\qquad
STUDENT NO: \qquad

SECTION NUMBER:

\qquad

Math 116 Intermediate Calculus III - Midterm Exam I - Solutions

1	2	3	4	5	TOTAL
20	20	20	20	20	100

Please do not write anything inside the above boxes!

PLEASE READ:

Check that there are 5 questions on your exam booklet. Write your name on the top of every page. Show your work in reasonable detail. A correct answer without proper reasoning may not get any credit. Without the correct section number, your grade may not be entered in SAPS.

Q-1) (i) Prove that $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2} y \sin x}{x^{2}+y^{2}}\right)=0$.
(ii) Show that $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x^{2} y}{x^{4}+y^{2}}\right)$ does not exist.

Solution (Özgün Ünlü): (i) First observe that

$$
\left|\frac{x^{2} y \sin x}{x^{2}+y^{2}}\right| \leq|y||\sin x| \frac{x^{2}}{x^{2}+y^{2}} \leq|y| \frac{x^{2}}{x^{2}+y^{2}} \leq|y|
$$

Hence we have

$$
-|y| \leq \frac{x^{2} y \sin x}{x^{2}+y^{2}} \leq|y|
$$

We also have

$$
\lim _{(x, y) \rightarrow(0,0)} \mp|y|=0
$$

Then use the sandwich theorem to conclude that the limit is zero.
Solution: (ii) Try the path $y=\lambda x^{2}$:

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=\lambda x^{2}}} \frac{x^{2} y}{x^{4}+y^{2}}=\lim _{x \rightarrow 0} \frac{\lambda x^{4}}{x^{4}+\lambda^{2} x^{4}}=\lim _{x \rightarrow 0} \frac{\lambda}{1+\lambda^{2}}=\frac{\lambda}{1+\lambda^{2}} .
$$

The limit on different paths do not agree so the limit does not exist.

Q-2) Let $w=f(u, v)$, where f has continuous first and second order partial derivatives. Let $u=x^{2} y$ and $v=\frac{x}{y}$. Find $w_{x y}$ at the point $(x, y)=(2,1)$ if $f_{u}(4,2)=4, f_{v}(4,2)=-5$, $f_{u u}(4,2)=-1, f_{v u}(4,2)=3$ and $f_{v v}(4,2)=2$.

Solution (Hamza Yeşilyurt): By chain rule, we find that

$$
w_{x}=f_{u} u_{x}+f_{v} v_{x}
$$

Similarly by applying the chain rule to the functions f_{u} and f_{v}, we find that

$$
\left(f_{u}\right)_{y}=\left(f_{u}\right)_{u} u_{y}+\left(f_{u}\right)_{v} v_{y}=f_{u u} u_{y}+f_{u v} v_{y}
$$

and

$$
\left(f_{v}\right)_{y}=\left(f_{v}\right)_{u} u_{y}+\left(f_{v}\right)_{v} v_{y}=f_{v u} u_{y}+f_{v v} v_{y} .
$$

Therefore,

$$
\begin{aligned}
w_{x y} & =\left(f_{u} u_{x}+f_{v} v_{x}\right)_{y} \\
& =\left(f_{u}\right)_{y} u_{x}+f_{u} u_{x y}+\left(f_{v}\right)_{y} v_{x}+f_{v} v_{x y} \\
& =\left(f_{u u} u_{y}+f_{u v} v_{y}\right) u_{x}+f_{u} u_{x y}+\left(f_{v u} u_{y}+f_{v v} v_{y}\right) v_{x}+f_{v} v_{x y} .
\end{aligned}
$$

Next, $u_{x}=2 x y, u_{x}(2,1)=4, \quad u_{y}=x^{2}, u_{y}(2,1)=4, \quad v_{x}=1 / y, v_{x}(2,1)=1$, $v_{y}=-x / y^{2}, v_{y}(2,1)=-2, \quad u_{x y}=2 x, u_{x y}(2,1)=4, \quad v_{x y}=-1 / y^{2}, v_{x y}(2,1)=-1$, and $u(2,1)=4, v(2,1)=2$. Moreover, $f_{u v}(4,2)=f_{v u}(4,2)$ since f has continuous partial derivatives of first and second order. Hence,

$$
w_{x y}(2,1)=((-1) \cdot 4+3 \cdot(-2)) \cdot(4)+4 \cdot 4+(3 \cdot(4)+2 \cdot(-2)) \cdot(1)+(-5) \cdot(-1)=-11 .
$$

Q-3) Show that the ellipsoid $3 x^{2}+2 y^{2}+z^{2}=4$ and the sphere $x^{2}+y^{2}+z^{2}-5 x+3 z+6=0$ are tangent to each other at $(1,0,-1)$. Find an equation of this common tangent plane.

