\qquad

Math 113 Calculus - Homework 1 - Solutions

1	2	3	4	TOTAL
25	25	25	25	100
25	25	25	25	100

Please do not write anything inside the above boxes!
Check that there are 4 questions on your booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.

Q-1) Consider the function $f(x)=\frac{1}{x}$ for $x>0$.
For each given $\epsilon>0$ and for each $x_{0}>0$, find explicitly a $\delta>0$ (which usually depends both on ϵ and x_{0}) such that for all $x>0$ with $\left|x-x_{0}\right|<\delta$ we will have $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$.

Solution:

Fix an $\epsilon>0$ and any $x_{0}>0$. Choose a small $\delta>0$ such that $x-\delta>0$. We want to find out how small δ should be such that whenever we choose a point y with $\left|x_{0}-y\right|<\delta$, we will have $\left|f\left(x_{0}\right)-f(y)\right|<\epsilon$.

Since $0<x_{0}-\delta<y<x_{0}+\delta$, we have $\frac{1}{x_{0}+\delta}<\frac{1}{y}<\frac{1}{x_{0}-y}$.
Now we examine how we can make $f(y)$ close to $f\left(x_{0}\right)$.

$$
\left|f(y)-f\left(x_{0}\right)\right|=\frac{\left|x_{0}-y\right|}{x_{0} y}<\frac{\delta}{x_{0}\left(x_{0}-\delta\right)} .
$$

We now force this last expression to be smaller than or equal to ϵ to find a condition on δ. This gives

$$
0<\delta \leq \frac{\epsilon x_{0}^{2}}{1+\epsilon x_{0}}
$$

Hence any δ satisfying this inequality will work.
Observe that, once $\epsilon>0$ is fixed, the values of δ depends on x_{0}. In particular, if we consider $\delta=\delta(x, \epsilon)$ as a function of x and ϵ, then for any $\epsilon>0$, we have $\lim _{x \rightarrow 0^{+}} \delta(x, \epsilon)=0$.

Q-2) Consider the function $f(x)=\frac{1}{x}$ for $x>0$.
Prove or disprove that given any $\epsilon>0$, there exists a $\delta>0$ (which depends only on ϵ) such that for all $x, y>0$ with $|x-y|<\delta$ we will have $|f(x)-f(y)|<\epsilon$.

Solution:

We will disprove the given statement.
Thus, what we will prove is the following statement: There is an $\epsilon>0$ such that for every $\delta>0$, there exists $x, y>0$ such that $|x-y|<\delta$ but $|f(x)-f(y)| \geq \epsilon$.

Indeed take $\epsilon=1$. For any $\delta>0$, take $y=x+\delta / 2$ where we want to choose $x>0$ such that

$$
|f(x)-f(y)|=\frac{|x-y|}{x y}=\frac{\delta / 2}{x(x+\delta / 2)} \geq 1
$$

It is possible to choose such an $x>0$ since the limit of the last expression as x goes to zero from the right is infinite.

Technically speaking, we proved that $f(x)=1 / x$ is not uniformly continuous on $(0, \infty)$.

Q-3) Consider the function $f(x)=\frac{1}{x}$ for $x \in[1,5]$.
Prove or disprove that given any $\epsilon>0$, there exists a $\delta>0$ (which depends only on ϵ) such that for all $x, y \in[1,5]$ with $|x-y|<\delta$ we will have $|f(x)-f(y)|<\epsilon$.

Solution:

First observe that if we can find a $\delta>0$ which works for a particular ϵ, then the same δ works for larger ϵ also. So there is no harm in assuming that $0<\epsilon<1$.

In question 1 we showed that for any $\epsilon>0$ and any $x>0$, the choice of $\delta=\frac{\epsilon x^{2}}{1+\epsilon x}$ works. This shows that once ϵ is fixed, δ depends continuously on x.

Since $x \in[1,5]$ which is a closed and bounded interval, this continuous function has a minimum value there.
Since $\delta=\delta(x)=\frac{\epsilon x^{2}}{1+\epsilon x}>\epsilon>0$, the minimum of $\delta(x)$ on [1,5] is strictly positive (in fact larger than or equal to ϵ). Call this minimum value δ_{0}.

We showed that $\delta_{0}>0$ and works for the given ϵ at every point of the interval $[1,5]$.
You notice that the only property of the interval $[1,5]$ we used is its being closed and bounded. Hence $1 / x$ is uniformly continuous on every closed and bounded subinterval of positive real numbers.

This is a consequence of the theorem which we proved and which says that a continuous function on a closed and bounded interval is uniformly continuous.

Q-4) Consider the function $f(x)=\frac{1}{x}$ for $x \in[1, \infty)$.
Prove or disprove that given any $\epsilon>0$, there exists a $\delta>0$ (which depends only on ϵ) such that for all $x, y \in[1, \infty)$ with $|x-y|<\delta$ we will have $|f(x)-f(y)|<\epsilon$.

Solution:

In the previous problem, we proved that $1 / x$ is uniformly continuous on every interval of the form $[1, R]$ for any $R>1$. We need to control $1 / x$ on $[R, \infty)$. But this is easy since $1 / x$ tends to zero for large x. We exploit this observation to show that $1 / x$ is uniformly continuous on $[1, \infty)$.

Fix any $\epsilon>0$. Choose $R>0$ such that for any $x \geq R$, we will have $1 / x<\epsilon / 3$.
Since $1 / x$ is uniformly continuous on $[1, R]$, feeding $\epsilon / 3>0$ into the definition of uniform continuity of $1 / x$ on $[1, R]$, we find that there exists a $\delta>0$ such that

$$
\left|\frac{1}{x}-\frac{1}{y}\right|<\epsilon / 3 \text { for all } x, y \in[1, R] \text { such that }|x-y|<\delta .
$$

Now take any $x, y \in[1, \infty)$ with $|x-y|<\delta$. We have three cases:
Case 1: $x, y \in[1, R]$. We just showed that in this case $|f(x)-f(y)|<\epsilon / 3<\epsilon$.
Case 2: $x, y \in[R, \infty)$. By choice of R, we have

$$
|f(x)-f(y)| \leq|f(x)|+|f(y)|<\epsilon / 3+\epsilon / 3<\epsilon .
$$

Case 3: $0<x<R<y$. In this case, we use the conclusions of the previous two cases as follows.

$$
|f(x)-f(y)| \leq|f(x)-f(R)|+|f(R)-f(y)|<\epsilon / 3+2 \epsilon / 3=\epsilon
$$

Thus we showed that $1 / x$ is uniformly continuous on $[1, \infty)$.
Note: There is an easier way to capture a working δ, which I learned from several student solutions. This works both for questions 3 and 4 .

Since in both cases $x, y \geq 1$, we have $\frac{1}{x y} \leq 1$. Then we have for all $x, y \geq 1$,

$$
|f(x)-f(y)|=\left|\frac{1}{x}-\frac{1}{y}\right|=\frac{|x-y|}{x y} \leq|x-y| .
$$

If we restrict this last expression to be less than ϵ, then that will surely restrict $|f(x)-f(y)|$. But this last expression is already less than δ. So any δ with $0<\delta \leq \epsilon$ will work, for both problems.

