Math 114 Calculus - Make-up Exam - Solutions

Q-1) Consider the power series $\sum_{n=2}^{\infty} \frac{x^{n}}{n(\ln n)^{2}}$.
(i): Find its radius of convergence. (6 points)
(ii): Check convergence at the end points. (7 points each)

Solution: Applying the ratio test $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=|x|<1$ for convergence gives the radius of convergence as 1 .

When $x=-1$, the series converges by alternating series test.
When $x=1$, the series converges by integral test.

Q-2) Assume that $w=f(u, v)$ satisfies $w_{u u}+w_{v v}=0$.
Letting $u=\frac{x^{2}-y^{2}}{2}$ and $v=x y$, calculate $w_{x x}+w_{y y}$.
Solution: This is an exercise in chain rule. Your calculations should give you $w_{x x}+w_{y y}=$ $\left(x^{2}+y^{2}\right)\left(w_{u u}+w_{v v}\right)=0$.

Q-3) Write the equation of the tangent plane to the surface $f(x, y, z)=0$ at the point $\left(x_{0}, y_{0}, z_{0}\right)=$ $(3,-1,2)$, where $f(x, y, z)=x^{3}+5 x y^{2} z+19 y+x z^{2}-50$.
Write your answer in the form $A x+B y+C z=D$.
Solution: The equation of this tangent is $\nabla f(3,-1,2) \cdot(x-3, y+1, z-2)=0$. Simplifying this we get $41 x-41 y+27 z=218$.

Q-4) Evaluate $I=\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} d x d y+\int_{1}^{4} \int_{y-2}^{\sqrt{y}} d x d y$.

Solution:

$I=\int_{-1}^{2} \int_{x^{2}}^{x+2} d y d x=\int_{-1}^{2}\left(\left.y\right|_{x^{2}} ^{x+2}\right) d x=\int_{-1}^{2}\left(x+2-x^{2}\right) d x$
$\left(\frac{x^{2}}{2}+2 x-\left.\frac{x^{3}}{3}\right|_{-1} ^{2}\right)=\frac{9}{2}$.

Q-5) Let C be the circle of intersection of the plane $4 x-3 y+5 z=0$ with the sphere $x^{2}+y^{2}+z^{2}=$ 11 , oriented counterclockwise when viewed from the north pole of the sphere.
Calculate $\int_{C} \mathbf{F} \cdot \mathbf{T} d s$, where $\mathbf{F}=(2 x-9 y) \mathbf{i}+(5 x-3 z) \mathbf{j}+(y-6 x) \mathbf{k}$ and \mathbf{T} is the unit tangent vector of C with the given orientation.

Solution: Let D be the disc bounded by C with its unit normal vector $\mathbf{n}=(4,-3,5) /|(4,-3,5)|$. The area of D is 11π. The Stokes' theorem gives

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathbf{T} d s & =\iint_{D} \operatorname{curlF} \cdot \mathbf{n} d \sigma \\
& =\frac{1}{\sqrt{50}} \iint_{D}(4,6,14) \cdot(4,-3,5) d \sigma \\
& =\frac{68}{\sqrt{50}} \iint_{D} d \sigma \\
& =\frac{68}{\sqrt{50}} 11 \pi=\frac{748 \pi}{\sqrt{50}} .
\end{aligned}
$$

