Summer 2007-08 MATH 116 Homework 3

Due on July 18.

No late homework will be accepted.

1. Find the outward flux of the vector field

$$
\mathbf{F}(x, y)=\left(x^{2}+y^{2}\right) \sin (x) \mathbf{i}+e^{x y^{2}} \ln \left(\frac{y}{e}\right) \mathbf{j}
$$

across the rectangle with vertices $(0,1),(\pi, 1),(0, e)$, and (π, e).
2. Find the work done by the force

$$
\mathbf{F}(x, y, z)=\left(2 x z^{3}+e^{y}\right) \mathbf{i}+\left(x e^{y}+4 y^{3} \cos (z)\right) \mathbf{j}+\left(3 x^{2} z^{2}-y^{4} \sin (z)\right) \mathbf{k}
$$

over the curve parameterized by

$$
\mathbf{r}(t)=\sin (\pi t) \mathbf{i}+t^{3} \mathbf{j}+(2 t-1) \mathbf{k}, \quad \text { for } 0 \leq t \leq \frac{1}{2}
$$

in the direction of increasing t.
3. Among all smooth simple closed curves in the plane oriented counterclockwise, find the one along which the work done by

$$
\mathbf{F}(x, y)=\left(\frac{4}{3} y^{3}-20 y+5\right) \mathbf{i}+\left(1+5 x-3 x^{3}\right) \mathbf{j}
$$

is greatest and calculate the area of the region enclosed by this smooth simple closed curve.
4. Let C be a smooth curve that encloses a region R such that the area of the region R is 7π and the interior of the region R contains the rectangle

$$
D=\{(x, y) \mid-1 \leq x \leq 1 \text { and }-1 \leq y \leq 1\} .
$$

Compute the outward flux of the vector field

$$
\mathbf{F}(x, y)=\left(\frac{2 x+y}{x^{2}+y^{2}}+3 x+6 y\right) \mathbf{i}+\left(\frac{2 y-x}{x^{2}+y^{2}}+5 x+7 y\right) \mathbf{j}
$$

across the curve C.
5. Find the area of the surface $z=2 x y$ inside the cylinder $x^{2}+y^{2}=9$.

