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Math 114 Calculus – Midterm Exam 1 – Solutions

1 2 3 4 5 TOTAL

20 20 20 20 20 100

Please do not write anything inside the above boxes!

Check that there are 5 questions on your exam booklet. Write your name on top of every page. Show your
work in reasonable detail. A correct answer without proper reasoning may not get any credit.
Every mathematical symbol and every equation you write must be part of a well constructed sentence. I
will not read any hanging equations or symbols. I will not try to interpret your symbols. I don’t do mind
reading, yet.

Use responsibly:

ln(1 + x) = x− 1

2
x2 +

1

3
x3 − · · ·+ (−1)n+1 1

n
xn + · · ·

sinx = x− 1

3!
x3 +

1

5!
x5 − · · ·+ (−1)n 1

(2n+ 1)!
x2n+1 + · · ·

cosx = 1− 1

2!
x2 +

1

4!
x4 − · · ·+ (−1)n 1

(2n)!
x2n + · · ·

arctanx = x− 1

3
x3 +

1

5
x5 − · · ·+ (−1)n+1 1

2n+ 1
x2n+1 + · · ·

ex = 1 + x+
1

2!
x2 + · · ·+ 1

n!
xn + · · ·
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Q-1)

(i) Let
∞∑
n=0

an and
∞∑
n=0

bn be infinite series with positive terms. Assume further that
∞∑
n=0

bn con-

verges and that
an+1

an
≤ bn+1

bn
,

for all n ≥ N for some fixed N . Show that
∞∑
n=0

an also converges.

(ii) Let
∞∑
n=0

an be an infinite series with positive terms. Assume that there exists a real number

p > 1 such that
an+1

an
≤ 1− p

n
,

for all n ≥ N for some fixed N . Show that
∞∑
n=0

an converges.

Hint: You may find Bernoulli’s inequality useful: For all p > 1 and 0 < x < 1, we have
1− px ≤ (1− x)p. You may also need part (i).

Solution:

(i) It follows that for all n ≥ N , we have

an
bn
≤ aN
bN

= K,

which implies
0 ≤ an ≤ Kbn,

for all large n. Hence
∑
an converges by direct comparison.

(ii) We have for all large n,

an+1

an
≤ 1− p

n
≤ (1− 1

n
)p =

1/np

1/(n− 1)p
.

Since
∑

1/(n− 1)p converges when p > 1, our series
∑
an converges by the result of part (i).
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Q-2) Let f(x) = x2 lnx, and let

f(x) =
∞∑
n=0

an(x− 1)n

be the Taylor series of f at x = 1. Write explicitly the value of an for n = 0, 1, . . . , and find the
interval on which the above Taylor series converges to the function f .

Solution:

First observe that

f ′(x) = 2x lnx+ x, f ′′(x) = 2 lnx+ 3, f (n)(x) =
(−1)n+12 · (n− 3)!

xn−2
, n ≥ 3.

It follows that
f ′(1) = 0, f ′′(1) = 1, f (n)(1) = (−1)n+12 · (n− 3)!, n ≥ 3,

and hence

a0 = 0, a1 = 1, a2 =
3

2
, an =

(−1)n+12

n(n− 1)(n− 2)
, n ≥ 3.

To find the radius of convergence of the series we try ratio test.

lim
n→∞

∣∣∣∣an+1(x− 1)n+1

an(x− 1)n

∣∣∣∣ = |x− 1|,

which says that the series converges for 0 < x < 2. When x = 2, the series becomes an alternating
series so converges and hence the interval of convergence of the series is 0 < x ≤ 2. However, the
Taylor error term is easily estimated to go to zero as n goes to infinity only when 1/2 ≤ x ≤ 2.
The usual estimates of the error does not necessarily imply that it goes to zero when 0 < x < 1/2.
Therefore we need to develop the series using an alternate approach to keep track of the Taylor error
term.

For this we can start with

ln(1 + t) = t− t2

2
+ · · ·+ (−1)n+1 t

n

n
+ · · · ,−1 < t ≤ 1,

and write
x2 lnx = [(x− 1) + 1]2 ln[1 + (x− 1)]

to use the series expansion of ln(1 + t). This immediately gives the convergence of the series to f(x)
for 0 < x ≤ 2.

Here is the series expansion.

x2 lnx = (x− 1) +
3

2
(x− 1)2 +

∞∑
n=3

(−1)n+1 2

n(n− 1)(n− 2)
(x− 1)n, 0 < x ≤ 2.
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Q-3) Find lim
n→∞

n!2n

nn
.

Solution:

Let an =
n!2n

nn
. Then

an+1

an
=

2

(1 + 1/n)n
→ 2

e
< 1 as n→∞.

Therefore the series
∞∑
n=1

an converges and necessarily we must have lim
n→∞

n!2n

nn
= 0.
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Q-4) Let tan(x) = a0+a1x+a2x
2+a3x

3+a4x
4+a5x

5+a6x
6+ · · · be the Taylor expansion of tanx

at x = 0. Find a0, . . . , a6.
Also find the interval where the above Taylor series converges to tanx.

Solution:

Since tanx is an odd function, we immediately know that a0 = a2 = a4 = a6 = 0. To calculate
the remaining Taylor coefficients using derivatives is cumbersome. However we can use the trivial
observation that

tanx cosx = sinx,

and substitute here the corresponding power series to find

(a1x+ a3x
3 + a5x

5 + · · · )(1− 1

2
x2 +

1

24
x4 − · · · ) = x− 1

6
x3 +

1

120
x5 − · · · .

This gives

a1x+
(
−a1

2
+ a3

)
x3 +

(a1
24
− a3

2
+ a5

)
x5 + · · · = x− 1

6
x3 +

1

120
x5 − · · · ,

from where we find a1 = 1, a3 =
1

3
, a5 =

2

15
.

The Taylor series converges around x = 0 up to the first singularity. Since cosine vanishes at x = π/2,
the interval of convergence of the Taylor series of tanx around x = 0 is (−π/2, π/2).
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Q-5) Find lim
x→0

(arctanx− x)(sinhx− x)(1− x2 lnx)
(3 tanx− 3x− x3)(sec3 x− x3)(ex − 1)

.

Solution:

We first notice that lim
x→0

(1− x2 lnx)
(sec3 x− x3)

= 1 and does not contribute to the indeterminacy of the above

limit. So it suffices to examine the remaining factors. For this we see that both the numerator and the
denominator vanish to the order of 6. Then we write

lim
x→0

(arctanx− x)(sinhx− x)
(3 tanx− 3x− x3)(ex − 1)

= lim
x→0

(−1
3
x3 + 1

5
x5 + · · · )(1

6
x3 + 1

120
x5 + · · · )

(2
5
x5 + 17

105
x7 + · · · )(x+ 1

2
x2 + · · · )

= lim
x→0

− 1
18
x6 + 11

360
x8 + · · ·

2
5
x6 + 1

5
x7 + · · ·

=− 5

36
,

which is the required limit.


