MATH 116 REVIEW PROBLEMS for the FINAL EXAM

The following questions are taken from old final exams of various calculus courses taught in Bilkent University

1. Consider the line integral $\oint_{C}\left(2 x y^{2} z+y\right) d x+2 x^{2} y z d y+\left(x^{2} y^{2}-2 z\right) d z$ where $C: x=$ $\cos t, y=\sin t, z=\sin t$ from $t=0$ to $t=2 \pi$.
a) Evaluate the above line integral directly.
b) Evaluate the above line integral by using Stokes' theorem.
2. Evaluate the line integral $\oint_{C}\left(-y x^{2}+\sin x^{2}\right) d x+\left(x y^{2}+e^{y^{2}}\right) d y$ where C is the boundary of the region in the first quadrant bounded by $x^{2}+y^{2}=1, x^{2}+y^{2}=4, y=x, y=\sqrt{3} x$ traced in the counterclockwise sense.
3. Consider the solid in \mathbb{R}^{3} which is bounded by $z=0, z=1+x^{2}+y^{2}, x^{2}+y^{2}=4$. Express the volume of this solid as an iterated triple integral (or sum and/or difference of iterated triple integrals) in the following coordinate systems. But do not evaluate.
a) In $x y z$-coordinates.
b) In cylindrical coordinates.
c) In spherical coordinates.
4. a) Let f be a function of class C^{1} in \mathbb{R}^{2} and $z=f(x, y)$ where $x=u \cos \alpha-v \sin \alpha$, $y=u \sin \alpha+v \cos \alpha$ for some constant angle α. Show that

$$
\left(\frac{\partial z}{\partial u}\right)^{2}+\left(\frac{\partial z}{\partial v}\right)^{2}=\left(\frac{\partial z}{\partial x}\right)^{2}+\left(\frac{\partial z}{\partial y}\right)^{2}
$$

b) Let f be of class C^{2} in \mathbb{R}^{2} and $z=f(u, v)$ where $u=x^{2}+y x, v=x-2 y^{2}$. Given that

$$
\left.\frac{\partial f}{\partial u}\right|_{u=6, v=0}=3,\left.\quad \frac{\partial f}{\partial v}\right|_{u=6, v=0}=-5,\left.\quad \frac{\partial^{2} f}{\partial u^{2}}\right|_{u=6, v=0}=-3,\left.\quad \frac{\partial^{2} f}{\partial u \partial v}\right|_{u=6, v=0}=2,\left.\quad \frac{\partial^{2} f}{\partial v^{2}}\right|_{u=6, v=0}=1,
$$

find $\left.\frac{\partial^{2} z}{\partial x^{2}}\right|_{x=2, y=1}$.
5. Evaluate

$$
\int_{0}^{1} \int_{\sqrt{y}}^{1} x^{3} e^{y x} d x d y
$$

6. Consider

$$
I(C)=\oint_{C} \frac{x-y}{x^{2}+y^{2}} d x+\frac{x+y}{x^{2}+y^{2}} d y
$$

where C is an arbitrary piecewise smooth simple closed curve which does not pass through the origin and traced counterclockwise. Calculate $I(C)$
a) when origin is not enclosed by C,
b) when origin is enclosed by C.
7. Consider the region D in the upper half space of \mathbb{R}^{3} (i.e. $z \geq 0$) bounded above by the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ and below by the upper nappe of the cone $z^{2}=b^{2}\left(x^{2}+y^{2}\right)$ where $a>0, b>0$ are constants. Write the volume of D as a triple integral (or sum of triple integrals) in
a) x, y, z coordinates,
b) cylindrical coordinates,
c) spherical coordinates.

Do not evaluate the integrals.
8. Consider the surface integral

$$
I=\iint_{S} \operatorname{curl} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{n}} d S
$$

where S is the paraboloid $z=1-x^{2}-y^{2}, z \geq 0, \overrightarrow{\mathbf{n}}$ is the unit normal vector to S that points away from the origin and $\overrightarrow{\mathbf{F}}(x, y, z)=y \overrightarrow{\mathbf{i}}+z \overrightarrow{\mathbf{j}}+x \overrightarrow{\mathbf{k}}$.
a) Evaluate I directly.
b) Evaluate I by using Stokes' Theorem or Divergence Theorem.
9. Consider the plane $\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1$ where $a>0, b>0, c>0$ are constants. Assume this plane passes through the point $(2,1,2)$ and cuts off the smallest volume from the first octant. Find a, b, c.
10. Find the volume of the solid whose base is the region in the $x y$-plane between the circles $x^{2}+y^{2}=2 y$ and $x^{2}+y^{2}=3 y$ and whose top lies in the plane $z=3-y$.
11. Evaluate

