Q-1) Find $\lim _{(x, y) \rightarrow(0,0)} \frac{5 x^{4} y^{2}}{7 x^{8}+3 y^{4}}$, if it exists.
Solution: Approach the limit along the parabolas $y=\lambda x^{2}$,

$$
\lim _{\left(x, \lambda x^{2}\right) \rightarrow(0,0)} \frac{5 x^{4} y^{2}}{7 x^{8}+3 y^{4}}=\lim _{\left(x, \lambda x^{2}\right) \rightarrow(0,0)} \frac{5 x^{4}\left(\lambda x^{2}\right)^{2}}{7 x^{8}+3\left(\lambda x^{2}\right)^{4}}=\frac{5 \lambda^{2}}{7+3 \lambda^{4}}
$$

which shows that the limit depends on the path. Hence the limit does not exist.

Q-2) Let $f(x, y)=x^{2} \ln \left(x^{2}+\sec \left(e^{y}-1\right)\right)$, where $x=\cos t+\sin t$ and $y=t+\tan t$. Find the derivative of f with respect to t at the point $t=0$.

Solution: The required value is $f_{x}(x(0), y(0)) x^{\prime}(0)+f_{y}(x(0), y(0)) y^{\prime}(0)$. So we calculate all these values separately.

$$
\begin{aligned}
x(0) & =1, \\
y(0) & =0, \\
x^{\prime}(t) & =-\sin t+\cos t, \\
x^{\prime}(0) & =1, \\
y^{\prime}(t) & =1+\sec ^{2} t, \\
y^{\prime}(0) & =2, \\
f_{x}(x, y) & =2 x \ln \left(x^{2}+\sec \left(e^{y}-1\right)\right)+\frac{2 x^{3}}{x^{2}+\sec \left(e^{y}-1\right)}, \\
f_{x}(1,0) & =2 \ln 2+1, \\
f_{y}(x, y) & =\frac{x^{2} \sec \left(e^{y}-1\right) \tan \left(e^{y}-1\right) e^{y}}{x^{2}+\sec \left(e^{y}-1\right)}, \\
f_{y}(1,0) & =0 .
\end{aligned}
$$

Putting these together we find the result as $2 \ln 2+1$.

Q-3) Find, if they exist, the local/global minimum/maximum and saddle points of the function

$$
f(x, y)=x^{4}-8 x^{2}+3 y^{2}-6 y
$$

Solution: $\quad f_{x}=4 x\left(x^{2}-4\right)=0, f_{y}=6(y-1)=0$ gives $(0,1),(2,1)$ and $(-2,1)$ as the critical points.
$f_{x x}=12 x^{2}-16, f_{y y}=6, f_{x y}=0$ gives $\Delta=72 x^{2}-96$.
At $(0,1), \Delta<0$, so it is a saddle point.
At $(\pm 2,1), \Delta>0$ and $f_{x x}>0$, so they are both local minimum.
The function does not go to $-\infty$, and $f(\pm 2,1)=-19$, so this value is the global minimum values of f.

Q-4) Find, if they exist, the local/global minimum/maximum and saddle points of the function

$$
f(x, y)=x^{3}+y^{3}-9 x y-35
$$

Solution: From $f_{x}=3 x^{2}-9 y=0$, and $f_{y}=3 y^{2}-9 x=0$ we find $(0,0)$ and $(3,3)$ as the critical points.
$f_{x x}=6 x, f_{y y}=6 y, f_{x y}=-9$ and $\Delta=36 x y-81$.
At $(0,0), \Delta<0$, so this is a saddle point.
At $(3,3), \Delta>0$ and $f_{x x}>0$, so this is a local minimum point. Since the function goes both to plus and minus infinity, there is no global minimum.

Q-5) Find, if they exist, the minimum/maximum values of the function

$$
f(x, y, z)=\frac{1}{x y z}
$$

where $x, y, z>0$ and satisfy $\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}=1$.
Solution: We use Lagrange's method with constraint $g=\frac{x^{2}}{4}+\frac{y^{2}}{9}+\frac{z^{2}}{25}-1=0$.
$\nabla f=\left(\frac{-1}{x^{2} y z}, \frac{-1}{x y^{2} z}, \frac{-1}{x y z^{2}}\right)$, and $\nabla g=\left(\frac{2 x}{4}, \frac{2 y}{9}, \frac{2 z}{25}\right)$.
From $\nabla f=\lambda \nabla g$ we find that $y=(3 / 2) x, z=(5 / 2) x$. Putting these into the constraint $g=0$ we find $x=2 / \sqrt{3}$ (recall that $x, y, z \geq 0$). This then gives $y=3 / \sqrt{3}$ and $z=5 / \sqrt{3}$. Calculating f at these points we find $f=\sqrt{3} / 10$. Since f is unbounded in this domain, this value must give the global minimum.