Solution (Müfit Sezer):

Let $f(x)=3 x^{2}+2 y^{2}+z^{2}$ and $g(x)=x^{2}+y^{2}+z^{2}-5 x+3 z+6$. Then we have $\nabla f=6 x \mathbf{i}+4 y \mathbf{j}+2 z \mathbf{k}$ and $\nabla g=(2 x-5) \mathbf{i}+(2 y) \mathbf{j}+(2 z+3) \mathbf{k}$. We get $\nabla f(1,0,-1)=6 \mathbf{i}-2 \mathbf{k}$ and $\nabla g(1,0,-1)=-3 \mathbf{i}+\mathbf{k}$.

Therefore $\nabla f(1,0,-1)=-2 \nabla g(1,0,-1)$ and hence the normal vectors to the respective tangent planes are parallel. Since these planes also share a common point, they are the same. The equation of this plane is

$$
6(x-1)-2(z+1)=0 .
$$

Q-4) Find the highest and the lowest points on the ellipse $3 x^{2}+2 x y+2 y^{2}+x-7 y=7$.
Solution (Sinan Sertöz): One approach to this problem is to use Lagrange Multipliers Method. The function to optimize is $f(x, y)=y$ subject to the constraint $g(x, y)=$ $3 x^{2}+2 x y+2 y^{2}+x-7 y-7=0$.
$\nabla f=\lambda \nabla g$ gives $6 x+2 y+1=0$ (together with $2 x+4 y-7=1 / \lambda$.)
We can also argue as follows: At the lowest and highest points of the ellipse its tangent line will be horizontal. The gradient ∇g, being perpendicular to the tangent line will be a vertical vector and its x-component will be zero, i.e. $6 x+2 y+1=0$.

Once we get the equation $6 x+2 y+1=0$, we solve for y and substitute into g.

$$
g\left(x,-\frac{6 x+1}{2}\right)=15 x^{2}+27 x-3=0 .
$$

This gives $x=\frac{-9 \pm \sqrt{101}}{10}$.
Alternatively we could solve for x from $6 x+2 y+1=0$ and then substitute into g.

$$
g\left(-\frac{2 y+1}{6}, y\right)=20 y^{2}-88 y-85=0 .
$$

This then gives $y=\frac{22 \pm \sqrt{101}}{10}$.
Once x or y is found, the other value can of course be found from $6 x+2 y+1=0$.
This gives two critical points $p=\left(\frac{-9-\sqrt{101}}{10}, \frac{22+\sqrt{101}}{10}\right)$ and $q=\left(\frac{-9+\sqrt{101}}{10}, \frac{22-\sqrt{101}}{10}\right)$.
Comparing the values of f at these points we find that $f(p)>f(q)$, so the highest point is p and the lowest point is q.

Another approach is to consider the restriction of the function y to the ellipse, which then makes it a function of x. Differentiating $g(x, y)=0$ implicitly with respect to x, solving for y^{\prime} and equating it to zero gives $6 x+2 y+1=0$. Then proceed as above. (Thanks to Abidin Erdem Karagül.)

Q-5) Find and classify all critical points of $f(x, y)=4 x^{3}+x y^{2}-2 y x^{2}-x$.
Solution (Aydan Pamir): To find the critical points:
$f_{x}(x, y)=12 x^{2}+y^{2}-4 x y-1=0$
$f_{y}(x, y)=2 x y-2 x^{2}=2 x(y-x)=0$
Equation (2) $\Rightarrow x=0$ or $x=y$
$x=0$ and Equation $(\mathbf{1}) \Rightarrow y^{2}=1 \Rightarrow y= \pm 1$, i.e, $P_{1}(0,1)$ and $P_{2}(0,-1)$
$y=x$ and Equation $(1) \Rightarrow 12 x^{2}+x^{2}-4 x^{2}-1=0 \Rightarrow x= \pm 1 / 3$, i.e, $P_{3}(1 / 3,1 / 3)$ and $P_{4}(-1 / 3,-1 / 3)$
$\Delta=f_{x x} f_{y y}-f_{x y}^{2}$ where $f_{x x}=24 x-4 y, \quad f_{y y}=2 x$ and $f_{x y}=2 y-4 x$
So,
$\Delta=2 x(24 x-4 y)-(2 y-4 x)^{2}=8 x(6 x-y)-4(y-2 x)^{2}$

- $\left.\Delta\right|_{P_{1}(0,1)}=-4<0 \Rightarrow f$ has a saddle point at $P_{1}(0,1)$
- $\left.\Delta\right|_{P_{2}(0,-1)}=-4<0 \Rightarrow f$ has a saddle point at $P_{2}(0,-1)$
- $\left.\Delta\right|_{P_{3}(1 / 3,1 / 3)}=4>0$ and $\left.f_{x x}\right|_{P_{3}(1 / 3,1 / 3)}=20 / 3>0 \Rightarrow$ f has a local minimum at $P_{3}(1 / 3,1 / 3)$
- $\left.\Delta\right|_{P_{4}(-1 / 3,-1 / 3)}=4>0$ and $\left.f_{x x}\right|_{P_{4}(-1 / 3,-1 / 3)}=-20 / 3<0 \Rightarrow$ f has a local maximum at $P_{4}(-1 / 3,-1 / 3)$

