Summer 2007-08 MATH 116 Homework 1

Due on June 18.

No late homework will be accepted.

1. Let $f(x, y)=\frac{\sqrt{x y}}{\ln \left(x^{2}+y^{2}-4\right)}$.
(a) Find the domain of the function f.
(b) Find the range of the function f.
2. Evaluate the limit

$$
\lim _{(x, y) \rightarrow(0,0)} \int_{0}^{x^{2} y^{2}} \frac{\sin (t+1)}{(t+1)\left(x^{2}+y^{2}\right)} d t
$$

3. (a) Let $f(t)$ be a differentiable function. If $u(x, y)=f\left(\frac{x}{y}\right)$ for $y \neq 0$, prove that u satisfies the partial-differential equation

$$
x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0 .
$$

(b) Find a solution to the partial-differential equation in part (a) such that $u(1,1)=2$ and $u_{x}\left(x, \frac{1}{x}\right)=\frac{1}{x}$ for all $x \neq 0$.
4. Let $f(x)=\int_{x^{4}+x^{2}}^{x^{6}} \sqrt{t^{3}+x^{2}} d t$. Then find $f^{\prime}(x)$.
(Hint: See the solution of exercise 49 in Section 14.4)
5. Let $L(x, y)$ be the linearization of the function $f(x, y)=x^{2}+y^{2}$ at $(1,1)$. Let $E(x, y)$ be the error function defined by $E(x, y)=f(x, y)-L(x, y)$. In what direction does $E(x, y)$ increase most rapidly at $(2,0)$ and what is the rate of change of $E(x, y)$ in this direction?

