\qquad

Math 114 Calculus - Midterm Exam 1 - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!
Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your work in reasonable detail. A correct answer without proper or too much reasoning may not get any credit.
Also note that if you write down something which you don't believe yourself, the chances are that I will not believe it either. Don't waste your time by trying your luck. Instead take your time to think.

Use the following formulas at your own discretion.

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
\cos x & =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\tan x & =x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\cdots \\
\sec x & =1+\frac{x^{2}}{2}+\frac{5 x^{4}}{24}+\frac{61 x^{6}}{720}+\cdots \\
e^{x} & =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots \\
\ln (1+x) & =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
\arctan x & =x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots \\
\int_{0}^{(1+x)^{m}} & =1+m x+\frac{m(m-1) x^{2}}{2!}+\frac{m(m-1)(m-2) x^{3}}{3!}+\cdots \\
\int_{0}^{1 / 2} \frac{d x}{1+x^{3}} & =0.485402 \ldots \\
\int_{0}^{1 / 2} \frac{d x}{1+x^{4}} & =0.493958 \ldots
\end{aligned}
$$

Q-1) Find the interval of convergence of the series $\sum_{n=2}^{\infty} \frac{x^{n}}{(\ln n)^{2011}}$.

Solution:

Let $a_{n}=\frac{x^{n}}{(\ln n)^{2011}}$. Use ratio test to find

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left(\frac{\ln n}{\ln (n+1)}\right)^{2011}|x|=\lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)^{2011}|x|=|x| .
$$

So the series converges absolutely for $|x|<1$, and diverges for $|x|>1$.
We now check the end points.
When $x=-1$, the series converges by the Alternating Series Test.
When $x=1$, use Cauchy Condensation Test. Set $b_{n}=2^{n} a_{2^{n}}=\frac{1}{(\ln 2)^{2011}} \frac{2^{n}}{n^{2011}}$. Then use ratio test for $\sum_{n=2}^{\infty} b_{n}$. Since $\lim _{n \rightarrow \infty} \frac{b_{n+1}}{b_{n}}=2$, it diverges. It follows that our series also diverges.

Hence the interval of convergence is $[-1,1)$.
This was Question-3 in Recitation-2.

Q-2) Find $\lim _{n \rightarrow \infty} \frac{(n+1)(n+2) \cdots(n+2011)}{2011^{n}}$.

Solution:

Set $c=1 / 2011$ and $k=2011$.
Let $a_{n}=c^{n}(n+1) \cdots(n+k)$. Check that $\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{n+1+k}{n+1} c=c$. Hence $\sum_{n=0}^{\infty} a_{n}$ converges by the ratio test. This means that the general term goes to zero.
Hence $\lim _{n \rightarrow \infty} \frac{(n+1)(n+2) \cdots(n+2011)}{2011^{n}}=0$.
We can also show this by L'Hopital's rule. $c^{n}(n+1) \cdots(n+k)=\frac{(n+1) \cdots(n+k)}{(1 / c)^{n}}$. After k applications of L'Hopital we obtain

$$
\lim _{n \rightarrow \infty} \frac{(n+1) \cdots(n+k)}{(1 / c)^{n}}=\lim _{n \rightarrow \infty} \frac{k!}{[\ln (1 / c)]^{k}(1 / c)^{n}}=0
$$

This was Question-5 in Recitation-2.

Q-3) Prove the following part of the Cauchy Condensation Test:
Assume that $a_{1} \geq a_{2} \geq \cdots \geq a_{n} \geq a_{n+1} \geq \cdots \geq 0$.
Then, $\sum_{n=1}^{\infty} a_{n}$ converges if $\sum_{n=0}^{\infty} 2^{n} a_{2^{n}}$ converges.

Solution:

First of all let us fix a notation. Let $s_{n}=a_{1}+\cdots+a_{n}$ and $t_{n}=a_{1}+2 a_{2}+4 a_{4}+\cdots+2^{n} a_{2^{n}}$.
Assume that $\lim _{n \rightarrow \infty} t_{n}=t$ and observe that since each $a_{n} \geq 0$, we have s_{n} as an increasing sequence. If we can show that it is bounded from above, we will conclude that it converges, which in turn will imply that $\sum_{n=0}^{\infty} a_{n}$ converges. For this consider the following inequalities.

$$
\begin{aligned}
a_{1} & =a_{1} \\
2 a_{2} & \geq a_{2}+a_{3} \\
4 a_{4} & \geq a_{4}+a_{5}+a_{6}+a_{7} \\
\cdots & \\
2^{n} a_{2^{n}} & \geq a_{2^{n}}+a_{2^{n}+1}+\cdots+a_{2^{n+1}-1}
\end{aligned}
$$

Adding these side by side we get $t_{n} \geq s_{2^{n+1}-1}$. Since $t \geq t_{n}$ and since $s_{2^{n+1}-1}$ is an increasing sequence, it follows that being bounded from above it converges, say to a number c. So we have $s_{2^{n+1}-1}<c$.