$$
\oint_{C}\left(\frac{y^{3}}{x^{2}}+\sin x^{2}\right) d x+\left(y^{3} \ln x+e^{y^{2}}\right) d y
$$

where C is the boundary of the region in the first quadrant bounded by the hyperbolas $x y=1, x y=3$ and the lines $y=x, y=2 x$.
12. Let S denote the upper hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$. If $\overrightarrow{\mathbf{a}}=a_{1} \overrightarrow{\mathbf{i}}+a_{2} \overrightarrow{\mathbf{j}}+a_{3} \overrightarrow{\mathbf{k}}$ is a constant vector and $\overrightarrow{\mathbf{F}}=x \overrightarrow{\mathbf{i}}+y \overrightarrow{\mathbf{j}}+z \overrightarrow{\mathbf{k}}$, find

$$
\iint_{S} \operatorname{curl}(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{F}}) \cdot \overrightarrow{\mathbf{n}} d S
$$

where $\overrightarrow{\mathbf{n}}$ is the outer unit normal to S.
13. The plane $2 x+4 y+z=15$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the highest and the lowest points on this ellipse (i.e., the points with the largest and smallest z-coordinate).
14. Evaluate the following line integral:

$$
\oint_{C}\left(-x^{2} y+e^{x^{2}}\right) d x+\left(x y^{2}+\sin y^{2}\right) d y
$$

where C is the boundary of the region in the first quadrant bounded by the hyperbolas $x^{2}-y^{2}=1, x^{2}-y^{2}=9, y=\frac{2}{x}$ and $y=\frac{4}{x}$ traced once in the positive (i.e. counterclockwise) direction.
15. Find the volume of the solid in the upper space(i.e. $z \geq 0$) bounded by the plane $z=0$, the cylinder $x^{2}+(y-1)^{2}=1$ and the cone $z^{2}=x^{2}+y^{2}$.
16. a) Evaluate the surface integral $\iint_{S} z d S$ where S is the part of the cylinder $y^{2}+z^{2}=9$ in the first octant bounded by $x=0$ and $x=4$.
b) Let $\overrightarrow{\mathbf{F}}=M(x, y) \overrightarrow{\mathbf{i}}+N(x, y) \overrightarrow{\mathbf{j}}$ be a vector field in the plane such that M and N are of class C^{1} and $\frac{\partial M}{\partial x}+\frac{\partial N}{\partial y} \geq 1$ for all (x, y) in the plane. Show that there is no simple closed curve in the plane whose tangent vector is parallel to $\overrightarrow{\mathbf{F}}$ at all of its points.
17. Let π : $a x+b y+c z=k$ with $a^{2}+b^{2}+c^{2}=1$ be a plane in the 3 -space and let C be a simple closed curve lying in the plane π. Show that

$$
\left|\frac{1}{2} \oint_{C}(b z-c y) d x+(c x-a z) d y+(a y-b x) d z\right|
$$

is equal to the area of the region on π enclosed by C.
18. Assume $f: R^{2} \rightarrow R$ is such that $f(x, y)$ depends only on the distance r of (x, y) from the origin, i.e. $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
a) Show that for all $(x, y) \neq(0,0)$ we have

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=\frac{1}{r} g^{\prime}(r)+g^{\prime \prime}(r)
$$

b) Assume further that

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

for all $(x, y) \neq(0,0)$. Use part a) and find $f(x, y)$.
19. a) Evaluate $\iint_{D} x \cos (x+y) d x d y$ where D is the triangular region with vertices at $(0,0),(\pi, 0),(\pi, \pi)$.
b) Show that

$$
\int_{0}^{c} \int_{0}^{y} e^{m(c-x)} f(x) d x d y=\int_{0}^{c}(c-x) e^{m(c-x)} f(x) d x
$$

where c and m are constants and $c>0$.
20. Let D be the solid in R^{3} bounded above by the sphere $x^{2}+y^{2}+z^{2}=2$ and below by the cone $z=\sqrt{x^{2}+y^{2}}$. Write the volume of D as an iterated triple integral in
a) Cartesian coordinates (i.e. x, y, z coordinates),
b) Cylindrical coordinates,
c) Spherical coordinates,
d) Use a) or b) or c) above and compute the volume of D.
21. Assume $h: R^{2} \rightarrow R$ and $k: R^{2} \rightarrow R$ have continuous first order partial derivatives in R^{2}. Assume also at every point (x, y) of the circle $C: x^{2}+y^{2}=1$, we have $h(x, y)=1, k(x, y)=y$. Define two vector fields $\overrightarrow{\mathbf{F}}$ and $\overrightarrow{\mathbf{G}}$ in R^{2} as follows:

