Math 114 Calculus - Make-up Exam - Solutions

- **Q-1)** Consider the power series $\sum_{n=2}^{\infty} \frac{x^n}{n(\ln n)^2}$.
 - (i): Find its radius of convergence. (6 points)
 - (ii): Check convergence at the end points. (7 points each)

Solution: Applying the ratio test $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = |x| < 1$ for convergence gives the radius of convergence as 1.

When x = -1, the series converges by alternating series test.

When x = 1, the series converges by integral test.

Q-2) Assume that w = f(u, v) satisfies $w_{uu} + w_{vv} = 0$. Letting $u = \frac{x^2 - y^2}{2}$ and v = xy, calculate $w_{xx} + w_{yy}$.

Solution: This is an exercise in chain rule. Your calculations should give you $w_{xx} + w_{yy} = (x^2 + y^2)(w_{uu} + w_{vv}) = 0.$

Q-3) Write the equation of the tangent plane to the surface f(x, y, z) = 0 at the point $(x_0, y_0, z_0) = (3, -1, 2)$, where $f(x, y, z) = x^3 + 5xy^2z + 19y + xz^2 - 50$. Write your answer in the form Ax + By + Cz = D.

Solution: The equation of this tangent is $\nabla f(3, -1, 2) \cdot (x - 3, y + 1, z - 2) = 0$. Simplifying this we get 41x - 41y + 27z = 218.

Q-4) Evaluate
$$I = \int_0^1 \int_{-\sqrt{y}}^{\sqrt{y}} dx dy + \int_1^4 \int_{y-2}^{\sqrt{y}} dx dy.$$

Solution:

$$I = \int_{-1}^{2} \int_{x^{2}}^{x+2} dy dx = \int_{-1}^{2} \left(y |_{x^{2}}^{x+2} \right) dx = \int_{-1}^{2} (x+2-x^{2}) dx$$
$$\left(\frac{x^{2}}{2} + 2x - \frac{x^{3}}{3} \Big|_{-1}^{2} \right) = \frac{9}{2}.$$

Q-5) Let C be the circle of intersection of the plane 4x - 3y + 5z = 0 with the sphere $x^2 + y^2 + z^2 = 11$, oriented counterclockwise when viewed from the north pole of the sphere. Calculate $\int_C \mathbf{F} \cdot \mathbf{T} \, ds$, where $\mathbf{F} = (2x - 9y)\mathbf{i} + (5x - 3z)\mathbf{j} + (y - 6x)\mathbf{k}$ and \mathbf{T} is the unit tangent vector of C with the given orientation.

Solution: Let *D* be the disc bounded by *C* with its unit normal vector $\mathbf{n} = (4, -3, 5)/|(4, -3, 5)|$. The area of D is 11π . The Stokes' theorem gives

$$\int_{C} \mathbf{F} \cdot \mathbf{T} \, ds = \int \int_{D} \mathbf{curl} \mathbf{F} \cdot \mathbf{n} \, d\sigma$$
$$= \frac{1}{\sqrt{50}} \int \int_{D} (4, 6, 14) \cdot (4, -3, 5) \, d\sigma$$
$$= \frac{68}{\sqrt{50}} \int \int_{D} d\sigma$$
$$= \frac{68}{\sqrt{50}} \, 11\pi = \frac{748\pi}{\sqrt{50}}.$$