For any $n, n \leq 2^{k+1}-1$ for some k. (In fact $k \geq(\ln (n+1) / \ln 2)-1$.) Since s_{n} is increasing, $s_{n} \leq s_{2^{k+1}-1}<c$. Hence, s_{n} is increasing and bounded from above and converges.

This was Question-1 in Recitation-1.

Q-4) Find $\lim _{x \rightarrow 0} \frac{x^{4}+\left(\tan x^{2}\right)(2-2 \sec x)}{\left(\sin x^{2}\right)(2-2 \cos x)-x^{4}}$.

Solution:

We use Taylor expansions of the numerator.

$$
\begin{aligned}
x^{4}+\left(\tan x^{2}\right)(2-2 \sec x) & =x^{4}+\left(x^{2}+\frac{x^{6}}{3}+\frac{2 x^{10}}{15}+\cdots\right)\left(-x^{2}-\frac{5 x^{4}}{24}-\frac{61 x^{6}}{720}-\cdots\right) \\
& =-\frac{5 x^{6}}{12}-\frac{181 x^{8}}{360}-\frac{93 x^{10}}{448}-\cdots
\end{aligned}
$$

And the denominator:

$$
\begin{aligned}
\left(\sin x^{2}\right)(2-2 \cos x)-x^{4} & =\left(x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}+\cdots\right)\left(x^{2}-\frac{x^{4}}{12}+\frac{x^{6}}{360}-\cdots\right)-x^{4} \\
& =-\frac{x^{6}}{12}-\frac{59 x^{8}}{360}-\frac{31 x^{10}}{2240}-\cdots
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{4}+\left(\tan x^{2}\right)(2-2 \sec x)}{\left(\sin x^{2}\right)(2-2 \cos x)-x^{4}} & =\lim _{x \rightarrow 0} \frac{\left(-\frac{5 x^{6}}{12}-\frac{181 x^{8}}{360}-\frac{93 x^{10}}{448}-\cdots\right)}{\left(-\frac{x^{6}}{12}-\frac{59 x^{8}}{360}-\frac{31 x^{10}}{2240}-\cdots\right)} \\
& =\lim _{x \rightarrow 0} \frac{\left(-\frac{5}{12}-\frac{181 x^{2}}{360}-\frac{93 x^{4}}{448}-\cdots\right)}{\left(-\frac{1}{12}-\frac{59 x^{2}}{360}-\frac{31 x^{4}}{2240}-\cdots\right)} \\
& =\frac{\left(-\frac{5}{12}\right)}{\left(-\frac{1}{12}\right)} \\
& =5 .
\end{aligned}
$$

A similar question was solved in Recitation-4.

Q-5) Find the sum

$$
S=1-\frac{1}{2^{4} 4}+\frac{1}{2^{7} 7}-\frac{1}{2^{10} 10}+\cdots+\frac{(-1)^{n}}{2^{3 n+1}(3 n+1)}+\cdots
$$

Solution:

Consider the function

$$
f(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{3 n+1}}{3 n+1}=x-\frac{x^{4}}{4}+\frac{x^{7}}{7}-\frac{x^{10}}{10}+\cdots+\frac{(-1)^{n} x^{3 n+1}}{(3 n+1)}+\cdots, \text { for }|x|<1
$$

We then have $S=1 / 2+f(1 / 2)$.
We observe that

$$
f^{\prime}(x)=1-x^{3}+x^{6}-x^{9}+\cdots+(-1)^{n} x^{3 n}+\cdots=\frac{1}{1+x^{3}}
$$

It then follows that

$$
f(x)=\int_{0}^{x} \frac{d t}{1+t^{3}}, \text { for }|x|<1
$$

Finally

$$
S=1 / 2+f(1 / 2)=1 / 2+\int_{0}^{1 / 2} \frac{d t}{1+t^{3}}=0.5+0.485402 \cdots=0.985402 \ldots
$$

This was Question-4 in Homework-1. A very similar question was solved in Recitation-4.

