we can make f(y) close to $f(x_0)$.

$$|f(y) - f(x_0)| = \frac{|x_0 - y|}{x_0 y} < \frac{\delta}{x_0(x_0 - \delta)}$$

We now force this last expression to be smaller than or equal to ϵ to find a condition on δ . This gives

$$0 < \delta \le \frac{\epsilon \, x_0^2}{1 + \epsilon \, x_0}.$$

Hence any δ satisfying this inequality will work.

Observe that, once $\epsilon > 0$ is fixed, the values of δ depends on x_0 . In particular, if we consider $\delta = \delta(x, \epsilon)$ as a function of x and ϵ , then for any $\epsilon > 0$, we have $\lim_{x \to 0^+} \delta(x, \epsilon) = 0$.

NAME:

STUDENT NO:

Q-2) Consider the function $f(x) = \frac{1}{x}$ for x > 0.

Prove or disprove that given any $\epsilon > 0$, there exists a $\delta > 0$ (which depends only on ϵ) such that for all x, y > 0 with $|x - y| < \delta$ we will have $|f(x) - f(y)| < \epsilon$.

Solution:

We will disprove the given statement.

Thus, what we will prove is the following statement: There is an $\epsilon > 0$ such that for every $\delta > 0$, there exists x, y > 0 such that $|x - y| < \delta$ but $|f(x) - f(y)| \ge \epsilon$.

Indeed take $\epsilon = 1$. For any $\delta > 0$, take $y = x + \delta/2$ where we want to choose x > 0 such that

$$|f(x) - f(y)| = \frac{|x - y|}{xy} = \frac{\delta/2}{x(x + \delta/2)} \ge 1.$$

It is possible to choose such an x > 0 since the limit of the last expression as x goes to zero from the right is infinite.

Technically speaking, we proved that f(x) = 1/x is not uniformly continuous on $(0, \infty)$.

STUDENT NO:

Q-3) Consider the function $f(x) = \frac{1}{x}$ for $x \in [1, 5]$.

Prove or disprove that given any $\epsilon > 0$, there exists a $\delta > 0$ (which depends only on ϵ) such that for all $x, y \in [1, 5]$ with $|x - y| < \delta$ we will have $|f(x) - f(y)| < \epsilon$.

Solution:

First observe that if we can find a $\delta > 0$ which works for a particular ϵ , then the same δ works for larger ϵ also. So there is no harm in assuming that $0 < \epsilon < 1$.

In question 1 we showed that for any $\epsilon > 0$ and any x > 0, the choice of $\delta = \frac{\epsilon x^2}{1 + \epsilon x}$ works. This shows that once ϵ is fixed, δ depends continuously on x.

Since $x \in [1, 5]$ which is a closed and bounded interval, this continuous function has a minimum value there.

Since $\delta = \delta(x) = \frac{\epsilon x^2}{1 + \epsilon x} > \epsilon > 0$, the minimum of $\delta(x)$ on [1,5] is strictly positive (in fact larger than or equal to ϵ). Call this minimum value δ_0 .

We showed that $\delta_0 > 0$ and works for the given ϵ at every point of the interval [1, 5].

You notice that the only property of the interval [1, 5] we used is its being closed and bounded. Hence 1/x is uniformly continuous on every closed and bounded subinterval of positive real numbers.

This is a consequence of the theorem which we proved and which says that a continuous function on a closed and bounded interval is uniformly continuous.

NAME:

NAME:

STUDENT NO:

Q-4) Consider the function $f(x) = \frac{1}{x}$ for $x \in [1, \infty)$.

Prove or disprove that given any $\epsilon > 0$, there exists a $\delta > 0$ (which depends only on ϵ) such that for all $x, y \in [1, \infty)$ with $|x - y| < \delta$ we will have $|f(x) - f(y)| < \epsilon$.

Solution:

In the previous problem, we proved that 1/x is uniformly continuous on every interval of the form [1, R] for any R > 1. We need to control 1/x on $[R, \infty)$. But this is easy since 1/x tends to zero for large x. We exploit this observation to show that 1/x is uniformly continuous on $[1, \infty)$.

Fix any $\epsilon > 0$. Choose R > 0 such that for any $x \ge R$, we will have $1/x < \epsilon/3$.

Since 1/x is uniformly continuous on [1, R], feeding $\epsilon/3 > 0$ into the definition of uniform continuity of 1/x on [1, R], we find that there exists a $\delta > 0$ such that

$$\left|\frac{1}{x} - \frac{1}{y}\right| < \epsilon/3$$
 for all $x, y \in [1, R]$ such that $|x - y| < \delta$.

Now take any $x, y \in [1, \infty)$ with $|x - y| < \delta$. We have three cases:

Case 1: $x, y \in [1, R]$. We just showed that in this case $|f(x) - f(y)| < \epsilon/3 < \epsilon$.

Case 2: $x, y \in [R, \infty)$. By choice of R, we have

$$|f(x) - f(y)| \le |f(x)| + |f(y)| < \epsilon/3 + \epsilon/3 < \epsilon.$$

Case 3: 0 < x < R < y. In this case, we use the conclusions of the previous two cases as follows.

$$|f(x) - f(y)| \le |f(x) - f(R)| + |f(R) - f(y)| < \epsilon/3 + 2\epsilon/3 = \epsilon.$$

Thus we showed that 1/x is uniformly continuous on $[1, \infty)$.

Note: There is an easier way to capture a working δ , which I learned from several student solutions. This works both for questions 3 and 4.

Since in both cases $x, y \ge 1$, we have $\frac{1}{xy} \le 1$. Then we have for all $x, y \ge 1$,

$$|f(x) - f(y)| = \left|\frac{1}{x} - \frac{1}{y}\right| = \frac{|x - y|}{xy} \le |x - y|.$$

If we restrict this last expression to be less than ϵ , then that will surely restrict |f(x) - f(y)|. But this last expression is already less than δ . So any δ with $0 < \delta \le \epsilon$ will work, for both problems.