$$
\overrightarrow{\mathbf{F}}(x, y)=k(x, y) \overrightarrow{\mathbf{i}}+h(x, y) \overrightarrow{\mathbf{j}}, \quad \overrightarrow{\mathbf{G}}(x, y)=\left(\frac{\partial h}{\partial x}-\frac{\partial h}{\partial y}\right) \overrightarrow{\mathbf{i}}+\left(\frac{\partial k}{\partial x}-\frac{\partial k}{\partial y}\right) \overrightarrow{\mathbf{j}}
$$

Find the value of the double integral $\iint_{D} \overrightarrow{\mathbf{F}} \cdot \overrightarrow{\mathbf{G}} d x d y$ where D is the disc $x^{2}+y^{2} \leq 1$.
21. a) Compute the surface area of the paraboloid $x^{2}+z^{2}=3 a y$ which is cut off by the plane $y=a$.
b) Let S be the upper hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$ and

$$
\overrightarrow{\mathbf{F}}=\left(x+y z^{2}\right) \overrightarrow{\mathbf{i}}+\left(2 y+x^{3} z\right) \overrightarrow{\mathbf{j}}+\left(x^{2}+y^{2}\right) \overrightarrow{\mathbf{k}} .
$$

Find the flux of $\overrightarrow{\mathbf{F}}$ across S in the direction of the normal which points away from the origin.
22. Find the absolute minimum of the function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ subject to the two constraints

$$
y+2 z=12 \text { and } x+y=6
$$

23. a) Evaluate the following double integral

$$
I=\int_{0}^{\sqrt{\frac{\pi}{2}}} \int_{x}^{\sqrt{\frac{\pi}{2}}} \cos \left(y^{2}\right) d y d x
$$

b) Let D be the solid in the first octant bounded below by the $x y$-plane, above by the cone $z=\sqrt{x^{2}+y^{2}}$, on the sides by $y z$-plane and the cylinder $x^{2}+(y-1)^{2}=1$. Find the volume of D.
24. Let C be a smooth simple closed curve lying in the set $S=\left\{(x, y): 1<x^{2}+y^{2}<9\right\}$ which is traversed once in the counterclockwise direction. Find all possible values of

$$
I(C)=\oint_{C} \frac{y}{x^{2}+y^{2}} d x-\frac{x}{x^{2}+y^{2}} d y
$$

25. Let $\pi: A x+B y+C z=k$ be a plane in the space such that $A \neq 0, B \neq 0$ and $C \neq 0$. Let S be a bounded set lying on π which has an area, and let S_{1}, S_{2}, S_{3} denote its projections on the three coordinate planes. Show that

$$
a(S)=\sqrt{a\left(S_{1}\right)^{2}+a\left(S_{2}\right)^{2}+a\left(S_{3}\right)^{2}} .
$$

26. Let $S: z=9-x^{2}-y^{2}, z \geq 0$, i.e. S is the part of the paraboloid in the upper space. Let

$$
\overrightarrow{\mathbf{F}}=y z^{4} \overrightarrow{\mathbf{i}}+x z^{3} \overrightarrow{\mathbf{j}}+\left(x^{2}+y^{2}\right) \overrightarrow{\mathbf{k}}
$$

Find the flux of $\overrightarrow{\mathbf{F}}$ across S in the direction that points away from the origin.
27. Evaluate the following line integral

$$
\int_{C} \frac{x^{2}}{1+y} d x+e^{x y} x d y
$$

where C is the curve $y=x^{2}$ from the point $A(0,0)$ to the point $B(1,1)$.
27. Evaluate the line integral

$$
\int_{C} 2 \cos y d x+\left(\frac{1}{y}-2 x \sin y\right) d y+\frac{1}{z} d z
$$

where C is the curve of intersection of the surfaces $(8-\pi) x+2 y-4 z=0$ and $16 z=$ $\left(32-\pi^{2}\right) x^{2}+4 y^{2}$ from the point $A(0,2,1)$ to the point $B(1, \pi / 2,2)$.
28. By using the Stokes' theorem, evaluate

$$
\int_{C}(y-z) d x+(z-x) d y+(x-y) d z
$$

where C is the intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $\frac{x}{3}+\frac{z}{4}=1$ traversed in the counterclockwise sense when viewed from high above the $x y$-plane.

